Трехфазный или двухфазный счетчик отличия
Трехфазный ток
В домовых распределительных электрических сетях в основном используются одна фаза и нулевой проводник. Этого достаточно для работы бытовых электроприборов, освещения и отопления. Для организации производственного технологического процесса применяют трехфазный ток. Потребители, шинные сборки, распределительные щитки, узлы учёта и вся электрическая схема настроены на работу от сетей трёхфазного тока.
Трехфазная система переменного тока
Сети трёхфазной системы рассчитаны на питание от подстанций, подающих напряжение по четырём проводам: три фазы и ноль. Это один из частных случаев многофазных цепей, где функционируют ЭДС, имеющие синусоидальные формы и равную частоту. Они произведены одним и тем же источником, но имеют угол сдвига между фаз в 120 градусов (2π/3).
Ещё электротехник М.О. Доливо-Добровольский, проводя изучение работы асинхронных двигателей, представил четырёхпроводную систему в качестве рабочей для питания такого типа машин и агрегатов. Каждый провод, образующий отдельную цепь внутри этой системы, называют «фазой». Структуру трёх смещённых по фазе переменных токов именуют трёхфазным током.
Важно! В подобной структуре фазное напряжение равно 220 В – это то, что покажет прибор при измерении между фазным и нулевым проводниками. Величина линейного напряжения составит 380 В при проведении измерения между двумя фазными тоководами.
Что такое трехфазный ток
Это система, объединяющая три электроцепи с токами, которые разнятся по фазе на 1/3 периода. Причём их собственные ЭДС совпадают по частоте и амплитуде и имеют такой же фазовый сдвиг. У такой структуры фазное и линейное напряжения соответственно равны 220 В и 380 В. Частота периодических колебаний – 50 герц (Гц).
Если подключить к осциллографу токовые синусоидальные сигналы от трёхфазной сети, то можно будет увидеть, что они совершают прохождение своих точек максимума в регулярной фазовой последовательности.
Общая формула мощности переменного тока:
где:
- P – мощность, (Вт);
- I – ток, (А);
- U – напряжение, (В);
- cosϕ – коэффициент мощности.
Значение cosϕ должно стремиться к единице. Средний коэффициент мощности лежит в интервале 0,7-0,8. Чем он выше, тем больше КПД установки.
В случае 3-х фазных сетей мощность будет зависеть от схемы соединения источника и нагрузки.
Почему используют трехфазный ток
Зная, что такое трехфазный ток, можно однозначно ответить на вопрос, почему он применяется.
Трехфазные системы переменного тока обладают целым рядом преимуществ, которые позволяют им выделяться среди многофазного построения электрических структур. К плюсам можно отнести следующие особенности:
- экономичное транспортирование энергии на дальние расстояния без снижения параметров;
- 3-фазные трансформаторы и кабели обладают меньшей материалоёмкостью, в отличие от однофазных моделей;
- возможность обеспечить сбалансированность энергосистемы;
- одновременное присутствие в установках двух напряжений для работы: фазное напряжение (220 В) и линейное (380 В).
К сведению. Подключение люминесцентных ламп к разным фазам и установка их в один светильник значительно уменьшат стробоскопический эффект и заметное глазу мерцание.
Неотъемлемой частью оборудования любого производственного предприятия являются асинхронные двигатели. Для их нормальной работы и развития паспортной мощности необходимо 3-х фазное питание. Оно обеспечивает возможность образования вращающегося МП (магнитного поля), которое приводит в движение ротор асинхронной машины. Такие двигатели экономичнее, проще в изготовлении и просты в эксплуатации, по сравнению с однофазными или любыми другими.
На электростанциях любого типа (ГЭС, АЭС, ТЭС), а также альтернативных обеспечено производство электроэнергии переменного типа при помощи генераторов.
Как осуществляется работа генератора
Устройство действует, превращая энергию вращения в энергию электричества. Электромашина, используя вращение МП, генерирует электрический ток. В тот момент, когда проволочная обмотка (катушка) крутится в МП, силовые линии магнитного поля пронизывают витки обмотки.
Внимание! В результате этого процесса электроны совершают перемещение в сторону плюсового полюса магнита. При этом ток движется, наоборот, в сторону отрицательного магнитного полюса.
Не важно, что вращается при механическом воздействии, обмотка или магнитное поле, – ток будет течь, пока вращение выполняется.
Генераторы, вырабатывающие трехфазное напряжение, могут иметь:
- неподвижные магниты и подвижный (вращающийся) якорь;
- неподвижный статор и магнитные полюса, которые вращаются.
В устройствах первой конструкции возникает потребность отбора большого тока при высоком напряжении. Для этого приходится использовать щётки (скользящие по контактным кольцам контакты).
Второе строение генератора проще и более востребовано. Здесь ротор – подвижный элемент, состоит из магнитных полюсов. Статор – неподвижная часть, собрана из пакета изолированных между собой листов железа и вложенной в пазы обмотки статора.
Информация. У ротора тело собрано из сплошного железа и имеет магнитные полюса в виде наконечников. Наконечники набираются из отдельных листов. Их форма подобрана с учётом того, чтобы генерируемый ток по форме был близок к синусоиде.
Полюсные сердечники имеют катушки возбуждения. На катушки подаётся постоянный ток. Подача осуществляется через графитовые щётки на кольца контакта, находящиеся на валу.
На схемах 3-х фазный генератор рисуют в виде трёх обмоток, угол между которыми равен 1200.
Существует несколько способов возбуждения генераторов, а именно:
- независимый – с помощью аккумулятора;
- от возбудителя – при помощи дополнительного генератора, закреплённого на одном валу;
- благодаря самовозбуждению – собственным выпрямленным током.
Сюда же относится магнитное возбуждение, подаваемое от магнитов постоянной природы.
Схемы трехфазных цепей
Обмотки генератора или трансформатора в трёхфазных цепях можно соединить между собой по двум схемам:
- звезда;
- треугольник.
Соединения выполняются на клеммнике (борно) агрегата или трансформатора, куда выводятся концы обмоток.
Присоединение нагрузки к генератору (трансформатору) можно произвести по следующим схемам:
- присоединение «звезда – звезда» с использованием нулевого проводника;
- подключение «звезда – звезда» без использования нулевого провода;
- подсоединение «звезда – треугольник»;
- схема «треугольник – треугольник»;
- соединение «треугольник – звезда».
Внимание! Такое разнообразие схем вызвано тем, что собственные обмотки генератора и собственные обмотки нагрузки могут быть соединены по-разному. При различных типах сопряжения получаются разные соответствия между фазными и линейными значениями.
Соединение может быть выполнено на заводе при сборке генератора, к месту подсоединения питающего кабеля уже выведены вторые концы обмоток. Информация о схеме соединения обмоток наносится на прикреплённую к статору машины табличку.
На электрических двигателях, трансформаторах или иных потребителях также производят необходимые манипуляции по переключению выводов обмоток. На картинке, приведённой ниже, красным маркером отмечены концы обмоток, соединённые перемычкой. Синим маркером – фазы питания.
Соединение звездой
Буквенное обозначение начала обмоток – «А», «В», «С», концов – «X», «Y», «Z». Нулевая точка маркируется как «О». У каждой обмотки есть два конца. При соединении «звезда» все три одноименных вывода обмоток (начала) соединяются между собой в одну точку «О». К свободным концам подключается нагрузка.
Соединение треугольником
При выполнении этого присоединения на борно ставятся перемычки, включающие обмотки в следующей последовательности:
- конец «А» – с началом «В»;
- конец «В» – с началом «С»;
- конец «С» – с началом «А».
Графическое изображение катушек становится похожим на треугольник, отсюда пошло название.
Когда хотят использовать подключаемый асинхронный двигатель с максимальным коэффициентом полезного действия, то его обмотки соединяют в треугольник. В этом случае фазные напряжения совпадают (Uл = Uф), линейный ток будет вычисляться по формуле:
Подключая в качестве нагрузки двигатель, необходимо учесть ряд нюансов:
- достигается увеличение мощности в 1,5 раза;
- повышается значение пускового тока, по сравнению с рабочим в 7 раз из-за тяжёлого запуска;
- резкое увеличение нагрузки на валу электромашины будет вызывать резкое увеличение тока.
Из-за всего этого есть риск возникновения перегрева машины, что не происходит при соединении обмоток нагрузки по схеме «звезда». Там двигатель не расположен к перегреванию, и его пуск осуществляется плавно.
При двух видах включения обмоток различают и дают определение двум видам токов: линейному и фазному. Запомнить различия просто:
- ток, протекающий через проводник, который соединяет источник с приёмником, называется линейным;
- ток, движущийся по обмоткам источника или нагрузки, называется фазным.
Стоит обратить внимание на формулы мощности при различных схемах соединения источника с нагрузкой.
Мощность тока при схеме «звезда» определяется по формуле:
P = 3*Uф*Iф*cosϕ = √3*Uл*Iл*cosϕ,
где:
- Uф – фазное напряжение;
- Uл – линейное напряжение;
- Iф – фазный ток;
- Iл – линейный ток;
- cosϕ – сдвиг фаз.
Мощность тока при схеме «треугольник» вычисляется по формуле:
P = 3* Uф* Iф*cosϕ = √3*Uл*Iл*cosϕ.
К сведению. Обращать внимание на линейный и фазный токи необходимо тогда, когда генератор (источник) нагружается несимметрично при подключении нагрузки.
Фазное и линейное напряжение в трехфазных цепях
Следующий параметр, который требует внимательного рассмотрения, – это напряжение. Так же, как и токи, напряжение в этом случае бывает фазное и линейное. Чтобы было понятнее их отличие, лучше всего рассмотреть графическое изображение векторов напряжений (фаз). Уже известно, что они расположены друг к другу под углом 1200. Таков угол между обмотками трёхфазного генератора.
Сохраняя угол наклона вектора Ub, откладывают его (изменив знак) от точки, где заканчивается вектор Ua. Тогда из полученной векторной диаграммы видно, что вектор линейного напряжения Uл равен расстоянию между точкой начала вектора напряжения Ua и точкой конца вектора напряжения Ub. Заметно, что вектор линейного напряжения превышает фазное. Насколько большая эта разница, можно определить, пользуясь формулой:
Так как sin600= √3/2, то формула принимает вид:
Значит, Uл = 1,73*Uф
При практических измерениях параметров напряжения фазное напряжение измеряют, касаясь щупами тестера фазного и нулевого проводников. Линейное значение должно измеряться прикосновением щупами к двум фазным проводникам.
Подключение нагрузки к источнику в трёхфазной цепи может осуществляться, как по трём проводам, без нулевого проводника, так и с его использованием. Всё зависит от того, какого типа нейтраль у сети. В сетях с глухозаземлённой нейтралью нулевой проводник служит для избегания перекоса по фазам. К тому же его используют в цепях защиты от пробоя изоляции на корпус оборудования. Он даёт возможность для срабатывания защитного отключения или перегорания вставки предохранителя.
Сети с изолированной нейтралью прекрасно работают по трём фазным проводам. Соединения такого типа исключают одновременное использование и фазного, и линейного напряжения. При такой схеме существует риск получить удар током при пробое изоляции.
Отличия от однофазного тока
Как правило, в многоквартирные дома подводится трехфазный переменный ток. Это обусловлено подключением большого числа однофазных нагрузок. В этом случае есть возможность равномерно нагрузить каждую фазу цепи трансформаторной подстанции. Это позволит не допустить перекоса межфазного и фазного напряжений.
Основные различия, по сравнению с однофазным током, лежат в следующей плоскости:
- линейное напряжение не рассчитано на питание однофазных потребителей;
- величина мощности нагрузки зависит от сечения питающего кабеля;
- возможность включения в сеть трёхфазных потребителей;
- допустимость переключения однофазного потребителя на другую фазу.
В связи с этим использование трёхфазного тока более эффективно на производстве.
Важно! Стоимость оборудования, кабельной продукции, электроэнергии, приборов учёта при подведении к объекту напряжения, равного 380 В, значительно выше, чем однофазной сети.
Какой вариант тока выбрать, трёхфазный или однофазный, решать владельцу жилья. Особенно это касается больших частных домов, где современное электрооборудование требует наличия всех трёх фаз. Затраты на подведение 3-х фазного тока и установку узла учёта с лихвой окупятся возможностями использования трёхфазных потребителей в приусадебном хозяйстве.
Видео
Однофазный и трехфазный шинопровод — в чем разница
Уникальные потребительские характеристики трековых систем освещения обеспечили их широкое распространение, а стремление к дальнейшему совершенствованию определило появления трехфазных шинопроводов.
Выбор между однофазным и 3-х фазным шинопроводом определяется особенностями стоящих перед светотехником задач, а универсальный характер монтажа трековых светильников на светодиодах упрощает проектирование осветительных систем.
Конструктивные особенности трековых шинопроводов
Шинопровод для трековых светильников представляет собой алюминиевый короб прямоугольной конструкции, внутри которого, в зависимости от количества фаз, проложено 2 или 4 токопроводника. Двухфазное подключение обеспечивают 2 проводника, а трехфазное — 4.
Соединение шинопроводов в одну конструкцию обеспечивают простые, угловые, крестовые и гибкие соединители, а концевые участки закрываются специальными заглушками.
Трековые светильники для обычных и 3-х фазных шинопроводов имеют разную конструкцию и не взаимозаменяемы. Как правило, каждый светильник однофазной модификации имеет встроенный выключатель и переключатель фаз для 3-х фазного варианта.
Различие однофазных и трехфазных шинопроводов
Особенность эксплуатации трековых светильников в однофазной сети 220 В и в трехфазной сети 380 В состоит в том, что напряжение между фазой и нолем в любой из этих сетей составляет одну и ту же величину — 220 В. Поэтому к любой из разновидностей шинопровода можно подключать светодиодные светильники на 220 В.
Еще одной особенностью 3-х фазных систем выступает возможность подключения к токоведущим проводникам одной и той же фазы обычной сети 220 вольт. Такая возможность предоставляет проектировщику формировать группы светильников для их раздельного управления.
Преимущества трехфазных шинопроводов
Появление трехфазных шинопроводов для светодиодных трековых систем освещения связано с двумя основными преимуществами:
трехфазное подключение снижает общую нагрузку на систему освещения, и дает возможность проектировать протяженные осветительные линии с общим управлением и одним подводящем кабелем питания. Особенно это достоинство оправдывает себя в больших торговых залах супермаркетов и крупных выставочных экспозициях;
три разных фазы подключения трековых светильников определяют независимость подключения к системе трех разных групп, подключенных к разным фазам. Включение в сеть любой из групп происходит с помощью своего выключателя.
Косвенным преимуществом 3-х фазной системы выступает встроенный переключатель конкретного светильника на одну из трех действующих фаз, что расширяет возможности проектировщика системы освещения.
Из недостатков трехфазной системы стоит отметить ее более высокую стоимость, по сравнению с однофазными аналогами.
Купить однофазные и трехфазные светодиодные светильники и шинопроводы для них вы можете на странице выбранной модели. Также для удобства клиентов оформлена клавиша «Купить в один клик».
Однофазные и трехфазные ИБП: в чем разница и как выбрать?
Опубликовано 21.05.2021 · Обновлено 30.05.2021
При покупке ИБП для вашего бизнеса или организации следует учитывать множество факторов, среди которых выбор источника питания между однофазным и трехфазным ИБП является наиболее важным. Хотя оба ИБП обеспечивают постоянное резервное питание для работы в непредвиденных ситуациях, у них разные роли. Вот краткое введение в однофазный и трехфазный режимы для тех, кто не знаком с их различиями здесь знают все об ИПБ трехфазные https://larmana-shop.ru/catalog/trekhfaznyy-ibp/ .
Что такое фаза в электрических терминах?
Если вы новичок в мире электроэнергии, возможно, вы мало знаете о термине «фаза». Фаза, по сути, представляет собой распределение электроэнергии, которое показывает, что источник питания переменного тока (AC) изменяется в зависимости от периода времени. Существуют однофазные, двухфазные и трехфазные источники питания.
Однофазное напряжение обычно называют «домашним напряжением», потому что оно широко доступно в домах. Например, микроволновая печь, кофеварка, домашний компьютер могут быть однофазными устройствами. В разных регионах однофазные соединения схожи: для замыкания цепи требуется два провода (один провод напряжения и один нулевой провод). На рисунке ниже показан ток при однофазной сети переменного тока.
Однофазное питание переменного тока
Две фазы — это в основном то же самое, что и одна фаза, которая состоит из двухпроводного переменного тока. Это также называется разделенной фазой. Питание подается от одной из двух силовых цепей 120 В нагрузках, использующих цепи малой мощности, такие как свет, телевидение и т. Д. В настоящее время трехфазные системы заменили исходные двухфазные системы питания для передачи и использования энергии.
Трехфазное питание содержит либо 3 провода под напряжением, либо 4 провода (3 фазных провода и нейтральный), обеспечивающие три переменных тока, разделенных по фазовому углу. Общая нагрузка распределяется по трем проводам. В большинстве коммерческих зданий в Северной Америке используются трехфазные четырех проводные схемы питания.
Трехфазное питание переменного тока
Система ИБП — однофазный ИБП или трехфазный ИБП?
ИБП бывают двух разных форматов: однофазные и трехфазные. Общие конфигурации фаз для ИБП показаны в следующей таблице:
Выход Номенклатура Напряжение сети США
1 фаза 1 фаза 1/1 120/120 В переменного тока, 60 Гц
3 фазы 1 фаза 3/1 220/120 В переменного тока, 60 Гц
3 фазы 3 фазы 3/3 220/208 В переменного тока, 60 Гц
Однофазная система ИБП (1/1)
Как показано на диаграмме, однофазный ИБП имеет один вход и выход 120 В переменного тока (для Канады и США). Однофазная установка состоит из двух проводов, где переменное напряжение представляет собой одну синусоидальную волну. Стандартное напряжение одной фазы варьируется в разных странах или регионах. Стандартное однофазное напряжение в Америке составляет 120 В, а в Европе, Азии и других регионах стандартное напряжение составляет 230 В.
Трехфазная система ИБП (3/1 и 3/3)
Трехфазные ИБП можно разделить на системы ИБП с трехфазным входом / трехфазным выходом и системы с трехфазным входом / однофазным выходом. Если вам нужно подключиться к трехфазному источнику питания, вам понадобится ИБП с конфигурацией 3 / x. ИБП 3/1 потребляет трехфазную мощность, но подает одну фазу на нижнюю нагрузку, в то время как ИБП 3/3 не только принимает, но и выдает трехфазную мощность.
В чем разница между однофазным и трехфазным ИБП?
Основное различие между однофазным ИБП и трехфазным ИБП заключается в следующих моментах:
Проводник: количество проводов в однофазной и трехфазной системе различается. Однофазный ИБП содержит один провод, а трехфазный ИБП подает питание по трех проводам.
Синусоидальная волна: Однофазный ИБП выдает одну синусоидальную волну, а трехфазный ИБП выдает три синусоиды, каждая из которых не в фазе и разнесена на 120 друг от друга.
Напряжение: однофазное напряжение составляет 120 В Северной Америке, в то время как межфазное напряжение для трехфазной системы составляет 220 В, а межфазное напряжение — 120 В.
Техническое обслуживание: характеристика однофазного ИБП по принципу «включай и работай» упрощает установку и настройку, чем трехфазный аналог, без необходимости внешней установки.
Эффективность: при низком энергопотреблении однофазный ИБП более эффективен, чем трехфазный. Но когда потребность в мощности выше, трехфазный ИБП демонстрирует большую эффективность, чтобы выдерживать большую нагрузку более безопасным способом.
Стоимость: оборудование в трехфазной системе ИБП будет иметь более длительный срок службы, а линии передачи для трехфазного питания не нуждаются в медных проводах большого сечения, как в однофазных ИБП, поэтому в долгосрочной перспективе трехфазный ИБП сэкономит больше денег.
Применение: Однофазные ИБП доступны для приложений с более низкими требованиями кВА, обычно менее 20 кВА, таких, как дома, малый бизнес и вспомогательные офисы. Трехфазные ИБП обычно используются в крупных установках, таких как центры обработки данных, и в крупных промышленных энергосистемах с более высокими требованиями к мощности.
Три одинаковых фазы на трехфазный счетчик
Собственно задача:
подключить после трех автоматов 40А 25А и 15А электросчетчик(пломбировать не надо). Будет ли трехфазный корректно работать, если подключить на три входа три одинаковых фазы?
eatherly написал:
Будет ли трехфазный корректно работать, если подключить на три входа три одинаковых фазы?
eatherly написал:
Будет ли трехфазный корректно работать, если подключить на три входа три одинаковых фазы?
Кстати. Не забудьте увеличить сечение нулевого провода до и после счётчика по арифметической сумме автоматов в каждой «фазе». Векторного сложения не будет, а будет 40+25+15=80.
eatherly написал:
подключить на три входа три одинаковых фазы?
А зачем? Такое подключение не корректно, считать будет с некоторой погрешностью, вероятно надо смотреть инструкцию на выбранную модель счетчика.
eatherly написал:
подключить после трех автоматов 40А 25А и 15А электросчетчик
Если хочется для каждой линии свой счётчик, то возьмите три однофазных НЕВА 102 или 105 одномодульные, будет компактнее и не на много дороже чем один трёх фазный счётчик.
В однофазном счетчике обмотка напряжения и обмотка тока стоят на месте и крутят диск. На него наводятся вихревые токи с одной, эти токи под воздействиесм магнитного поля второй образуют механическую силу
В трехфазном счетчике стоят 3 такие группы обмоток. Между ними никакой магнитной связи нет — каждая прилагает свое воздействие, суммируются механические силы а не поля которые их создают
Теоретически 3ф счетчику не нужен ноль (обмотки напряжения могут просто подключатся звездой) и он будет работать правильно при 3ф, и не будет если 3 фазы одинаковы. Но в настоящих 3ф счетчиках ноль есть и подключен, так что нет зависимости и можно подавать одинаковые фазы, или только одну фазу, и все будет работать правильно
У подключения 3ф счетчика таким способом после автоматов есть недостаток — Когда один автомат отключен, если в счетчике отавлился ноль то на отключеной линии появится напряжение через обмотки счетчика. Можно подключить счетчик до автоматов (но должна быть защита от кз), но тогда можно и один однофазный на 80А поставить. Также можно 3 однофазных после автоматов как сказано выше. Разве как есть счетчик и хочется его использовать а не покупать новый
линк написал:
В однофазном счетчике обмотка напряжения и обмотка тока стоят на месте и крутят диск. На него наводятся вихревые токи с одной, эти токи под воздействиесм магнитного поля второй образуют механическую силу
В трехфазном счетчике стоят 3 такие группы обмоток. Между ними никакой магнитной связи нет — каждая прилагает свое воздействие, суммируются механические силы а не поля которые их создают
Сейчас разве можно такие приборы найти? Ведь с обмотками в основном класса 2,5 были, а сейчас они под запретом для нового ввода или для поверки. А все новые в основном с шунтами и электронной начинкой. Разве не так?
линк написал:
У подключения 3ф счетчика таким способом после автоматов есть недостаток — Когда один автомат отключен, если в счетчике отавлился ноль то на отключеной линии появится напряжение через обмотки счетчика.
За отгорание нуля и влияние не счётчик не скажу, хотя некоторые модели в этом случае вероятно перестанут работать, т.к. начинка может быть запитана от одной из фаз и нуля.
А вот некоторые модели приборов считают утечки через ноль (видел описание такой проблемы для однофазного прибора на форуме Энергомера), если он был заземлён после счётчика. Производитель в этом случае посоветовал убрать защемление нуля после счётчика и счета после этого сократились на 30-40% и показания сравнялись с контрольным прибором.
ser000 написал:
Сейчас разве можно такие приборы найти? Ведь с обмотками в основном класса 2,5 были, а сейчас они под запретом для нового ввода или для поверки. А все новые в основном с шунтами и электронной начинкой. Разве не так?
Вроде ТС хочет делать не ввод, а что то типа считать потребление съемщика части помещения, к которой идут эти 3 линии. Это его собственная проводка, он может там ставить что хочет
ser000 написал:
За отгорание нуля и влияние не счётчик не скажу
Я имел ввиду не отгорание общего нуля, а механическую поломку провода который подключает ноль счетчика к нулевой шине в щитке (предпологаем что ток нуля нагрузки не проходит через клемник счетчика т.к. незачем, а просто счетчику подается ноль проводком). Там отгорать нечему т.к. обмотки напряжения счетчика берут наверно не более десятков миллиампер
У механических счетчиков 3 одинаковых комплекта обмоток внутри, нет там чего то чему нужна именно одна определенная фаза
О цифровом не задумывался.
Питание схемы у цифрового счетчика может быть от одной фазы, или от всех (через мост), причем может между фазой и нулем а может между фазами
Измерение у цифрового счетчика — он сэмплит и множит моментальные значения напряжения и тока по каждой фазе (независимо) и суммирует (и затем суммирует по времени), и ему должно быть все равно. Разве как в нем логика что бы намеренно распознавать неправильное включение
ser000 написал:
А вот некоторые модели приборов считают утечки через ноль
Интересно, зачем ? В большенстве ничего интересного на нуле нет, просто соединены накоротко ноль входа и выхода. Да и ненужно там ничего свыше этого