Sfera-perm.ru

Сфера Пермь
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Защита стабилизатора от обратного тока

Защита стабилизатора от обратного тока

Защита от превышения мощности

Защита стабилизатора напряжения по току

ждем звонки с 9 до 23, без выходных

  • Оборудование «Норма М»
  • Стабилизаторы для дома
  • Типы стабилизаторов
  • Как выбрать мощность
  • Как выбрать диапазон
  • Как быстро подключить
  • Что влияет на качество сети
  • Часто задаваемые вопросы

Присоединяйтесь

Всегда в курсе скидок и распродаж!

  • байпас
  • купить
  • для дачи
  • мощность
  • виды
  • xml
  • однофазные
  • 220в
  • бытовые
  • релейные
  • рейтинг
  • таймер
  • индикация
  • цена
  • помощь
  • для дома

Защита по току (от превышения мощности), какая она?

Как работает защита от превышения мощности?

Что такое защита по току? – это защита от превышения мощности стабилизатора потребителями.

Потребителями электро-энергии мы будем называть Ваши домашние приборы.

Проще говоря, если Вы приобрели стабилизатор на 10 кВт, то Вы не сможете подключить потребителей на 12 кВт, т.к. в стабилизаторе сработает защита от превышения мощности (защита по току).

Защита от превышения мощности (защита по току) может быть реализована двумя способами:

Если в стабилизаторе защита от превышения мощности электронная, то такая защита среагирует мгновенно на любое превышение мощности и не позволит потребителю даже на короткое время превысить мощность стабилизатора.

При малейшем превышении мощности стабилизатор будет всегда моментально отключать ваши приборы. Это будет доставлять неудобство.

2) автоматический выключатель

Автоматические выключатели, как правило, не тарированы очень жестко на определенные значения и допускают некоторое превышение мощности на короткое время.

У некоторых приборов существует перегрузка по току, по времени не превышающая время срабатывания автомата. Т.е. если перегрузка по току (мощности) по времени не превысит время срабатывания автомата, то этот перегрузочный импульс пройдет свободно.

В связи с чем, если вы немного ошиблись при выборе мощности стабилизатора и не точно учли пусковые токи приборов, то автоматический выключатель позволит некоторое превышение мощности .

Стабилизаторы напряжения

однофазного типа компании Норма М: производство, продажа, розница, опт, все виды сервиса.

Digitrode

цифровая электроника вычислительная техника встраиваемые системы

  • Вычислительная техника
    • Микроконтроллеры микропроцессоры
    • ПЛИС
    • Мини-ПК
  • Силовая электроника
  • Датчики
  • Интерфейсы
  • Теория
    • Программирование
    • ТАУ и ЦОС
  • Перспективные технологии
    • 3D печать
    • Робототехника
    • Искусственный интеллект
    • Криптовалюты

Чтение RSS

Простая схема защиты от превышения тока на основе операционного усилителя

Схемы защиты жизненно важны для любого электронного прибора. Защита от перенапряжения, защита от короткого замыкания, защита от обратной полярности и т.д. – все это очень важно в электронике. В этой статье вы узнаете, как спроектировать и собрать простую схему защиты от перегрузки по току с использованием операционного усилителя.

Защита от превышения тока или перегрузки по току часто используется в цепях электропитания для ограничения выходного тока блока питания. Термин «Перегрузка по току» – это состояние, когда нагрузка потребляет большой ток, чем указанные возможности блока питания. Это может быть опасной ситуацией, поскольку состояние перегрузки по току может повредить источник питания. Поэтому инженеры обычно используют схему защиты от превышения тока для отключения нагрузки от источника питания во время таких случаев неисправности, таким образом защищая нагрузку и источник питания.

Существует много типов цепей защиты от перегрузки по току. Сложность схемы зависит от того, как быстро защитная цепь должна реагировать в ситуации перегрузки по току. В этом проекте мы создадим простую схему защиты от перегрузки по току с использованием операционного усилителя, который очень часто используется и может быть легко адаптирован для ваших проектов.

Схема, которую мы собираемся спроектировать, будет иметь настраиваемое пороговое значение максимального тока, а также функцию автоматического перезапуска при сбое. Поскольку это схема защиты от перегрузки по току на основе операционного усилителя, в качестве приводного устройства будет использоваться операционный усилитель. Для этого проекта используется ОУ общего назначения LM358. На рисунке ниже показана схема контактов LM358.

Как видно на изображении выше, внутри одного корпуса у нас будет два канала операционного усилителя. Однако для этого проекта используется только один канал. Операционный усилитель будет переключать (отключать) выходную нагрузку с помощью полевого транзистора (MOSFET). Для этого проекта используется N-канальный MOSFET IRF540N. Рекомендуется использовать надлежащий радиатор для MOSFET, если ток нагрузки превышает 500 мА. Однако для этого проекта MOSFET используется без радиатора. На изображении ниже представлена схема распиновки IRF540N.

Для питания операционного усилителя и схемы используется линейный стабилизатор напряжения LM7809. Это линейный стабилизатор напряжения на 9 В 1 А с широким номинальным входным напряжением. Распиновку можно увидеть на следующем изображении.

Читайте так же:
Сетевой выпрямитель стабилизатор напряжения тока

Простая схема защиты от превышения тока может быть разработана с использованием операционного усилителя для определения перегрузки по току, и на основании полученного результата мы можем управлять полевым транзистором для отключения / подключения нагрузки к источнику питания. Принципиальная схема этого проекта проста, и ее можно увидеть на следующем рисунке.

Как видно из принципиальной схемы, MOSFET IRF540N используется для управления нагрузкой как ВКЛ или ВЫКЛ во время нормального состояния и состояния перегрузки. Но прежде чем отключить нагрузку, важно определить ток нагрузки. Это делается с помощью резистора R1, который представляет собой шунтирующий резистор 1 Ом с номинальной мощностью 2 Вт. Этот метод измерения тока называется измерением тока с помощью шунтирующего резистора.

Во время включенного состояния MOSFET ток нагрузки протекает через сток MOSFET к истоку и, наконец, к GND через шунтирующий резистор. В зависимости от тока нагрузки шунтирующий резистор создает падение напряжения, которое можно рассчитать по закону Ома. Поэтому предположим, что для 1 А тока (тока нагрузки) падение напряжения на шунтирующем резисторе составляет 1 В при V = I x R (V = 1 A x 1 Ом). Таким образом, если это падение напряжения сравнивать с предварительно определенным напряжением с помощью операционного усилителя, мы можем обнаружить ток перегрузки и изменить состояние полевого транзистора, чтобы отключить нагрузку.

Операционный усилитель обычно используется для выполнения математических операций с напряжением, таких как сложение, вычитание, умножение и т. д. Поэтому в этой схеме операционный усилитель LM358 сконфигурирован как компаратор. Согласно схеме, компаратор сравнивает два значения. Первый из них является падение напряжения через шунт, а другой представляет собой предопределенное напряжение (опорное напряжение), используя переменный резистор или потенциометр RV1. RV1 действует как делитель напряжения. Падение напряжения на шунтирующем резисторе определяется инвертирующим выводом компаратора и сравнивается с опорным напряжением, которое подключено к неинвертирующему выводу операционного усилителя.

В связи с этим, если считанное напряжение меньше, чем опорное напряжение, компаратор будет производить положительное напряжение на выходе, которое близко к напряжению питания VCC компаратора. Но, если считанное напряжение больше, чем опорное напряжение, компаратор будет выдавать отрицательное напряжение питания на выходе (отрицательное питание подключено через GND, поэтому 0 В в данном случае). Это напряжение достаточно для включения или выключения MOSFET.

Но когда высокая нагрузка будет отключена от источника питания, переходные изменения создадут линейную область характеристики компаратора, и это создаст петлю (гистерезис), в которой компаратор не сможет правильно включить или выключить нагрузку, и операционный усилитель станет нестабильным. Например, предположим, 1 А устанавливается с помощью потенциометра для перевода полевого транзистора в состояние ВЫКЛ. Поэтому переменный резистор настроен на выход 1 В. В ситуации, когда компаратор обнаруживает, что падение напряжения на шунтирующем резисторе составляет 1,01 В (это напряжение зависит от точности операционного усилителя или компаратора и других факторов), компаратор отключит нагрузку. Переходные изменения происходят, когда высокая нагрузка внезапно отключена от блока питания, и это кратковременное повышение опорного напряжения, которое заставляет его работать в линейной области.

Лучший способ для решения этой проблемы заключается в использовании стабильного питания через компаратор, где переходные изменения не влияют на входном напряжение компаратора и источник опорного напряжения. В этой схеме это выполняется с помощью линейного стабилизатора LM7809 и с использованием гистерезисного резистора R4, резистора на 100 кОм. LM7809 обеспечивает надлежащее напряжение на компараторе, так что переходные изменения на линии электропередачи не влияют на компаратор. Конденсатор C1 на 100 мкФ используется для фильтрации выходного напряжения.

Гистерезисный резистор R4 подает небольшую часть входного сигнала на выход операционного усилителя, который создает разрыв напряжения между низким порогом (0,99 В) и высоким порогом (1,01 В), когда компаратор изменяет свое состояние выхода. Компаратор не изменяет состояние немедленно, если достигается пороговая точка, вместо этого, чтобы изменить состояние с высокого на низкое, уровень измеряемого напряжения должен быть ниже, чем нижний порог (например, 0,97 В вместо 0,99 В). или чтобы изменить состояние с низкого на высокое, измеренное напряжение должно быть выше верхнего порога (1,03 вместо 1,01). Это повысит стабильность компаратора и уменьшит ложные срабатывания. Кроме этого резистора, R2 и R3 используются для управления затвором. R3 – резистор затвора полевого транзистора.

Схема собрана на макетной плате и протестирована с использованием настольного источника питания и переменной нагрузки постоянного тока.

Схема была протестировано, в результате испытаний выход успешно отключался при различных значениях, установленных переменным резистором.

Читайте так же:
Датчика тока в стабилизаторах тока

Стабилизаторы постоянного напряжения

Нормальная работа электронной аппаратуры возможна при поддержании напряжения питания в заданных допустимых пределах. Например, для питания измерительных устройств, работающих с точностью 0,1%, требуется стабильность напряжения питания 0,01%. Большинство выпрямителей не обеспечивают заданной стабильности напряжения. Изменение питающего напряжения может произойти из-за изменения напряжения в сети переменного тока или из-за изменения постоянного тока в аппаратуре. С изменением сопротивления нагрузки изменяется ток и падение напряжения на внутреннем сопротивлении выпрямительных устройств, что приводит к изменению питающего напряжения.

Для поддержания напряжения питания в допустимых пределах между фильтром и нагрузкой включается устройство, называемое стабилизатором напряжения. Стабилизатор напряжения поддерживает напряжение питания аппаратуры с заданной точностью при изменении сопротивления нагрузки и напряжения сети в заданных пределах. После стабилизатора включается устройство защиты стабилизатора от перегрузок.

Параметрические стабилизаторы постоянного напряжения

В качестве нелинейных элементов в них применяются кремневые или газоразрядные стабилитроны (рисунок 5).

Рисунок 5 – Принципиальная схема параметрического стабилизатора напряжения

Так как при использовании кремневых стабилитронов используется участок обратной ветви вольтамперной характеристики, то стабилитрон включается анодом к минусу, а катодом к плюсу входного напряжения. Сопротивление гасящего резистора RГ и нагрузки RН выбираются таким образом, чтобы ток в цепи Iвх= Iст.ср.

При увеличении (уменьшении) входного напряжения Uвх ток стабилитрона Iст увеличивается (уменьшается) в пределах от Iст минимум до Iст максимум, а ток Iн остается постоянным. Этим обеспечивается стабильность напряжения на нагрузке.

Параметрические стабилитроны напряжения просты и надежны, однако имеют существенные недостатки:

Малый коэффициент стабилизации, малый коэффициент полезного действия, малая мощность, невозможность регулирования выходного напряжения, хорошо работают на постоянную нагрузку.

Компенсационные стабилизаторы напряжения

Принцип стабилизации напряжения сети можно рассмотреть на примере схемы (рисунок 6). Схема состоит из регулирующего элемента Р, измерительного элемента U(PV) и оператора (У). При изменении напряжения сети Uвх или тока нагрузки Iн в заданных пределах выходного напряжения Uвых должно оставаться постоянным. Согласно второго закона Кирхгофа Uвых= Uвх-Uр=const. Для поддержания постоянства выходного напряжения оператор должен изменять положение движка переменного резистора с учетом показаний вольтметра.

Рисунок 6 – Прнцип работы стабилизатора напряжения

Рассмотренная схема (рисунок 6) приемлема при медленных изменениях Uвх и Iн. В реальных устройствах Uвх и Iн могут изменяться в импульсном режиме или с большой скоростью. Поэтому стабилизаторы должны изготовляться на элементах с большим быстродействием, т.е. с использованием транзисторов и микросхем.

Стабилизаторы могут быть выполнены с последовательным (рисунок 7 а) и параллельным (рисунок 7 б) включением регулирующего элемента относительно нагрузки.

В последовательной схеме регулирующий элемент включен последовательно с нагрузкой и постоянство выходного напряжения достигается за счет изменения падения напряжения на самом регулирующем элементе. В параллельной схеме регулирующий элемент включен параллельно с нагрузкой, а постоянство выходного напряжения поддерживается за счет изменения тока через регулирующий элемент, в результате изменяется падение напряжения на гасящем (балластном) сопротивлении Rr, включенном последовательно с нагрузкой.

Схема с параллельным включением регулирующего элемента применяется лишь в маломощных стабилизаторах из-за низкого КПД, так как мощность расходуется на гасящем резисторе Rr и включенном параллельно нагрузке регулирующем элементе Р. Достоинством этой схемы является то, что такой стабилизатор не боится перегрузок и коротких замыканий.

Стабилизаторы с последовательным включением регулирующего элемента обладает более высоким КПД и находит более широкое применение. Принцип работы такого стабилизатора следующий. Пусть напряжение Uвх возросло, что в первый момент приведет к некоторому увеличению напряжения Uвых.

На измерительный элемент И поступит повышенное напряжение (или часть его). Измерительный элемент автоматически сравнивает напряжение Uвых с эталонным напряжением (источник эталонного напряжения находится в самом измерительном элементе) и вырабатывает сигнал рассогласования Uv. Этот сигнал усиливается усилителем У и поступает на регулирующий элемент Р. Под воздействием напряжения Uу регулирующий элемент увеличивает сопротивление. На возросшем сопротивлении регулирующего элемента увеличивается падение напряжения Uр настолько, насколько произошло увеличение входного напряжения, и выходное напряжение будет почти неизменным. Таким образом, насколько увеличится (уменьшится) выходное напряжение, настолько увеличится (уменьшится) падение напряжения на регулирующем элементе (т.е. произойдет компенсация входного напряжения), и выходное напряжение Uвых= Uвх-Uр останется постоянным. Поэтому такие стабилизаторы получили название компенсационных.

Принцип работы стабилизатора с параллельным включением регулирующего элемента описывается уравнением Uвых=Uвх-URг=const. При изменении входного напряжения или тока нагрузки в заданных пределах ток регулирующего элемента Iр (т.е. падение напряжения URг) изменяется таким образом, что выходное напряжение Uвых остается постоянным.

Читайте так же:
Стабилизатор тока схема tl431 1

При напряжениях до 150 В применяются полупроводниковые стабилизаторы, так как они имеют малые габариты и массу, высокую надежность и большую долговечность. В последовательном полупроводниковом компенсационном стабилизаторе (рисунок 8) в качестве регулирующего элемента используется транзистор VT1, усилителя постоянного тока ─ транзистор VT2 и резистор R2. В качестве измерительного элемента применен мост, состящий из резисторов R4… R6 и параметрического стабилизатора, состоящего из стабилитрона VD5 и ограничительного резистора R3. К диагонали моста вг приложено выходное напряжение стабилизатора, а к диагонали аб присоединен участок эмиттер ─ база транзистора VT2.

При подключении к стабилизатору входного напряжения в нем протекают токи: ток делителя (плюс ─R6─ R5─ R4─ эмиттер VT1 ─ коллектор VT1 ─ минус); ток параметрического стабилизатора (плюс VD5─ R3─эмиттер VT1─ коллектор VT1 ─минус); ток коллектора VT2 (плюс ─ VD5 ─ VT2─коллектор VT2─ R2─минус); ток нагрузки (плюс ─ Rн(R8, R7) ─ эмиттер VT1─ коллектор VT1─ минус).

При уменьшении выходного напряжения, вызванного возрастанием тока нагрузки или уменьшением входного напряжения, уменьшается ток делителя. Падение напряжения на резисторе R6 и части резистора R5 уменьшится, что приведет к уменьшению напряжения на эмиттерном переходе транзистора VT2. Так как к эмиттеру транзистора VT2 приложено эталонное напряжение Uоп, то ток коллектора транзистора R6уменьшится пропорционально уменьшению входного напряжения. Падение напряжения на резисторе R2, приложенное плюсом к базе транзистора VT1, уменьшится, а следовательно, потенциал базы станет более отрицательным по отношению к эмиттеру. Напряжение UЭБ1 возрастает, и сопротивление транзистора уменьшится. При правильно выбранных параметрах схемы падение напряжения на транзисторе уменьшится настолько, насколько увеличится входное напряжение. Выходное напряжение при этом стремится к прежнему значению.

При увеличении входного напряжения или уменьшении тока нагрузки процесс регулирования происходит таким образом, что напряжения UЭБ1 регулирующего транзистора понижается, сопротивление регулирующего элемента увели­чится и выходное напряжение стремится к прежнему значению.

Процесс регулирования происходит практически мгновенно.

При повороте оси переменного резистора R5 изменяется напряжение UЭБ1, что обеспечивает плавную регулировки выходного напряжения в заданных пределах от номинального значения. Для улучшения сглаживания пульсаций выпрямленного напряжения и подавления импульсных помех сопротивление верхнего плеча делителя шунтируется конденсатором С2.

При коротком замыкании нагрузки резко увеличивается ток в регулирующем транзисторе и возрастает падение напряжения на нем. Это может привести к выходу из строя транзистора VT1 как из-за увеличения мощности потерь, так и из-за возможного пробоя переходов.

Для защиты стабилизатора от перегрузок и коротких замыканий в его схему вводятся дополнительные элементы, которые в режиме перегрузки и короткого замыкания вырабатывают напряжение, запирающие транзистор VT1. В простейшем случае защита от коротких замыканий в стабилизаторах малой мощности может быть выполнена подбором сопротивления резистора R1 таким, чтобы выходной ток в режиме короткого замыкания не превышал максимально допустимого тока коллектора транзистора VT1 и выпрямительного моста.

Стабилизатор встал в режим защиты

Последние вопросы

Алексей Стабилизаторы напряжения Энергия Voltron РСН-10000

Стабилизатор встал в режим защиты и не работает, что делать?

Если привысили допустимую нагрузку, то вышло из строя реле. Иногда ремонт выходит по цене нового. Нужно диагностировать. Привозите, посмотрим.

Если нагрузка приличная, очень может быть подгорание контактов реле, если черные, почистите пилочкой для ногтей. Так же может модуль управления шалить, это к терапевту.

Очень часто вокруг контактов реле на плате образуются микротрещины и нагар в конечном итоге, для начала можете попробовать пропаять все силовые выводы реле. Если бублик с движком — возможен выход из строя китайского моторчика.

07.12.2018 10:31 ОлимпСервис

Вам нужно вскрыть стабилизатор и осмотреть устройсво. Если стабилизатор релейный возможно залипло одно из реле (его можно вскрыть и почистить наждачкой либо алмазным надфилем ли заменить на новое), если сервоприводный стаб то либо проверить блок питания и блок контроля на наличие вздутых конденсаторов,так же возмможен выход из строя самого сервопривода, он только под замену.

12.01.2019 06:06 LcdServis

Эти стабилизатора очень низкого качества, провести общую ревизию на предмет кольцевых трещин и непропаевнепропаев, и т.д. Произвести регулировку

Похожие вопросы

Стабилизатор при скачках напряжения отключается сам более года назад Стабилизаторы напряжения Энергия Hybrid СНВТ-10000/1

Здравствуйте. Стабилизатор напряжения Энергия СНВТ-10000/1 при скачках напряжения, не приводит в норму напряжение, а отключается при.

Читайте так же:
Регулируемый стабилизатор тока с защитой от

Стабилизатор превышает выходное напряжение более года назад Стабилизаторы напряжения Энергия Voltron РСН-10000

Здравствуйте. Стабилизатор Энергия Voltron РСН-10000 кратковременно выдает дикое выходное напряжение (298 В)! При этом, сам же это.

Не работает стабилизатор напряжения неделю назад Стабилизаторы напряжения Энергия Voltron РСН-10000

Здравствуйте. Стабилизатор напряжения Энергия РСН-10 000 Voltron уходит в аварию. Низкое выходное напряжение. В режиме байпас работает. В.

Защита стабилизатора по току

В случае уменьшения сопротивления нагрузки увеличивается ток вплоть до короткого замыкания. В этом случае силовой транзистор VT1 может сгореть. В таких ситуациях необходима защита стабилизатора по току.

IH
IК3
+ –
IБ1
IH
VD2
RH
VT1
VD1
RТ
VT3
Рис. 22 — Схема защиты стабили-затора по току

Включим в токовую цепь нагрузки специальное сопротивление RT, выполняющего роль преобразователя тока в напряжение. При протекании по сопротивлению тока выделяется напряжение с полярностью, указанной на рисунке 22. Это напряжение воздействует на вход транзистора VT3. При заданном токе транзистор открывается и берет на себя часть тока базы транзистора VT1. Последний закрывается и ограничивает ток коллектора. При максимальном токе нагрузки транзистор VT3 закрыт и не оказывает влияния на работу стабилизатора.

1. Выбор токового резистора.

Примем, что защита должна включиться, если ток превышает двойной максимальный ток нагрузки. Примем транзистор VT3 германиевый n-p-n типа. Напряжение открывания у такого транзистора составляет 0,3 В. (2 IНmax = 0,12 A). Вычисляем величину сопротивления RT.

RT = 0,3 В/0,12 А = 2,5 Ом. Выбираем меньшее номинальное значение

2,4 Ом. Вычисляется мощность рассеяния на резисторе и его тип.

2. Транзистор VT3 можно выбрать любой германиевый n-p-n типа.

UСТ

3.9 Защита нагрузки от перенапряжения

В случае пробоя транзистора VT1 (рисунок 19) на нагрузку попадает полное напряжение питания, что может вывести ее из строя. Необходима схема защиты нагрузки от возможного перенапряжения. В таких случаях используются быстродействующие электронные схемы защиты рисунок 23. На этой схеме показаны элементы индикации состояния стабилизатора, индикация будет рассмотрена далее.

Схема защиты состоит из тиристора VS5, стабилитрона VD4 и резистора. (Схема защиты по току на схеме не показана). В исходном состоянии тиристор VS5 закрыт, его управляющий вход подключен к катоду через сопротивление R2. Стабилитрон VD4 также закрыт его напряжение включения на 10% больше напряжения нагрузки. Как только напряжение на нагрузке увеличивается по каким-либо причинам, стабилитрон VD4 открывается, на управляющий электрод тиристора подается напряжение, тиристор открывается и закорачивает входную цепь стабилизатора. После этого сгорает плавкий предохранитель FU.

1. Сопротивление R2 ограничивает ток стабилитрона на уровне
5 ÷ 10 мА. Из этих условий выбирается стабилитрон и резистор. В рассматриваемом примере UH = 10 В. Можно использовать стабилитрон КС213В с напряжением включения 13 В (таблица 2). При выходе из строя транзистора VT1 на стабилитрон VD4 может поступать минимальное напряжение питания, равное 20 В. Зададимся током стабилитрона равным 5 мА. При пробое стабилитрона к резистору R2 прикладывается напряжение (20 – 13) = 7 В. Сопротивление R2 = 7 В/5мА = 1,4 кОм.

+ С2
С1
+
FU
VD5
VD6
R2
VS5
RH
VT1
UИ
VD4
Рис. 23 — Схема защиты нагрузки и индикация
R4
Ст
R3

Вычисляется мощность рассеяния на резисторе, выбирается его тип.

Проверим, не превышает ли ток через стабилитрон допустимое значение при максимальном напряжении источника питания равным 27,6 В.
(27,6 – 13) В/1,4 кОм = 10,4 мА, что вполне допустимо для выбранного типа стабилитрона.

2. Выбор тиристора.

Напряжение включения тиристора должно быть больше напряжения питания UИmax (параметр UA таблица 5). При выборе тиристора можно ориентироваться следующим условием. Если ток нагрузки меньше 100 мА, то выбирается тиристор с током анода 100 мА и менее. Если ток нагрузки больше 100 мА, то выбирается тиристор с током анода 100 мА и более.

В примере можно выбрать тиристор КУ101В UА = 50 В, IА = 80 мА.

Выбранные элементы вносятся в перечень элементов схемы.

Индикация состояния стабилизатора

Индикация состояния стабилизатора осуществляется с помощью светодиодов (СИД). Нормальное состояние принято индицировать зеленым или желтым цветом, критическое состояние – красным.

1. Сопротивление R4 выбирается исходя из условий минимального тока СИД и минимального напряжения на нем (таблица 6). Выберем светодиод КЛ101А с параметрами IПР = 10 мА, UПР = 5,5 В.

R4 = (UНUПР)/IПР = 4,5 В/10 мА = 450 Ом. Выбираем ближайшее меньшее номинальное значение резистора. Вычисляется мощность рассеяния на резисторе, выбирается его тип.

2. Индикация состояния перегрузки стабилизатора осуществляется с помощью СИД VD5. В исходном состоянии диод не светится. Если тиристор открывается, то напряжение на нем уменьшается до одного вольта и по СИД потечет ток. Расчет ограничительного сопротивления R5 аналогичен расчету сопротивления R4.

Читайте так же:
Микросхема стабилизатор тока до 3 ампер

СИД выбирается с красным свечением.

3. Плавкий предохранитель FU выбирается на такой ток, чтобы он сработал при допустимом токе тиристора.

4. Для устранения низкочастотных и высокочастотных помех на выходе стабилизатора параллельно нагрузке включаются емкости С1 = 0,1 мкФ и С2 = 10 ÷ 20 мкФ.

После проведения всех расчетов и выбора элементов оформляется заключение. В нем отражается задание, т.е. что следовало спроектировать и приводятся параметры стабилизатора КСТ, RВЫХ и UИср, полученные в результате проектирования.

3.12 Составление принципиальной схемы стабилизатора

После окончания расчётов отдельных узлов необходимо составить полную принципиальную схему устройства. К схеме рис. 19 добавляется схема защиты рис. 22, рис. 23. Нумерация элементов сквозная, номинальные значения элементов не указываются, стрелки направлений токов и напряжения, тоже не указываются. Схема устройства оформляется на листе формата А3, чертится рамка и основная надпись (штамп) приложение 3.

При вычерчивании принципиальной схемы следует руководствоваться требованиями ГОСТ, с которыми можно ознакомиться в библиотеке [7]. Можно воспользоваться типовой «рисовалкой» Microsoft Word, программами SPlan, Компас или Electronics Workbench.

Если схема выполняется на компьютере, то можно разделить её на две части, распечатать на двух листах А4 и затем склеить.

Принципиальная схема должна сопровождаться перечнем элементов – спецификацией, выполняемой в соответствии с ГОСТ (приложение 4). Если позволяет место на листе А3, то таблицу с перечнем элементов можно поместить над основной надписью чертежа.

ТРЕБОВАНИЯ К ОФОРМЛЕНИЮ РАБОТЫ

4.1 Оформление работы

Курсовая работа должна быть оформлена в виде пояснительной записки, выполненной на листах формата А4 компьютерным или рукописным способом.

По всем четырём сторонам листа записки должны оставаться поля слева – 25 мм, кругом по 10 мм.

Листы пояснительной записки должны быть скреплены в двух – трёх точках на расстоянии 10 мм от левого края листа. Использование скрепок и пластиковых конвертов (файлов) не допускается.

Пояснительная записка обязательно должна включать условие задачи, размещаемой на втором листе (номер варианта указывается на титульном листе). Расчётные принципиальные схемы в пояснительной записке должны быть выполнены обязательно по трафарету. Схемы в тексте являются рисунками и должны иметь сквозную нумерацию и подрисуночные подписи.

Все буквенные обозначения физических величин должны быть указаны на рисунке или пояснены в тексте.

Расчёт численных значений физических величин должен быть оформлен следующим образом: после расчётной формулы, записанной в буквенных обозначениях, в неё подставляют численные значения величин, а затем приводят результат вычислений и обозначение единицы физической величины без скобок. Обязательно проставляется размерность полученной величины. Если хотя бы одна величина, входящая в формулу имеет три значащие цифры, то результат должен иметь также три значащие цифры. В качестве примера оформления расчетной формулы можно обратиться к формуле расчета коэффициента стабилизации КСТ.

Работы, сдаваемые на проверку, должны быть выполнены в полном объёме, приведён список использованной литературы, справочников.

Исправления следует вносить путём зачёркивания неправильного результата и вписывания правильного выше или правее неправильного. Если работа переоформлена полностью, то предыдущий вариант работы с замечаниями преподавателя должен быть вложен в исправленный текст (за исключением титульного листа, который должен быть перенесён на исправленный текст).

Пример оформления титульного листа записки приведён в приложении 2. Титульный лист является страницей номер 1, но номер не проставляется. Длинный номер под заголовком обозначает следующее. Первая позиция – номер учебной специальности, следующие две позиции в учебных проектах не заполняются, предпоследняя позиция – две последние цифры номера студенческого билета или зачётной книжки, последняя позиция – ПЗ – шифр документа – пояснительная записка.

В основной надписи принципиальной схемы эта позиция обозначается Э3 – обозначающую схему электрическую принципиальную.

В приложении приводятся вольт-амперные характеристики транзисторов, которые использовались в ходе расчётов. Эти характеристики можно скопировать из электронной версии пособия или из интернета и поместить в текст пояснительной записки.

4.2 Таблица выбора варианта и данных для расчета стабилизатора

Номер варианта выбирается по порядковому номеру студента в журнале группы.

Изменение напряжения источника питания составляет ±15% для всех вариантов.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector