Sfera-perm.ru

Сфера Пермь
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Защита стабилизаторов питания по току

Простая схема регулируемого трансформаторного блока питания на транзисторах с защитой от перегрузки и КЗ.

В этой статье предлагаю рассмотреть достаточно простую схему, классический вариант, блока питания с регулировкой выходного напряжения и тока срабатывания защиты от токовой перегрузки и короткого замыкания. Новичкам, которые первый раз видят данную схему наверняка будет не совсем понятен сам принцип действия и работа этого устройства. А что касается надежности этой схемы, то она уже проверена многими годами и многими радиолюбителями, электронщиками, которые в свое время обязательно должны были собирать этот регулируемый блок питания для своих различных электронных устройств. Так что схема проста, работоспособна и вполне надежна.

Давайте разберем эту схему. Вначале стоит обычный трансформаторный блок питания подходящей мощности. Поскольку в самой схеме регулятора напряжения стоит силовой транзистор КТ817, который может через свой переход коллектор-эмиттер пропустить до 3х ампер, то этим током пока и ограничимся. Итак, наш регулируемый блок питания будет выдавать на своем выходе постоянное напряжение от 0 до 12 вольт, с максимальной силой тока до 3 А. Следовательно максимальная рабочая мощность блока питания будет около 36 Вт (мы 12 В умножаем на 3 А). Поскольку трансформаторы такой мощности имеют КПД примерно равный 80%, то этот трансформатор у нас должен быть мощностью где-то 50 Вт.

Чтобы мы на выходе данного блока питания получили свои максимальные 12 вольт, то нужно чтобы наш трансформатор на вторичной обмотке выдавал переменное напряжение не менее 13,5 вольт. Почему так. Просто небольшая часть напряжения, а именно где-то 1,2 вольта потеряется на схеме стабилизатора напряжения. Ну об этом чуть позже. В итоге, нужно найти трансформатор мощностью около 45-60 Вт, вторичная обмотка которого может обеспечить ток до 3 ампер и напряжение 13,5-15 вольт. Ну, и желательно чтобы размеры этого трансформатора были подходящими, компактными, а это значит что лучше приобретать тор (круглая форма магнитного сердечника). В таких трансформаторах и размеры меньше и КПД выше. На входе первичной обмотке желательно предусмотреть плавкий предохранитель (на схеме обозначен как Z1), который в случае чего обезопасит схему блока питания от выгорания трансформатора.

Далее пониженное переменное напряжение, что выходит со вторичной обмотки трансформатора, поступает на диодный выпрямительный мост. Задача моста проста, сделать из переменного тока постоянный, то есть его выпрямить. На схеме я указал, что эти диоды в мосте D1 должны быть типа 1n4007, но изначально схема была нарисована на выходной тока до 1ого ампера. Именно этот ток (до 1 А) могут обеспечить данный тип диода. Поскольку мы уже делаем блок питания на 3 ампера, то либо нужен соответствующий диодный мост типа BR310 (можно и даже нужно делать запас по току и брать мосты ампер так на 5 или 6) либо же соединить параллельно 3 или 4 моста с диодами 1n4007. Обратное напряжение диодов моста должно быть, естественно, больше, чем напряжение, что на них подается.

Но как известно после диодного моста выходит пульсирующее напряжение, хотя оно уже и не меняет свою полярность. Чтобы эти пульсации убрать, или по крайней мере их свести к минимуму, то обычно для этого ставиться обычный фильтрующий конденсатор электролит. В схеме он обозначен как C1 и его емкость 500 микрофарад, хотя можно поставить и побольше, микрофарад так на 5000, будет только лучше. Учтите, что напряжение конденсаторов должно быть чуть больше того, которое на них подается в схеме при работе. Поскольку в противном случае возникает опасность выхода из строя данного конденсатора. Даже может бабахнуть.

Далее в регулируемом блоке питания, с защитой по току от КЗ и перегрузок, стоит сама схема, которая выполняет функцию регулируемого стабилизатора напряжения, и токовой защиты. В начале этой схемы стоит обычный параметрический стабилизатор напряжения, состоящий из стабилитрона VD1 и резистора R1.

На стабилитроне оседает опорное напряжение, то на какое рассчитан сам стабилитрон. В этой схеме нужен стабилитрон с напряжением стабилизации 13,5 вольт (14 В). Причем стоит заметить, выходное напряжение будет равно напряжению стабилитрона плюс 1,2 вольта, что потеряются на составном транзисторе, состоящем из VT1 и VT2 (на их база-эмиттерном переходе).

Напряжение питание должно быть больше хотя бы на 0,5-2 вольта, чем напряжение стабилитрона. Именно эта добавленное напряжение и нужно для нормальной, стабильной работы стабилитрона (параметрического стабилизатора). Сам стабилитрон можно поставить например Д814Д, либо поставить несколько параллельно соединенных стабилитронов и диодов, общее напряжение стабилизации чтобы было равно 14 вольтам.

Параллельно стабилитрону подключен переменный резистор R2. Именно им осуществляется регулировка величины выходного напряжения. Со среднего вывода этого резистора, относительно минуса, напряжение снимается и подается на базу первого транзистора VT1 (составного). Этот составной транзистор состоит из VT1 и VT2 и включен по схеме с общим коллектором (эмиттерный повторитель). А как известно, при таком подключении транзисторов усиление происходит только по току, напряжение же остается практически неизменным, и даже чуть меньше. И получается, что какое напряжение будет выставлено на переменном резисторе, то такое напряжение (с вычетом 1,2 В) и будет на выходе регулируемого блока питания. Но при этом через составной транзистор будет проходит максимально возможный ток, ограничивается только величиной нагрузки и максимально допустимым током самих силовых транзисторов (напомню, что КТ817 может выдерживать до 3 ампера). Этот транзистор следует установить на радиатор для лучшего охлаждения.

Читайте так же:
Принципиальная схема стабилизатора тока

Ну и теперь что касается функции защиты по току от короткого замыкания и чрезмерной перегрузки. Как видно на схеме коллектор-эмиттерный переход транзистора VT3 подключен параллельно выводам переменного резистора, с которых снимается регулируемое напряжение. Следовательно, если этот транзистор защиты по току будет открываться, то тем самым он будет способствовать снижению выходного напряжения. А это, естественно, приведет и к снижению величины силы тока в нагрузке. Ну, а чтобы транзистор защиты начал открываться, нужно появление напряжения на его база-эмиттерном переходе, который подключен к еще одному переменному резистору R3. Именно этим резистором можно регулировать силу тока перегрузки и КЗ. Этот переменный резистор подключен к еще одному резистору R4, который и выполняет роль датчика величины тока в цепи нагрузки.

Работа этого датчика тока проста. На рисунке под схемой (в нижнем, правом углу) можно увидеть три последовательно соединенных резистора, что соответствует сопротивлениям силового транзистора (коллектор-эмиттерный переход), сопротивления самой нагрузки и сопротивления резистора R4. Если мы увеличим нагрузку, уменьшив ее сопротивления, то напряжение будет перераспределяется между другими сопротивлениями в этой цепи. Следовательно на резисторе R4 при перегрузке или коротком замыкании увеличится напряжение, что и приведет к открытию защитный транзистор VT3. Сопротивления датчика тока R4 можно подбирать под нужный диапазон тока перегрузки и его величина может быть от 0,1 до 10 Ом. При этом мощность этого сопротивления должна быть не менее 1 Ватта.

Ну и на выходе нашего блока питания стоит еще один конденсатор электролит, который еще лучше фильтрует возможные пульсации, делая выходное постоянное напряжении более стабильным и ровным. Его емкость может быть от 500 мкф до 2200 мкф и напряжением 16 или 25 вольт.

Видео по этой теме:

Принципы работы и разновидности стабилизаторов напряжения

Задачей стабилизатора напряжения является стабилизация входного напряжения и очистка напряжения от различных высокочастотных колебаний. Тип стабилизатора – это тип механизма благодаря чему он это все выполняет. В статье рассмотрим различные виды стабилизаторов напряжения, их отличия, схемы, преимущества и недостатки.

1. Виды стабилизаторов напряжения

Релейные стабилизаторы напряжения

Релейные стабилизаторы получили наиболее широкое распространение из-за оптимального соотношения необходимых параметров и цены. Они имеют быстродействие от 0,2 до 0,5 с в зависимости от применяемых реле и величины скачка входного напряжения.

Из минусов – при переключении реле происходит скачок напряжения (5-15 Вольт в зависимости от количества ступеней переключения). Для техники это не существенно и безопасно, но свет будет моргать.

Поэтому при переключении стабилизатора может наблюдаться небольшое мигание лампочек накаливания. Схема релейного стабилизатора условно представлена ниже.

Релейный стабилизатор напряжения. Схема функциональная

Как и все современные стабилизаторы напряжения его основу составляет силовой трансформатор и электронный блок. Электронный блок релейного стабилизатора напряжения представляет собой микроконтроллер, в котором происходит анализ входного и выходного напряжения и вырабатываются сигналы для управления ключами или силовыми реле стабилизатора.

То есть, переключение происходит при переходе синусоиды через ноль.

Электромеханические стабилизаторы напряжения

Другое название – стабилизаторы с сервоприводом, или автотрансформаторные.

Принцип их действия следующий: плата управления анализирует входное напряжение, и в зависимости от ситуации передает сигнал на сервомотор, расположенный внутри тороидальной катушки и это мотор передвигает на необходимое количество витков токосъемную щетку.

Электромеханический стабилизатор напряжения. Упрощенная схема

Такой принцип действия обеспечивают более высокую точность стабилизации (2-3%, по сравнению с релейными 5-8%).

Точность зависит от количества витков трансформатора. Шаг изменения таким образом будет равен количеству вольт на один виток.

Но скорость движения щетки ограничена возможностями мотора, чаще всего скорость добавления 10-15 Вольт/сек. При скачках напряжения на 30-40 Вольт, приборы могут оказаться под опасным напряжением на несколько секунд.

И еще стоит обратить внимание, у некоторых производителей, мотор сам питается от входного напряжения и поэтому когда происходит сильная просадка напряжения ему просто не хватает питания и происходит “зависание” стабилизатора. Но для света, это оптимальный выбор, свет хоть и будет “проседать” при скачках напряжения но не так сильно как у релейного и более мягко.

Читайте так же:
Параметрический стабилизатор с усилителем тока

Такой тип стабилизатора рекомендован в сети, где напряжение стабильно занижено или завышено, и нет резких скачков.

Тиристорные (симисторные) стабилизаторы напряжения

Принцип их работы основывается на автоматическом переключении секций (обмоток) автотрансформатора (или трансформатора) с помощью силовых ключей – тиристоров. Чем-то этот тип похож на релейные стабилизаторы, но в отличие от них не имеют контактной группы, имеют намного больше ступеней стабилизации и большую точность – от 2% до 5%.

Симисторный стабилизатор напряжения. Упрощенная схема

На схеме видно, что отводы трансформатора переключаются симисторами, и выходное напряжение меняется практически мгновенно – не более 0,1 с.

Комфорт использования такого стабилизатора виден сразу – тишина в доме гарантирована.

Наибольшим минусом данного типа стабилизаторов напряжения – высокая цена.

Дополнительные функции стабилизаторов напряжения

Кроме основной функции стабилизаторов напряжения – стабилизации, есть также такой минимальный набор функций и параметров:

  1. Анализ выходного напряжения. Стабилизатор должен быть оснащен информационным (цифровым или стрелочным) табло которое показывает выходное напряжение. Если на стабилизаторе есть функция анализа входного напряжения, это будет дополнительной полезной информацией.
  2. На больших номиналах ( чаще от 3000 ВА) устанавливается функция «Bypass» – функция в электронном устройстве (обработки сигнала, стабилизации напряжения и др.), позволяющая выполнить коммутацию входного сигнала непосредственно на выход, минуя все функциональные блоки. То есть возможность включать сеть в обход стабилизатора напряжения. Если напряжение нормализовалось или Вам не нужен сейчас стабилизатор – нажали рычажок вверх и напряжение пошло минуя блоков стабилизации.

Байпас также нужен, если напряжение опустилось ниже предела работы стабилизатора, и он уже не справляется и может перегреться. Тогда напряжение подается напрямую, через байпас.

Задержка включения нужна прежде всего для компрессорного оборудования – холодильников и т.п.

Книга “Всё о стабилизаторах напряжения”

Cтатья написана на основе книги «Всё о стабилизаторах напряжения». Автор, Александр Румянцев, предоставил свою книгу для свободного скачивания. Книгу можно скачать ниже.

Александр Румянцев – технический специалист компании Suntek, более 10 лет работает в сфере электротехники. Вопросы к нему можно задать в конце статьи.

Скачать бесплатно авторскую книгу:

Скачать инструкции к стабилизаторам напряжения:

• 1 Паспорт SUNTEK ЭМ электромеханический / Паспорт на электромеханические стабилизаторы Suntek СНЭТ-550, 1000, 1500, 2000, 3000, 5000, 8500, 11000 автотрансформаторного типа., pdf, , скачан: 653 раз./

• 2 Паспорт на стабилизаторы напряжения SUNTEK ЭТ электронный тип_реле / Руководство по эксплуатации стабилизаторов напряжения электронного типа (на реле) СНЭТ-550, 1000, 1500, 2000, 3000, 5000, 8500, 11000, pdf, , скачан: 1406 раз./

• 3 паспорт SUNTEK TT тиристорный тип / Руководство к стабилизаторам напряжения тиристорного типа SUNTEK TT (управление на тиристорных ключах), pdf, , скачан: 1295 раз./

Бонусы:

Видео про испытание стабилизатора Suntek

На видео из-за стробоскопического эффекта моргает табло стабилизатора (особенность видеосъемки)

Работа электромеханического стабилизатора Suntek

Для изменения входного напряжения используется автотрансформатор, которым можно менять напряжение в необходимых пределах. При этом на выходе стабилизатора напряжение не выходит за рабочий диапазон.

Ещё статьи

Кому интересно, почитайте другие мои статьи на эту тему:

Устройство стабилизатора напряжения

В настоящее время предлагается широкий выбор стабилизаторов напряжения от нескольких десятков производителей. Практически все производители выпускают модели со своими особенностями, но так или иначе, все они относятся к нескольким основным типам стабилизаторов напряжения. Различия могу наблюдаться в устройстве регулирования напряжения, системе охлаждения и блоке защиты. Эти отличия влекут за собой конструктивные особенности, в следствии чего стабилизаторы имеют разные технические характеристики, размеры, вес и стоимость.

1. Вольтодобавочный трансформатор

Трансформатор вольтодобавочного типа – важный элемент любого стабилизатора, без которого коррекция напряжения становится невозможной. Как правило, вольтодобавочный трансформатор относится к сухому типу и может содержать медную обмотку (в бюджетных моделях может применяться алюминиевая обмотка). Вторичная обмотка трансформатора соединена с сетью последовательно, тогда как первичная подключается к системе регулирования напряжения.

2. Регулирование напряжения

Главным отличием устройств стабилизаторов напряжения является система регулирования напряжения, которая может быть электронной, электродинамической, релейной или основанной на феррорезонансном взаимодействии.

Электронное регулирование – устройство стабилизаторов напряжения, основанное на электронном регулировании выходного напряжения, заключается в коммутировании обмоток трансформатора при помощи полупроводниковых элементов (тиристоров, симисторов). Координация электронными ключами происходит благодаря микропроцессору, который выполняет программируемые функции.

Электромеханическое регулирование – очень схоже с электронным регулированием, однако существенное отличие заключается в использовании силовых реле вместо полупроводниковых электронных ключей, которые коммутируют обмотки трансформатора.

Электродинамическое регулирование – основано на микропроцессорном управлении, где в роли регулятора выступает специальный токосъемный механизм (ролик, щетка, салазки), плавно перемещающийся по обмоткам тороидального или колоновидного трансформатора.

Ферромагнитное регулирование – принцип регулирования заключается в свойстве насыщения магнитного сердечника, когда напряжение на входе повышается, выходное увеличивается до заданного уровня. На определенном этапе сердечник насыщается, что препятствует увеличению напряжения на выходе из стабилизатора.

NORMICSHTEELCALMER
220В±4%220В±2.5%220В±1%
Лучший выбор для частных домов, квартир, офисов, магазинов и т.д.

3. Электронная плата управления и микропроцессор

Современные стабилизаторы напряжения работают при помощи программируемых микропроцессоров, которые дополнены электронной платой управления. Такая связка позволяет добиться высокой скорости работы устройства. Некоторые стабилизаторы производят мониторинг изменения входного напряжения 2000 раз в секунду и моментально реагируют на любые отклонения. Естественно, работа по коррекции напряжения ведется автоматически на протяжении всего срока службы стабилизатора напряжения. Современные платы управления позволяют задавать желаемый уровень выходного напряжения в однофазных сетях – 220/230/240В, а в трехфазных – 380/400/415В.

4. Система охлаждения стабилизатора

Естественная конвекция – некоторые производители принципиально не используют принудительное охлаждение для стабилизаторов, чтобы снизить поток пыли, всасываемый внутрь устройства при работе вентилятора. Такие модели имеют существенно большую стоимость, поскольку силовые элементы устанавливается с большим запасом мощности.

Принудительное охлаждение – 90% стабилизаторов напряжения, которые можно купить на сегодняшний день, имеют дополнительную систему охлаждения, которая основана на малошумящих вентиляторах повышенной производительности. Поток воздуха направлен на силовую часть устройства, где могут возникать повышенные температуры. Как правило, принудительная вентиляция активируется автоматически при температуре радиаторов выше +40 … +45 °С.

Масляное охлаждение – когда необходимо установить стабилизатор напряжения вне помещения, некоторые производители предлагают специальный корпус и масляное охлаждение.

5. Устройство защиты стабилизатора напряжения

Подавляющее большинство стабилизаторов имеют ряд защитных механизмов, которые предотвращают перегрузку стабилизатора и самовозгорание.

Защита от возгорания – несколько датчиков температуры надежно контролируют активность системы охлаждения, а при достижении критических температур происходит защитное отключение стабилизатора.

Защита от перегрузки – при длительной перегрузке стабилизатора срабатывает датчик перегрузки, который производит аварийное отключение стабилизатора во избежании поломки оборудования.

6. Защита нагрузки (подключенных потребителей)

Нормализаторы напряжения получили широкое применение по всему миру, где присутствуют сети с нестабильным напряжением переменного тока. Спектр подключаемых приборов очень широк, а некоторые из них требуют повышенной защиты, поэтому некоторые производители включили в устройство стабилизатора дополнительные защиты от электрических помех и шумов. Такое решение позволяет применять стабилизатор с самыми чувствительными приборами к качеству напряжения (Hi-End акустические системы, лабораторное оборудование и т. д.).

Защита от короткого замыкания – основана на автоматическом выключателе нагрузки, когда ток достигает предельного значения.

Защита от перенапряжения – основана на работе независимого расцепителя и микропроцессора, который мгновенно подает сигнал на отключение при входном напряжении, выходящем за рамки диапазона стабилизации.

Защита от электромагнитных и радиочастотных помех – основана на установке EMI-фильтра на выходе стабилизатора, тем самым предотвращая попадание в сеть вышеуказанных помех.

Молниезащита – опционально некоторые производители снабжают стабилизаторы I и II классом защиты, благодаря чему стабилизатор и подключенное к нему оборудование будет защищено от импульсных перенапряжений, возникающих при ударе молнии.

Изолирующий трансформатор – итальянский производитель ORTEA предлагает дополнительно комплектовать устройство стабилизатора дополнительным входным изолирующим трансформатором. Данная опция позволяет обеспечить гальваническую развязку между сетью и стабилизатором напряжения, формировать собственную (независимую) нейтраль, защищает от резких перенапряжений при подключении и отключении мощных потребителей в сети, а также обеспечивает экран между вторичной и первичной обмотками трансформатора.

7. Дополнительные функции стабилизатора

Любой тип стабилизатора имеет большое количество функций, которые схожи по своему принципу и конечному результату. Многие производители предлагаю некоторые дополнительные возможности, которые делают устройство стабилизатора напряжения более совершенным.

Байпас – также данный режим нередко называют «Транзит». Данная функция позволяет подавать напряжение на нагрузку в обход стабилизатора. Такая необходимость может возникнуть при плановом осмотре компонентов стабилизатора или замене комплектующих. В режиме Байпас нагрузка получает нестабилизированное напряжение.

Несколько диапазонов входного напряжения – некоторые стабилизаторы могут работать в двух, а иногда и трех диапазонах входного напряжения. Выходная мощность стабилизатора может уменьшаться, если сдвиг, по сравнению со стандартным диапазоном, происходит в сторону снижения напряжения.

Многофункциональные анализаторы сети – трехфазные модели стабилизаторов промышленных серий могут комплектоваться мультиметрами и анализаторами параметров сети. Данные приборы очень полезны и позволяют получить более 150-ти параметров о состоянии электрической сети, а также проводить запись в память или архивацию при помощи программного обеспечения и персонального компьютера, к которому подключен анализатор.

Синхронизация и мониторинг – мощные трехфазные стабилизаторы также могут иметь сетевые интерфейсы в базовой комплектации, которые позволяют отслеживать состояние стабилизатора удаленно при помощи канала Ethernet, а также записывать сведения о различных событиях в память.

Модификации корпуса – стабилизаторы напряжения могут быть изготовлены в разных модификациях корпусов. Это необходимо для установки устройств в подвижных составах, транспортных средствах, производственных помещениях с повышенной влажностью и уровнем пыли, а также на улице и в среде с активными веществами.

Выше были рассмотрены основные компоненты стабилизаторов разных типов. Безусловно, данная статья не претендует на полное описание системы стабилизаторов, однако она отчетливо дает представление о конструкции и важнейших элементов, которые входят в устройства нормализаторов.

Если у Вас остаются технические вопросы и сложности с выбором типа стабилизатора, обращайтесь к менеджерам по продукции по телефонам указанным в разделе контакты.

Дополнительная защита стабилизатора от перегрева

При проектировании стабилизаторов с ограничением тока расчет теплоотвода
регулирующего транзистора проводят для значения мощности, выделяемой на нем в
аварийном режиме. Уменьшить эту мощность поможет устройство, предложенное
автором статьи.

Для защиты стабилизатора от перегрева и повреждения во время перегрузки или
замыкания в нагрузке иногда бывает недостаточно простого ограничения выходного
тока, особенно при относительно высоком выходном напряжении. Использование
триггерной защиты тоже не всегда удобно, так как может вызвать проблемы с
автозапуском стабилизатора, когда перегрузка будет устранена. К примеру, на
регулирующем транзисторе стабилизатора с выходным напряжением 15 В, при токе
нагрузки 2 А и входном напряжении 22 В, выделяется мощность 14 Вт в нормальном
режиме, а во время замыкания, даже если ограничить ток на уровне 1,5 А, эта
мощность равна 33 Вт.

В таких случаях поможет устройство, которое выключает на некоторое время
стабилизатор при возникновении аварийной ситуации, а затем периодически
производит контрольные включения до момента исчезновения перегрузки. В
нормальном режиме устройство не оказывает какого-либо влияния на работу
стабилизатора. Эту особенность можно использовать для дополнительной защиты
регулирующего транзистора от перегрева в стабилизаторах с ограничением
максимального тока (это главное условие), в том числе импульсных.

Устройство дополнительной защиты (см. схему) состоит из генератора прямоугольных
импульсов с периодом их следования около 2 с на элементах DD 1.1 и DD1.2. узла
контроля выходного напряжения защищаемого стабилизатора на стабилитроне VD3 и
транзисторе VT1, электронного переключателя с инвертором (элементы DD1.3. DDI.4)
и выходного транзистора VT2. Питается прибор от простейшего параметрического
стабилизатора на стабилитроне VD1. подключенного к конденсатору фильтра
выпрямителя. Схема защищаемого стабилизатора показана условно, как один из
вариантов подключения устройства защиты.

В нормальном режиме работы транзистор VT1 в устройстве защиты открыт и импульсы
от генератора не проходят на транзистор VT2, который закрыт и не оказывает
влияния на работу стабилизатора. При возникновении перегрузки и уменьшении
выходного напряжения до значения, которое зависит от напряжения стабилизации
стабилитрона VD3, транзистор VT1 закрывается и импульсы генератора поступают на
базу транзистора VT2. Скважность импульсов выбрана такой, что транзистор VT2
большую часть времени (1.5 с) находится в открытом состоянии, шунтируя цепь базы
регулирующего транзистора стабилизатора. Затем транзистор VT2 закрывается
примерно на 0,5 с. стабилизатор включается и, если в течение этого времени
напряжение на выходе не достигнет номинального значения, вновь отключается на
1,5 с. Таким образом, мощность, рассеиваемая регулирующим транзистором
стабилизатора в аварийном режиме, уменьшается почти в четыре раза.

Если при очередном включении напряжение на выходе стабилизатора достигнет
номинального значения (замыкание или перегрузка отсутствует), открывается
транзистор VT1, транзистор VT2 закрывается и перестает влиять на работу
стабилизатора.

Цепь R5C2 предназначена для замедления срабатывания устройства при
первоначальном включении питания. Временные соотношения можно изменить подбором
резисторов и конденсаторов, только необходимо учитывать время нарастания
напряжения на выходе стабилизатора. Стабилитрон VD3 следует выбирать (по
напряжению стабилизации) в зависимости от выходного напряжения стабилизатора.

Этот прибор с небольшими изменениями можно использовать для стабилизаторов
напряжения отрицательной полярности или импульсных. В частности, был испытан
импульсный блок питания с параметрами: напряжение — 5 В, номинальный ток
нагрузки — 7 А. ток замыкания — 10 А. Транзистор VT2 устройства дополнительной
защиты шунтировал ток управления предоконечных каскадов регулирующего
транзистора при перегрузке.

Как рассчитать емкость гасящего конденсатора простого блока питания

Блок питания с гасящим конденсатором представляет собой простейший вариант запитать какое нибудь маломощное устройство.

При всей своей простоте он имеет и два минуса:
1. Он гальванически связан с сетью! потому такие БП используются там, где нет вероятности прикосновения к контактам.
2. Такой Бп имеет не очень большой выходной ток. При увеличении выходного тока надо увеличивать емкость гасящего конденсатора и его габариты становятся существенными.

Внимание, будьте очень аккуратны, не прикасайтесь к контактам этого БП когда он включен.

Простейшая схема данного БП выглядит так:

Как можно увидеть из схемы, последовательно с сетью стоит конденсатор. Он то и является балластом,, на котором гасится часть напряжения.
Конденсатор не пропускает постоянный ток, но так как в сети переменный и конденсатор в итоге постоянно перезаряжется, то и получается, что в таком случае ток на выходе есть. Причем сила тока напрямую зависит от емкости конденсатора.

Собственно потому для расчета емкости конденсатора необходимо знать как минимум выходной ток нашего будущего БП, причем надо учесть и потребление стабилизатора, обычно это несколько мА.

И так. Есть две формулы, сложная и простая.
Сложная — подходит для расчета при произвольном выходном напряжении.
Простая — подходит в ситуациях, когда выходное напряжение не более 10% от входного.
I — выходной ток нашего БП
Uвх — напряжение сети, например 220 Вольт
Uвых — напряжение на выходе БП (или до стабилизаторе если такой есть), например 12 Вольт.
С — собственно искомая емкость.

Например я хочу сделать БП с выходным током до 150мА. Пример схемы приведен выше, вариант применения — радиопульт с питанием 5 Вольт + реле на 12 Вольт.
Подставляем наши 0.15 Ампера и получаем емкость 2.18мкФ, можно взять ближайший номинал из стандартных — 2,2мкФ, ну или «по импортному» — 225.

Все как бы вроде хорошо, схема простая, но есть несколько минусов, которые надо исключить:
1. Бросок тока при включении может сжечь диодный мост.
2. При выходе из строя конденсатора может быть КЗ
3. Если оставить как есть, то вполне можно получить разряд от входного конденсатора, так как на нем может долго присутствовать напряжение даже после отключения БП от сети.
4. При снятии нагрузки напряжение на конденсаторе до стабилизатора поднимется до довольно большого значения.

Решения:
1. Резистор R1 последовательно с конденсатором
2. Предохранитель 0.5 Ампера.
3. Резистор R2 параллельно конденсатору.
4. Супрессор на 12 Вольт параллельно конденсатору после диодного моста. Я не рекомендую здесь использовать стабилитроны, супрессоры рассчитаны на большую мощность рассеивания и схема будет работать надежнее.

На схеме красным цветом я выделил новые компоненты, синим — небольшое дополнение в виде светодиода.

Но гасящие конденсаторы используют часто и в дешевых светодиодных лампах. Это плохо, так как у таких ламп меньше надежность и часто высокие пульсации света.
Ниже упрощенный вариант схемы такой лампы.

Попробуем рассчитать емкость для такого применения, но так как напряжение на выходе будет явно больше чем 1/10 от входного, то применим первую формулу.
В качестве выходного напряжения я заложил 48 Вольт, 16 светодиодов по 3 Вольта на каждом. Конечно это все условно, но близко к реальности.
Ток — 20мА, типичный максимальный ток для большинства индикаторных светодиодов.

У меня вышло, что необходим конденсатор емкостью 0.298 мкФ. Ближайший из распространенных номиналов — 0.27 или 0.33мкФ. Первый встречается гораздо реже, а второй уже будет давать превышение тока, потому можно составить конденсатор из двух параллельных, например по 0.15мкФ. При параллельном включении емкость складывается.

С емкостью разобрались, осталось еще пара моментов:
1. Напряжение конденсатора
2. Тип конденсатора.

С напряжением все просто, можно применить конденсатор на 400 Вольт, но надежнее на 630, хоть они и имеют больше размер.

С типом чуть сложнее. Для такого применения лучше использовать конденсаторы, которые изначально предназначены для такого использования, например К73-17, CL21, X2
На фото конденсатор CL21

А это более надежный вариант, не смотрите что на нем указано 280 Вольт, у него это значение переменного действующего напряжения и он будет работать надежнее, чем К73-17 или CL21.

Такие конденсаторы могут выглядеть и так

А вот теперь можно еще раз внимательно посмотреть, что надо для того, чтобы собрать такой «простой» блок питания и решить, нужен ли он.
В некоторых ситуациях да, он поможет, но он имеет кучу минусов, потому на мой взгляд лучше применить просто небольшой импульсный блок питания, который уже имеет стабилизированное выходное напряжение, гальваническую изоляцию и больший выходной ток.
Как пример таких блоков питания я могу дать ссылку на подробный обзор четырех вариантов, с тестами, схемами и осмотров.

Но можно поступить еще лучше. Сейчас получили распространение монолитные блоки питания. По сути кубик, в котором находится миниатюрный БП
Например HLK-PM01 производства Hi-link, стоимостью около двух долларов за штуку.

Или их китайский аналог TSP-05 производства Tenstar robot. Они немного дешевле, 1.93 доллара за штуку.
Практика показала, что качество у них сопоставимое.

Как я писал выше, они представляют из себя импульсный Бп в модульном исполнении. БП в пластмассовом корпусе залитый эпоксидной смолой.
Выпускаются на разные напряжения и способны поддерживать его на довольно стабильном уровне.

Внутренности поближе, на фото вариант от Hi-link

На этом вроде все. Надеюсь, что статья была полезна, постараюсь и в будущем находить интересные темы. Также интересны пожелания, что хотелось бы видеть в рубрике — Начинающим.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector