Tl431a стабилизатор тока стабилизатор в дом рф
Как работает микросхема TL431, схемы включения, описание характеристик и проверка на работоспособность
При разработке электронных схем часто появляется потребность в маломощном стабилизаторе напряжения или в источнике образцового напряжения. Ряд фиксированных напряжений закрывается нерегулируемыми интегральными стабилизаторами. Регулируемые строят на микросхеме LM317, но у нее имеются определенные врожденные недостатки и зачастую излишний функционал. Во многих случаях проблему решит микросхема TL431, позволяющая получить маломощный источник стабильного напряжения, которое можно регулировать в пределах от 2,5 до 36 В.
Что из себя представляет микросхема TL431
Эту микросхему, разработанную в 70-х годах ХХ века, часто называют «регулируемым стабилитроном», и на схеме обозначают, как стабилитрон с двумя классическими выводами – анодом и катодом. Также имеется третий вывод, о назначении которого позже. На вид микросборка стабилитрон совсем не напоминает. Выпускается, как обычная микросхема, в нескольких вариантах корпуса. Изначально изготавливались варианты только под плату с отверстиями (true hole), с развитием SMD-технологий TL431 стали «упаковывать» и в корпуса для поверхностного монтажа, включая популярные SOT с различным количеством выводов. Минимально необходимое для работы количество ног – 3. Некоторые корпуса содержат большее количество выводов. Излишние ножки либо никуда не подключены, либо задублированы.
Основные характеристики TL431
Основные характеристики, знание которых достаточно для выполнения 90+ процентов задач, возникающих при разработке электронных схем:
- пределы выходного напряжения – 2,5…36 В (это можно отнести к минусам, так как современные регуляторы имеют нижний лимит от 1,5 В);
- наибольший ток – 100 мА (он невелик, сравним со стабилитроном средней мощности, поэтому перегружать микросхему не стоит, защиты у неё нет);
- внутреннее сопротивление (импеданс эквивалентного двухполюсника) – около 0,22 Ом;
- динамическое сопротивление – 0,2…0,5 Ом;
- паспортное значение Uref=2,495 В, точность – в зависимости от серии, от ±0,5% до ±2%;
- рабочий диапазон температур для TL431С – 0…+70 °С, для TL431A – минус 40…+85 °С.
Прочие характеристики, включая графики зависимости параметров от температуры, можно посмотреть в даташите. Но в большинстве случаев они не понадобятся.
Назначение выводов и принцип работы
При анализе внутренней структуры микросхемы становится понятно, что сравнение со стабилитроном довольно условно.
Больше всего строение TL431 напоминает компаратор. На инвертирующий выход подано опорное напряжение Vref, равное 2,5 В. Это напряжение стабилизировано, поэтому выходное также будет стабильным. Неинвертирующий выход выведен наружу. Если поданное на него напряжение не превышает опорного, на выходе компаратора ноль , транзистор закрыт, ток не течёт. Если на прямом входе напряжение превышает 2,5 В, то на выходе дифференциального усилителя появляется положительный уровень, транзистор открывается, через него начинает течь ток. Этот ток ограничивается внешним сопротивлением. Такое поведение напоминает лавинный пробой стабилитрона при приложении к нему обратного напряжения. Диод предназначен для защиты от обратного включения микросхемы.
Важно! Вывод опорного напряжения нельзя оставлять никуда неподключенным, он требует тока минимум 4 мкА.
Фактически и эта схема условна – она пригодна только для объяснения характера работы. Реально всё реализовано по другим принципам. Так, внутри схемы нельзя найти точку с опорным напряжением 2,5 В.
Примеры схем включения
Один из вариантов схемы включения TL431 – обычный компаратор. На нём можно построить какие-нибудь пороговые реле – например, реле уровня, реле освещения и т.д. Только источник опорного напряжения у неё встроенный и регулировке не подлежит, поэтому регулируют ток и падение напряжения через датчик.
Как только на датчике упадет 2,5 В, выходной транзистор микросхемы откроется, через светодиод пойдет ток и он загорится. Вместо LED можно использовать маломощное реле или транзисторный ключ, коммутирующий нагрузку. Резистором R1 можно подстроить уровень срабатывания компаратора. R2 служит балластом и ограничивает ток через светодиод.
Но подобное включение не дает возможности использовать все возможности TL431 – компаратор можно построить на любой другой микросхеме, более подходящей для таких реле. Эта же сборка разработана для других целей.
Самая простая схема включения TL431 в режиме параллельного стабилизатора – источника опорного напряжения 2,5 В. Для этого нужен лишь балластный резистор, который ограничит ток через выходной транзистор.
Важно! В отличие от классической схемы включения стабилитрона, не стоит параллельно выходу устанавливать конденсатор. Это может привести к возникновению паразитных колебаний. В целом он и не нужен, так как разработчики приняли меры по снижению шумов на выходе. Но из-за этого микросхему нельзя использовать в качестве основы для генератора шума, как обычный стабилитрон.
Более полно возможности микросхемы используются в схеме с обратной связью, образованной резисторами R1 и R2.
При подаче питания напряжение на выходе возрастает и стабилизируется в течение нескольких микросекунд (скорость нарастания не нормируется). Uстаб задается делителем, его можно вычислить по формуле Uстаб=2,495*(1+R2/R1). При расчетах надо иметь в виду, что внутреннее сопротивление при таком включении возрастает в (1+R2/R1) раз.
Можно увеличить нагрузочную способность стабилизатора классическим способом, включением дополнительного биполярного транзистора.
Важно! Транзистор обязательно включается в цепь петли обратной связи.
Такое включение преобразует схему в параллельный стабилизатор, требующий превышения входного напряжения над выходным. Его КПД не может превышать отношения Uвых/Uвх. Это ухудшает параметры стабилизатора, поэтому лучше применить полевой транзистор, на нём падение напряжения меньше.
Здесь КПД выше за счёт меньшей потребной разницы между входным и выходным напряжением, но понадобится дополнительный источник питания для затвора транзистора – его напряжение должно превышать Uвх.
На TL431 можно собрать стабилизатор тока.
Ток в цепи коллектора транзистора будет равен Iстаб=Vref/R1.
Если эту же схему включить в виде двухполюсника, то получится ограничитель тока.
Ток будет ограничиваться на уровне Io=Vref/R1+Ika. Номинал балластного резистора надо выбирать из условий Rб=Uвх(Io/hfe+Ika), где hfe – коэффициент усиления транзистора. Его можно замерить мультиметром, имеющим такую функцию.
Радиолюбители используют микросхемы и в нестандартных включениях. TL431 имеет склонность к самовозбуждению, что является недостатком. Но это дает возможность её использования в качестве генераторов, управляемых напряжением. Для этого на выход устанавливают конденсатор.
Какие существуют аналоги
Микросхема имеет высокую популярность в мире профессионалов и любителей электроники. Поэтому её выпускают многие изготовители. Всемирно известные фирмы Texas Instruments (как разработчик), Motorola, Fairchild Semiconductor и другие производят микросхему под оригинальным названием. Нельзя не упомянуть выпускавшийся ранее стабилизатор TL430, с Vref=2,75 В и увеличенным в полтора раза максимальным рабочим током. Но эта микросхема была менее востребована, и до начала эпохи SMD-монтажа не дожила.
Другие производители выпускают регулятор напряжения с другими буквенными индексами, но обязательно имеющими в своих названиях цифры 431 (в противном случае потребитель просто не обратит внимания на неизвестную микросхему). На рынке присутствуют:
- KA431AZ;
- KIA431;
- HA17431VP;
- IR9431N
и другие микросхемы, сходные по функционалу. Но изделия малоизвестных и неизвестных производителей не гарантируют соответствие параметров.
Существует отечественный аналог – КР142ЕН19А, выпускается в корпусе КТ-26 (похож на транзистор малой мощности). Полностью аналогичен оригинальной микросхеме, но некоторые характеристики немного отличаются. Так, внутреннее сопротивление нормируется в пределах Как проверить работоспособность микросхемы TL431
Микросхема имеет достаточно сложную внутреннюю структуру, поэтому проверить её одним тестером нельзя. В любом случае придется собирать какую-то схему. Если есть регулируемый источник питания, то потребуется три резистора и светодиод.
Напряжение источника питания должно быть не более 36 В. R1 выбирается так, чтобы при максимальном напряжении ток через светодиод не превысил 10-15 мА. Соотношение R1 и R3 должно быть таким, чтобы при максимальном напряжении источника на R3 падало более 2,5 В, а лучше – больше 3. При повышении выходного напряжения от 0 В до достижения на R3 порога светодиод вспыхнет, а значит микросхема исправна. Светодиод можно не устанавливать, а просто замерить напряжение на катоде – оно должно скачкообразно измениться.
Если регулируемого источника нет, а есть блок питания с постоянным напряжением, придется вместо R3 применить потенциометр. При вращении движка в обе стороны, светодиод должен загораться и гаснуть.
Рынок электронных компонентов предлагает очень широкий спектр интегральных стабилизаторов напряжения. Но и область применения очень обширна, поэтому свою нишу на рынке имеют многие типы микросхем. Включая TL431.
Tl431a стабилизатор тока стабилизатор в дом рф
«Стабилитрон-хамелеон» — так можно сказать про микросхему TL431. Всего два резистора задают напряжение стабилизации, и я уже рассказывал, как их рассчитать. Но если самую малость изменить схему, то выйдет отличный компаратор на 2,5 вольта. Его расчёту и посвящён мой очередной калькулятор.
Получились три таблички в форматах:
LibreOffice 6.3 (.ods)
Excel 97-2003 (.xls)
На каждом листе-калькуляторе есть краткая инструкция, а здесь я расскажу о них подробно.
Компаратор-1 (расчёт сопротивлений)
Как и любой компаратор, TL431 сравнивает два напряжения и выставляет на своём выходе логический ноль или единицу. Важных моментов всего два:
1) опорное напряжение зафиксировано внутри микросхемы на уровне 2,5 В — с ним и будем сравнивать измеряемый сигнал;
2) уровень логического нуля — 1,8…2,0 В, единицы — напряжение питания с маленькой оговоркой.
Как работает этот компаратор, вы спросите? Когда входное напряжение выше заданного порога, с делителя R2…R4 на измерительный вход микросхемы поступает напряжение выше 2,5 В. Внутренний транзистор TL431 открыт и пропускает через себя ток Iшунт, а на выходе микросхемы остаются те самые 1,8…2,0 В, логический ноль. Когда же входное напряжение опускается ниже порога, с делителя R2…R4 идёт менее 2,5 вольт, и транзистор закрывается. Напряжение логической единицы почти равно напряжению на входе. Почти — потому что через закрытую TL431 течёт ток Iшунт=0,3…0,4 мА, что по закону Ома вызывает падение напряжения на резисторе R1. Чем выше его номинал — тем выше перепад напряжения и меньше ток нагрузки (когда на выходе «единица»), а заодно и меньше шунтирующий ток Iшунт (когда на выходе «ноль»).
По доброй традиции каждую страницу с результатами можно распечатать. Формулы на картинке помогут пересчитать делитель для иного порога, даже если уже ночь и компьютер выключен. Таблица стандартных номиналов радиодеталей подскажет, какие резисторы лучше взять (на печать не выводится). Для космически важных применений есть ряды резисторов E96 и E192 — 1% и 0,5% точности.
Инструкция:
1. Задать входное и пороговое напряжения Uвх, Uпрг, ток нагрузки Iнагр.
2. Калькулятор выдаст сопротивление и мощность R1. Когда TL431 открыта, через него течёт ток Iшунт, когда закрыта – Iнагр+0,4 мА.
3. Установить R3max и R3* в нули.
4. Выбрать R4 из таблицы стандартных номиналов и внести его в графу. Калькулятор выдаст расчётное значение суммы R2 и R3.
5. Задать стандартный номинал R2 — меньше, чем сумма R2+R3.
6. Указать максимальное сопротивление подстроечного резистора R3max. Итоговая сумма R2+R3max должна быть больше расчётного значения. Чем ближе R2 к сумме и чем меньше R3, тем уже будет диапазон регулировки Uпргmin, Uпргmax.
7. При помощи R3* можно точно подогнать рассчитанное Uпрг.
8. Iпотр «0» — ток потребления всей схемы, когда TL431 открыта (Uвх>Uпрг, Uд>2,5V). Увеличивается с ростом Uвх.
9. Iпотр «1» — ток потребления всей схемы, когда TL431 закрыта (Uвх R2 = 10 кОм, то ошибки набежит всего 0,01…0,04 В. Даташит рекомендует не увеличивать резистор R2 свыше 10 кОм именно по этой причине. Однако если у вас в схеме есть подстроечный R3, то эту погрешность напряжения можно им компенсировать. R 3 и R4 могут лежать в диапазонах 1…100 кОм, но так, чтобы вместе с R2 обеспечивать ток делителя 40 и более мкА.
Компаратор-2 (расчёт сопротивлений)
Здесь подстроечный резистор R3 своим верхним выводом соединён со средним и с выходом делителя, поэтому фактически он входит в состав R4 — нижнего плеча. Никаких особых преимуществ у этой схемы нет, а считать её вручную даже сложнее. Но работает она так же хорошо, и если вдруг вам по техзаданию надо именно такое включение — есть калькулятор.
Делитель рассчитывается по известным R3 и R4, что добавляет некоторые неудобства.
Инструкция:
1. Задать входное и пороговое напряжения Uвх, Uпрг, ток нагрузки Iнагр.
2. Калькулятор выдаст сопротивление и мощность R1. Когда TL431 открыта, через него течёт ток Iшунт, когда закрыта – Iнагр+0,4 мА.
3. Установить R2, R3max и R3* в нули.
4. Выбрать R4 из таблицы стандартных номиналов и внести его в графу. Калькулятор выдаст предварительное значение R2. Его можно использовать, если вы не планируете устанавливать подстроечный R3.
5. Задать максимальное значение R3max и (опционально) R3*. Чем меньше R3max, тем уже будет диапазон регулировки Uпргmin, Uпргmax. Калькулятор выдаст окончательное значение R2.
6. Задать стандартный номинал R2, близкий к рассчитанному.
7. При помощи R3* можно точно подогнать рассчитанное Uпрг.
8. Iпотр «0» — ток потребления всей схемы, когда TL431 открыта (Uвх>Uпрг, Uд>2,5V). Увеличивается с ростом Uвх.
9. Iпотр «1» — ток потребления всей схемы, когда TL431 закрыта (Uвх R3 включён по схеме потенциометра, поэтому его можно представить как резисторы R3.1 и R3.2, последовательно соединённые с R2 и R4. На этом и строится подбор сопротивлений в этом калькуляторе. Да-да, именно подбор, а не расчёт, и в этом главный минус такой схемы — надо потратить больше времени, чтобы получить результат.
Стабилизаторы Напряжения На Микросхеме 78R12
Многим радиолюбителям хорошо знакомы импортные интегральные микросхемы серий 78хх, 78Мхх, 78l_xx, представляющие собой трёхвыводные нерегулируемые линейные стабилизаторы напряжения положительной полярности, рассчитанные на различные выходные напряжения и максимальный ток нагрузки 1 А, 0,5 А и 0,1. 0,15 А. Например, интегральный стабилизатор KIA7805 рассчитан на выходное напряжение +5 В и максимальный ток нагрузки 1 А. Но немногие знают, что существуют аналогичные микросхемы серии 78Rxx, представляющие собой стабилизаторы напряжения положительной полярности с малым напряжением насыщения, которое не превышает 0, 5 В при токе нагрузки 1 А. Эти микросхемы выпускаются в изолированном четырёхвыводном корпусе TO220F-4 и пятивыводных неизолированных TO220B и T0252-5. Эти микросхемы выпускаются на несколько фиксированных выходных напряжений: 78R33 на +3,3 В, 78R05 на +5,0 В, 78R09 на +9 В и 78R12 на +12 В. Микросхема 78R00 — регулируемый линейный стабилизатор напряжения положительной полярности. Максимальное входное напряжение для всех микросхем +35 В постоянного тока, максимальный ток нагрузки 1 А, максимальная рассеиваемая мощность 15 Вт. Назначение выводов микросхем, выпускаемых в разных корпусах, различное, табл. 1.
Кроме микросхем серии 78Rxx, выпускаемых фирмой Unisonic Technologies Co, также существуют аналогичные по назначению, параметрам и цоколёвке выводов микросхемы серий KA78Rxx и KIA78Rxx, выпускаемые другими фирмами.
Структурный состав микросхемы 78R12, выпускаемой в четырёхвыводном корпусе TO220F-4 показан на рис. 1.
Принципиальная схема стабилизатора напряжения, собранного на интегральной микросхеме 78R12L-TF4-T, показана на рис. 2. Напряжение 13. 24 В переменного тока поступает на мостовой диодный выпрямитель VD1 — VD4 через полимерный самовосстанавливающийся предохранитель FU1, который защищает микросхему от перегрузки по току. Применение диодов Шотки в мостовом выпрямителе позволяет уменьшить потери мощности и напряжения на диодах выпрямительного моста. Конденсатор С5 сглаживает пульсации выпрямленного напряжения. При разомкнутых контактах выключателя SA1 стабилизатор напряжения включен, на подключенную к выходу стабилизатора нагрузку поступает напряжение +12 В постоянного тока. Светодиод HL1 светится при наличии выходного напряжения. Последовательно включенные стабилитрон VD6, диод VD7, защищают нагрузку от повышенного напряжения при неисправностях микросхемы. Диод VD5 защищает микросхему от повреждения обратным напряжением при коротком замыкании на входе стабилизатора. Ток покоя стабилизатора около 6 мА при отключенном светодиоде HL1. При входном напряжении менее 11 В ток покоя возрастает до 35 мА. При токе нагрузки 0,7 А входное напряжение постоянного тока на входе DA1 может быть всего на 0,3 В больше выходного напряжения.
Если требуется собрать блок питания с регулируемым выходным напряжением, а в наличии только микросхемы серии 78Rxx на фиксированное выходное напряжение, то это можно сделать, собрав устройство по схеме рис. 3. Напряжение сети 220 В переменного тока поступает на первичную обмотку понижающего трансформатора Т1 через замкнутые контакты выключателя SA2 и плавкий предохранитель FU2. Варистор RU1 защищает трансформатор и диоды Шотки от повреждений при всплесках напряжения сети. Выходное напряжение 15. 24 В регулируют переменным резистором R9, который управляет рабочим напряжением регулируемого интегрального стабилитрона DA2. Чем больше установленное сопротивление резистора R9, тем больше выходное напряжение блока питания. Каскад на транзисторе VT1 необходим для обеспечения принудительного запуска стабилизатора напряжения на DA1, поскольку при отсоединённом от общего провода выводе 3 DA1, эта микросхема включается в режиме защиты с пониженным выходным напряжением. В момент включения питания, на базу транзистора VT1 поступает короткий импульс тока, который открывает транзистор VT1, в результате чего вывод 3 DA1 оказывается на короткое время подсоединён к общему проводу через открытый переход коллектор-эмиттер VT1. Для уменьшения амплитуды пульсаций входного напряжения ёмкость конденсатора С5 выбрана относительно большой, это необходимо для того, чтобы предотвратить открывание VT1 при большой амплитуде пульсаций входного напряжения. При использовании в конструкции, собранной по схеме рис. 3, микросхемы DA1 на меньшее фиксированное выходное напряжение, можно расширить диапазон регулируемого выходного напряжения, при этом, следует учитывать, что максимальная мощность, рассеиваемая микросхемой стабилизатора, во всех режимах работы не должна превышать 15 Вт.
Микросхему серии 78Rxx устанавливают на дюралюминиевый или медный, латунный теплоотвод, площади охлаждающей поверхности которого должно быть достаточно, чтобы температура корпуса микросхемы не превышала 65 гр.С во всех режимах работы. Микросхему AZ431 можно заменить на TL431, LM431, выполненные в корпусе ТО-92 или типа НА17431 (цоколёвка совпадает). Диоды Шотки MBR360 можно заменить на MBRD360, MBRD660, 10MQ060N, 30BQ060, SB360, Диоды 1N4002 можно заменить любыми из серий 1N4001 — 1N4007, UF4001 -UF4007, 1N5391 — 1N5399, КД208, КД243, КД247. Вместо стабилитрона Д815Д можно установить Р6КЕ15А, вместо Д816Б подойдёт 1 N5361. На время настройки изготовленных стабилизаторов защитные стабилитроны отключают. Светодиод L-934SRD/J красного цвета свечения можно заменить любым аналогичным непрерывного свечения, например, из серии КИПД40. Оксидные конденсаторы типов К50-24, К50-29, К50-35, К50-68 или импортные аналоги.
Неполярные конденсаторы плёночные малогабаритные, например, К73-17, К73-24 или аналоги. Переменный резистор РП1-56А, СП4-1, СП4-2М. Можно применить переменный резистор со встроенным выключателем питания, например СПЗ-12К, СПЗ-ЗОК. Остальные резисторы типов МЛТ, РПМ, С1-4, С2-23, С2-33. Варистор FNR-20K471 можно заменить на FNR-20K431, FNR14K431, FNR-14K471, SVC471-14, MYG20-471, LF14K471 или аналогичным. Транзистор SS9014 заменим на любой из серий КТ645, КТ503, КТ3102. Выключатель SA2
— IRS-101-1A3, IRS101-12C, SDDF-3, KDC-A04, ПКН-41-1-2 или аналогичный, рассчитанный на коммутацию сетевого напряжения 250 В переменного тока. Понижающий трансформатор Т1 можно изготовить самостоятельно. При использовании стального магнитопровода с площадью центрального керна 7,4 см.кв, первичная обмотка должна содержать 1550 витков медного обмоточного провода диаметром 0,23 мм. Вторичная обмотка содержит 190 витков обмоточного провода диаметром 0,68 мм. При использовании броневого ленточного магнитопровода с площадью керна 5 см.кв. первичная обмотка содержит 990 витков, вторичная 102 витка, диаметры обмоточных проводов, как и в первом варианте трансформатора. Подобрать готовый трансформатор можно по таблице из [1]. Изготовить более мощный стабилизатор напряжения на микросхеме серии 78Rxx можно установкой дополнительного мощного дискретного p-n-р транзистора, так, как это реализовано в [2].
tl431a pdf – tl431 applications
TL431A Datasheet PDF – Texas Instruments: Part No, TL431A: Download TL431A Click to view: File Size 795,46 Kbytes: Page 41 Pages : Manufacturer
Description : ADJUSTABLE PRECISION SHUNT REGULATORS
The TL431 and TL432 are adjustable shunt voltage references with guaranteed temperature stability over the entire operating temperature range, The device temperature range is extended for the automotive version from -40 °C up to +125 °C, The output voltage can be set to any value between 2,5 and 36 V with two external resistors, The TL431 and TL432 operate with a wide current range from 1 to 100 mA with …
TL431/TL431A Programmable Shunt Regulator TL431/TL431A 2 Internal Block Diagram Absolute Maximum Ratings Operating temperature range applies unless otherwise specified, Recommended Operating Conditions Parameter Symbol Value Unit Cathode Voltage VKA 37 V Cathode Current Range Continuous IKA -100
+150 mA Reference Input Current Range IREF -0,05
TL431 TL431A TL431B PK SOT-89 PACKAGE TOP VIEW REF ANODE CATHODE! Pin 2 is attached to Substrate and must be connectedtoANODE or left open NC ” No internal connection TL432, TL432A, TL432B , , , DBV SOT-23-5 PACKAGE TOP VIEW 1 2 3 5 4 NC ANODE NC REF CATHODE NC ” No internal connection TL431, TL431A, TL431B , , , DBZ SOT-23-3
Taille du fichier : 2MB
21 lignes · TL431A Datasheet, PDF : Search Partnumber : Match&Start with “TL431A”-Total : 1,248 1/63 Page Manufacturer: Part No, Datasheet: Description: Texas Instruments: TL431A: 795Kb / 41P [Old version datasheet] ADJUSTABLE PRECISION SHUNT REGULATORS: TL431A: 1Mb / 79P [Old version datasheet] PRECISION PROGRAMMABLE REFERENCE: TL431A: 787Kb / 40P [Old version …
TL431A Datasheet, PDF
TL431A, B Series, NCV431A, B Series, SCV431A The TL431A, B integrated circuits are three−terminal programmable shunt regulator diodes, These monolithic IC voltage references operate as a low temperature coefficient zener which is programmable from Vref to 36 V with two external resistors, These devices exhibit a wide operating current range of 1,0 mA to 100 mA with a typical dynamic
wwwfairchildsemi,com TL431/TL431A
Adjustable Precision Shunt Regulators, TL431A datasheet, TL431A circuit, TL431A data sheet : AIC, alldatasheet, datasheet, Datasheet search site for Electronic
TL431/TL431A Programmable Shunt Regulator
TL431A Datasheet, TL431A PDF, TL431A Data sheet, TL431A manual, TL431A pdf, TL431A, datenblatt, Electronics TL431A, alldatasheet, free, datasheet, Datasheets, data
TL431/TL431A 3 Electrical Characteristics TA = +25°C unless otherwise specified •TMIN= -25 °C TMAX= +85 °C Parameter Symbol Conditions TL431 TL431A Unit Min Typ Max Min, Typ, Max, Reference Input Voltage VREF VKA=VREF, IKA=10mA 2,440 2,495 2,550 2,470 2,495 2,520 V Deviation of Reference Input Voltage Over- Temperature Note 1 ΔVREF/ ΔT VKA=VREF, IKA=10mA …
TL431-Q1 / TL432-Q1 Adjustable Precision Shunt Regulator
TL431A pdf Fiche technique TL431A Fiche technique TL431A Fiche technique TL431A pdf Télécharger la fiche technique TL431A Fabricant TL431ACDBZRG4 La description:IC VREF SHUNT ADJ SOT23-3 Fabricants:N/A En stock:Nouvel original stock 2628 disponible Citation: RFQ TL431ACDBVRG4 La description:IC VREF SHUNT ADJ SOT23-5 Fabricants:N/A En stock:Nouvel original stock 15000 …
TL431A Datasheet, PDF
TL431A-Q1 TL431-Q1 TL432-Q1 DBV DBZ DBZ ANODE 5 3 3 O Common pin normally connected to ground CATHODE 3 1 2 I/O Shunt current or voltage input NC 1 2 — — — No connection1 REF 4 2 1 I Threshold relative to common anode
PROGRAMMABLE PRECISION REFERENCES, TL431 datasheet, TL431 circuit, TL431 data sheet : MOTOROLA, alldatasheet, datasheet, Datasheet search site for Electronic
Les spécifications de TL431A
TL431 / TL432 Precision Programmable Reference datasheet
TL431A K A R R A K The TL431 is a shunt regulator, The TL431 Programmable Zener The TL431 lends itself very well to optocoupler control R lower R LED R 1 R bias V out V FB V dd C 2 C 1 TL431 V out I 1 I LED I 1 VV min =2,5 VV f ≈1 1 bias bias V I R = R bias R LED must leave enough headroom over the TL431: upper limit! R LED Fast lane Slow lane dc representation R pullup, The TL431