Sfera-perm.ru

Сфера Пермь
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Тепловые потери переменного тока

Расчет тепловых потерь в тепловых сетях

  1. Расчёт потерь тепла с трубопроводов
  2. Расчет тепловых потерь в тепловых сетях при транспортировке тепловой энергии
    1. Потери тепловой энергии через изоляцию трубопроводов
  3. Расчет потерь в тепловых сетях
    1. =======>>> посмотреть здесь .
  4. Расчет нормативных потерь тепла через изоляцию трубопроводов тепловых сетей Текст научной статьи по специальности «Жилищное хозяйство»
    1. Аннотация научной статьи по жилищно-коммунальному хозяйству, домоводству и бытовому обслуживанию, автор научной работы — Ф Бадах Владимир Федорович, Кузнецова Анна Дмитриевна
    2. CALCULATION OF STANDARD LOSSES OF HEAT THROUGH ISOLATION OF PIPELINES OF THERMAL NETWORKS
  5. Расчет потерь тепла в тепловых сетях

Расчёт потерь тепла с трубопроводов

Расчёт потерь тепла с трубопроводов тепловых сетей выполнен на основе методики приведенной в СНиП 2.04.14 Тепловая изоляция оборудования и трубопроводов.

Методика расчёта тепловых потерь пригодна для всех трубопроводов, на которые распространяется действие данных норм, за исключением систем с отрицательной температурой рабочей среды.

Расчёт величины тепловых потерь выполнен по нормативной плотности теплового потока через изолированную поверхность трубопровода. В методике использованы табличные данные удельных тепловых потерь с одного метра трубы, приведенные в СНиП. Потери тепла для диаметров труб и температур теплоносителя, не приведенных в таблицах — определены методами интерполяции и экстраполяции.

Расчётные потери тепла трубопроводами тепловой сети определяется по формуле:

q – удельная нормативная величина тепловых потерь с одного метра трубы, Вт/м, при средней температуре теплоносителя и заданном количестве часов работы в год, определяется для каждого из диаметров по табличным данным СНиП 2.04.14;

k – коэффициент, учитывающий дополнительные потери тепла с опор трубопровода и арматуры, принимается по табличным данным;

b – коэффициент, учитывающий изменение плотности теплового потока через теплоизоляционный слой из пенополиуретана (ППУ), определяется по СНиП 2.04.14;

l – длина участка трубопровода, м.

Температуру теплоносителя для расчёта потерь тепла в тепловых сетях следует принимать:

  • среднюю температуру теплоносителя за год — для непрерывно работающих сетей;
  • среднюю температуру теплоносителя за период со среднесуточной температурой наружного воздуха ниже 8°С — для тепловых сетей работающих только в отопительный период.

Расчётные температуры в двухтрубных водяных тепловых сетях при качественном регулировании в зависимости от температурного графика отпуска тепла применяют:

Расчет тепловых потерь в тепловых сетях при транспортировке тепловой энергии

Рассмотрим пример расчета теплопотерь.

Потери в тепловых сетях Qтc за отчетный период определяются как сумма теплопотерь с непродуктивной утечкой воды из сети Qут, с продуктивной Qут.пр, и потерь тепла через изоляцию в трубопроводах тепловой сети от границы раздела до узла учета тепловой энергии Qиз.

Значение продуктивной утечки определяется согласно соответствующим актам.

Согласно «Схемы балансового разграничения» у «Потребителя» на балансе находится участок теплосети от места присоединения — тепловой камеры ТК- 2 до дома № 4 условным диаметром Ду65, длина — 118,2 п.м.

Тип прокладки — проходной канал.

Определим по формуле нормативные значения среднегодовых тепловых потерь для этой тепловой сети:

  • β — коэффициент, учитывающий местные тепловые потери, потери опор, арматуры, компенсаторов. Определяется согласно СНиП 2.04.07 — 86. Для нашего случая β = 1,2;
  • L — длина трубопровода (участка тепловой сети);
  • qн = qп + qз — нормативные значения удельных тепловых потерь двухтрубных водяных тепловых сетей при прокладке в проходном канале и количестве часов работы за год меньше 5000;
  • 1 ккал / ч = 1,163 Вт.

Согласно графику температур в тепловых сетях 105°С — 70°С среднегодовые температуры теплоносителя (воды) в водяных тепловых сетях принимаем:

Среднегодовая температура воды в системе трубопроводов:

Потери тепловой энергии через изоляцию трубопроводов

Данный расчет отображает нормативные значения потерь, которые не должны превышаться, если изоляция трубопроводов подбиралась в соответствии со СНиП. Реальные значения могут отличаться от нормативных. Если выполнить утепление трубопроводов IZOVOL или другими современными изоляционными материалами теплопотери через изоляцию будут очень низкими. Для точного расчета потерь необходимо использовать метод основанный на алгоритме расчета прохождения тепла через цилиндрическую стенку.

Для участка Ду65 длиной 118,2 п.м.:

qн=(29+17)/1,163=39,66 Ккал /м ч (СНиП 2.04.14–88, приложение 4, табл. 4);

Нормированные значения месячных тепловых потерь через изоляцию трубопроводов для тепловой сети вычисляем:

  • n — продолжительность работы сети в данном месяце, час;
  • Qн ср.р — Гкал/ч.

Расчет потерь в тепловых сетях

Здравствуйте, друзья! Расчет тепловых потерь трубопроводами отопления является важным и нужным расчетом, так как позволяет в цифрах определить количество тепла, теряемого в трубах отопления. Также этот расчет важен по той причине, что теплоснабжающие организации включают потери тепла через трубопроводы в оплату теплоэнергии, в том случае если прибор учета тепловой энергии не находится на границе балансовой принадлежности, а от границы раздела до прибора учета тепла есть участки теплотрассы на балансе потребителя тепла.

Вообще, надо сказать, что расчет этот довольно трудоемкий. Ниже приведен пример расчета тепловых потерь трубопроводами отопления. Расчет производится согласно Приказа Министерства энергетики РФ от 30 декабря 2008 г. N 325 «Об утверждении порядка определения нормативов технологических потерь при передаче тепловой энергии, теплоносителя» и методических указаний по составлению энергетической характеристики для систем транспорта тепловой энергии по показателю «тепловые потери» СО 153-34.20.523-2003, Часть 3.

Изоляционный материал: скорлупы минераловатные оштукатуренные,

δ- толщина изоляции = 0,05 м,

α – коэффициент теплоотдачи от изоляции трубопровода к воздуху канала, принимается согласно приложению 9 СНиП 2.04.14-88 равным 8 Вт/(м2 °С),

αв – коэффициент теплоотдачи от воздуха к грунту, принимается согласно приложению 9 СНиП 2.04.14-88 равным 8 Вт/(м2 °С),

H – глубина заложения до оси трубопроводов, м,

Ø – наружный диаметр трубопровода = 0,076 м,

L – длина трассы = 60 м,

b – ширина канала теплосети = 0,9 м,

h — высота канала теплосети = 0,45 м,

tпср.г. – средняя за отопительный сезон температура теплоносителя в подающем трубопроводе = 65,2 °С,

tоср.г — средняя за отопительный сезон температура теплоносителя в обратном трубопроводе= 48,5 °С,

tгрср.г — среднегодовая температура грунта = 4,5 °С,

λгр – коэффициент теплопроводности грунта = 2,56 Вт/(м °С).

Коэффициент теплопроводности изоляции:

λиз = 0,069+0,00019*((56,85+40)/2) =0,07820075 Вт / (м °С).

Термическое сопротивление теплоотдаче от поверхности изоляции в воздушное пространство:

Rвозд = 1 / (π * α * (Ø + 2δ)) = 1 / (π * 8 * (0,076 + 2 * 0,05)) = 0,2262 (м °С) / Вт.

Эквивалентный диаметр сечения канала в свету:

Øэкв. = 2 * h * b / (h + b) = 2 * 0,45 * 0,9 / (0,45 + 0,9) = 0,6 м.

Термическое сопротивление теплоотдаче от воздуха в канале к грунту:

Rвозд.кан = 1 / (π * αв * Øэкв.) = 1 / (π * 8 * 0,6) = 0,06631456 (м °С) / Вт.

Термическое сопротивление массива грунта:

Rгр = (ln (3,5 * (Н / h) * (h / b) 0,25) / (λгр * (5,7 + 0,5 * b / h)) = (ln (3,5 * (1/ 0,45) * (0,45 / 0,9) 0,25) / (2,56 * (5,7 + 0,5 * 0,9 / 0,45)) = 0,109390664 (м °С) / Вт.

Температура воздуха в канале:

tкан = (tпср.г./( Rиз + Rвозд) + tоср.г/( Rиз + Rвозд) + tгрср.г/( Rвозд.кан + Rгр)) / (1/( Rиз + Rвозд) + 1/( Rиз + Rвозд) + 1/( Rвозд.кан + Rгр)) = (65,2/(1,1397+0,2262) + 48,5/(1,1397 + 0,02262) + 4,5/(0,066 + 0,109)) / (1/(1,1397 + 0,2262) + 1/(1,1397 + 0,2262) + 1/(0,066 + 0,109)) = 15,195 °С.

Среднегодовые часовые удельные тепловые потери qр (Вт / м):

qр = (tкан — tгрср.г) / (Rвозд.кан + Rгр) = (15,195 – 4,5) / (0,066 + 0,109) = 61,1 Вт = 52,55 ккал/час.

Часовые тепловые потери при среднегодовых условиях работы тепловой сети:

Qнорм ср.г. = Σ (qр *L *ß) * 10-6 , Гкал/час,

где ß – коэффициент местных потерь (1,2 для Ø =======>>> посмотреть здесь .

Программу можно получить и напрямую, написав мне через форму обратной связи на моем сайте. В этом случае предусмотрена скидка.

Расчет нормативных потерь тепла через изоляцию трубопроводов тепловых сетей Текст научной статьи по специальности «Жилищное хозяйство»

Аннотация научной статьи по жилищно-коммунальному хозяйству, домоводству и бытовому обслуживанию, автор научной работы — Ф Бадах Владимир Федорович, Кузнецова Анна Дмитриевна

Проведен анализ возможности измерения потерь в тепловых сетях . Предложен способ совершенствования существующей структуры норм потерь через изоляцию трубопроводов путем учета их удельной (на один метр длины трубопровода) теплопроводности. Даны рекомендации по расчёту нормативных потерь тепла через изоляцию трубопроводов тепловых сетей .

CALCULATION OF STANDARD LOSSES OF HEAT THROUGH ISOLATION OF PIPELINES OF THERMAL NETWORKS

The analysis of possibility of measurement of losses in thermal networks is carried out. The way of perfection of existing structure of norms of losses through isolation of pipelines by their account specific (on one meter of length of the pipeline) is offered heat conductivity. Recommendations about calculation of standard losses of heat through isolation of pipelines of thermal networks are made.

Расчет потерь тепла в тепловых сетях

Различают два вида потерь в тепловых сетях: с тепловыделением и от утечек теплоносителя, которые определяются конструкцией сети, ее состоянием и условиями эксплуатации.

Потери с тепловыделением. Существующие нормы потерь тепла в трубопроводах определяются значениями среднегодовых температур теплоносителя и окружающей среды.

Значения удельных потерь тепла при максимальных и других заданных температурах теплоносителя и соответствующей температуре окружающей среды определяют по формуле (4.1)

q1 = , ккал/(ч м), (4.1)

где q1норм — нормы потери тепла на 1 м теплопровода в зависимости от диаметра, способа прокладки и теплоносителя (определяются по прил. 5 и 6) при среднегодовой температуре теплоносителя tcp, ккал/(ч м);

q1 – удельные потери тепла 1 м теплопровода при заданной температуре теплоносителя t, ккал/(ч м);

tокр. ср. г – среднегодовая температура окружающей среды, при которой заданы нормы потерь тепла, °С;

tокр. ср – фактическая среднегодовая температура окружающей среды, °С.

При подземных прокладках в непроходных каналах температура окружающей среды принимается равной температуре воздуха в канале.

При подземной бесканальной прокладке температура окружающей среды равна температуре грунта на глубине заложения трубопровода. При надземной прокладке температура окружающей среды равна температуре наружного воздуха.

Температурный расчетный (максимальный) график подачи теплоносителя от ЦТП и котельных для прямых и обратных магистралей равен соответственно:

tподтн рас = 95 °С и tобртн рас = 70 °С.

Температурный график среднегодовых температур подачи теплоносителя для прямых и обратных магистралей равен соответственно:

tподтн ср = 59 °С и tобртн ср = 47 °С.

Для трубопроводов надземной прокладки температура окружающей среды, при которой заданы нормы потерь тепла, равна среднегодовой температуре окружающей среды за отопительный период.

Для трубопроводов подземной прокладки в непроходных каналах температура окружающей среды, при которой заданы нормы потерь тепла, принимается равной:

Для трубопроводов подземной не канальной прокладки температура, при которой заданы нормы потерь тепла, равна среднегодовой температуре грунта и составляет для средней полосы России (на глубине 0,8 м):

Расчетные (минимальные) температуры окружающей среды равняются:

для трубопроводов надземной прокладки

для трубопроводов подземной прокладки в непроходных каналах

tнокр.ср = 40 °С; tпкокр. рас =

для трубопроводов подземной бесканальной прокладки

(средняя зимняя температура грунта на глубине 0,8 м).

С учетом вышеизложенного, формулы для определения потерь тепла тепловыделением приведены в прил. 7.

Для расчета максимальных часовых потерь используются максимальные удельные потери q1макс, для расчета средних часовых потерь -средние удельные потери qlcp.

Таким образом, исходными данными для расчета потерь тепла тепловыделением рассматриваемых сетей являются удельные потери тепла и суммарные длины участков трасс с учетом способов прокладки.

Потери тепла с утечкой теплоносителя. Среднечасовая величина утечки за год принимается равной 0,25% от объема воды в трубопроводах тепловой сети и присоединенных к ним местных систем отопления зданий. Расчетная (максимальная) часовая величина утечки, учитывая возможные колебания в течение года в зависимости от режима работы системы, принимается равной 0,5% от всего объема теплоносителя. Объем воды в трубопроводах тепловой сети определяется в зависимости от их протяженности и диаметра по сводной специфики. Удельный объем воды в трубопроводах в зависимости от диаметра приведен в прил. 8. Для трубопровода с другим диаметром удельный объем можно определить по выражению

Ду – условный диаметр, мм.

Удельный объем воды в системах отопления зданий по всему объекту на 1 Гкал/ч суммарного расчетного расхода тепла принимается равным:

для жилых районов – 30 м ;

для промышленных предприятий – 15 м3.

Годовые потери тепла с тепловыделением и утечкой за отопительный сезон, Гкал, рассчитываются по формуле

где tот продолжительность отопительного сезона.

3. Виды и краткая характеристика потерь энергии и ресурсов в тепловых сетях.

При передаче теплоносителя по теплосетям возникают следующие потери энергии:

— потери теплоэнергии через изоляцию трубопроводов

— потери с утечками теплоносителя

— потери на прокачку теплоносителя

— потери связанные с неоптимальными тепловыми и гидравлическими режимами работы теплоносителя

Потери теплоты с поверхности трубопроводов определяются по разному в зависимости от способов прокладки тепловых сетей(наземная, в каналах, безканальная)

Если трубопровод на открытом воздухе, потери теплоты с его неизолированной поверхности или с поверхности теплоизоляции происходят за счёт конвекции и излучения на поверхность окружающих его объектов,

в случае канальной прокладки имеет место передача теплоты конвекцией и излучением от поверхности теплоизоляции к внутр.поверхности канала, а далее за счёт теплопроводности через слой грунта.

Тепловые потери с поверхности трубопроводов увеличиваются при увлажнении теплоизоляции

Большая часть аварий до 90% приходится на подающие трубопроводы, в которых вода движется с более высокой температурой и под большим давлением.

1. Приемники электрической энергии, их основные характеристики.

Электроприёмники подразделяются на:

1) по режимам работы, при этом отличаются:

— с продолжительно неизменной нагрузкой.

— с кратковременной нагрузкой. При работе Электроприёмников их температура ниже длительно допустимой, а за время остановок токоведущие части остывают до температуры окружающей среды.

— с повторно кратковременной нагрузкой. Длительность цикла вкл./откл. не превышает 10 мин. при работе электроприёмников их температура ниже длительно допустимой, а за время остановок токоведущие части не остывают до температуры окруж.среды

2) по мощности и напряжению:

— электроприёмники большой мощности 80-10 кВ, 6-10кВт;

— малой и средней мощностей, меньше 80 кВ

3) по роду тока (переменный, постоянный)

4) по степени надёжности (1, 2 и 3 группы) при этом степень надёжности электроприёмников определяется в зависимости от последствий, которые имеют место при внезапном перерыве в электроснабжении.

2. Коэффициент теплофикации и определение его оптимального значения. Использование пиковых водогрейных котлов.

Пиковый водогрейный котел — Котел, устанавливаемый на ТЭЦ для дополнительного нагрева прямой сетевой воды сверх нагрева в сетевых подогревателях паровой турбины в холодное время года. Обычно этот нагрев осуществляется в пределах 100-150°С.

Пиковый водогрейный котел (пвк) работает в пиковом режиме при тепловых нагрузках от минимальной до номинальной, подогревая сетевую воду от по до 150°с. поддержание на входе в пвк температуры сетевой воды 110°с направлено на повышение температуры стенок трубок и тем самым на снижение низкотемпературной коррозии при работе на мазуте. постоянная температура сетевой воды на входе 110°с при переменной и более низкой температуре ее после сетевых подогревателей достигается включением насоса рециркуляции, возвращающего часть воды после подогрева на вход в котел.

Подмешивание горячей воды (150°с) к более холодной позволяет получить температуру 110°с. На смену первому поколению водогрейных котлов башенной компоновки типов ПТВМ-100 и ПТВМ-180 пришли газомазутные котлы типов КВ-ГМ-100 и КВ-ГМ-180 конструкции барнаульского котельного завода (бкз). Топка и опускные газоходы имеют общие промежуточные экраны Топочная камера призматическая, вертикальная, открытого типа. Объем топочной камеры 763 м3. Экраны топочной камеры собираются из 12 блоков. Экраны выполнены из труб 0 60X4 мм, сталь марки 20. В нижней части фронтовой и задний экраны образуют скаты под топки.

Верх топочной камеры закрыт потолочными экранами, переходящими в боковые стенки опускных газоходов. Топочная камера оборудована шестью вихревыми газомазутными горелками, расположенными симметрично на боковых стенках треугольником с вершиной вверх. Горелки по воздуху выполнены двухпоточным, что позволяет осуществлять работу топки при сниженных нагрузках. В каждой горелке установлена паромеханическая мазутная форсунка, оборудованная механизмом выдвижения, что позволяет дистанционно перемещать форсунку в рабочее положение. Конвективные поверхности нагрева расположены в двух опускных газоходах с полностью экранированными стенами. Ограждающими поверхностями каждой конвективной шахты являются промежуточная стена котла, боковая стена котла, фронтовая и задняя стены конвективной шахты. Схема движения сетевой воды в котле КВ-ГМ-180 при работе в пиковом режиме. Сетевая вода из входной камеры 0 720X12 мм поступает в нижние камеры фронтового, заднего, промежуточных экранов топки и в нижние камеры боковых — потолочных экранов опускных газоходов, после чего по стоякам и конвективным пакетам движется сверху вниз и поступает в выходную камеру 0 720X12 мм.

Для очистки конвективных поверхностей нагрева от отложений при работе на мазуте предусмотрена дробеочистка. Воздух в котел КВ-ГМ-180 подает один вентилятор. Предварительный подогрев воздуха до положительных температур осуществляется в водяных калориферах. Предусмотрена установка одного дымососа, а также одного дымососа рециркуляции, который забирает газы перед последним конвективным пакетом и подает их в воздухопровод перед дутьевым вентилятором.

Номинальный расход сетевой воды через котел при пиковом режиме 4420 т/ч. Барнаульский котельный завод выпускает также пылеугольные водогрейные котлы типа КВ-ТК-ЮО. Котел имеет П-образную компоновку. Топка с сухим шлакоудалением.

Тепловая нагрузка в отопительный период изменяется в соответствии с температурным графиком теплоснабжения и имеет минимальную мощность при включении отопления и максимальную мощность для расчётных температур. Тепловая станция должна покрывать всю тепловую нагрузку во всем диапазоне изменения температур и для повышения коэффициента использования топлива часть тепловой нагрузки покрывается теплофикационными отборами турбин (комбинированная выработка тепла и электричества). Поскольку максимальная нагрузка встречается редко использование теплофикационных отборов турбин не оправдано и не экономично во всем диапазоне изменения нагрузок. Дефицит тепловой мощности в максимум теплопотребления покрывается отопительными котельными. Отношение тепловой мощности теплофикационных отборов паровых турбин к суммарной тепловой мощности теплофикационных отборов турбин и отопительных котельных называется — коэффициентом теплофикации.

Оптимальный коэф.теплофикации α зависит в основном от технического совершенства оборудования ТЭЦ, КЭС и котельных, удельных капиталовложений в их сооружение, вида и стоимости сжигаемого топлива. Как показывают проведённые исследования при работе КЭС, ТЭЦ И котельных на органическом топливе примерно одинаковой стоимости оптимальное значение коэф.теплофикации лежит в пределах от 0,35 — до 0,7.

Для ориентировочного определения коэффициента теплофикации может быть использован метод, предложенный Самановым. Идея метода заключается в том, что при оптимальном коэффициенте теплофикации производная прироста удельной экономии годовых расчётных затрат по приросту электрической мощности ТЭЦ равна 0.

Причины тепловых потерь

Причины тепловых потерь

В холодный период года в результате разницы внутренней и наружной температур происходит передача теплоты из здания в окружающую среду. Передача теплоты осуществляется, с одной стороны, теплопередачей строительных конструкций, с другой стороны — за счет проникания воздуха через швы, стыки, неплотности окон, дверей и строительных конструкций. Эта теплота является потерянной (теплопотери).

Теплопотери здания зависят от:

  • его геометрических размеров;
  • теплотехнических свойств строительных конструкций;
  • температуры внутреннего и наружного воздуха;
  • воздухопроницаемости швов, длины открывающихся частей окон и дверей.

    Коэффициент теплопередачи строительных конструкций зависит от коэффициента теплообмена поверхности ограждения, который является функцией разницы температуры воздуха и внутренней поверхности строительных конструкций или скорости движения внутреннего воздуха. Анализ показывает, что на теплопотери влияют все величины, характеризующие тепловой режим здания. Помимо температуры наружного воздуха, фактором, способствующим теплопотерям, является также скорость ветра и влажность наружного и внутреннего воздуха. На теплопотери влияет также солнечное излучение и другие метеорологические факторы.

    На температуру внутренней поверхности конструкции помимо коэффициента теплопередачи влияют и следующие теплотехнические характеристики:

  • затухание амплитуды колебания температуры;
  • тепловая активность пола;
  • тепловая устойчивость помещений;
  • воздухопроницаемость ограждающих строительных конструкций;
  • конденсация водяных паров в ограждающих строительных конструкциях.

    Все эти теплотехнические характеристики необходимо анализировать при проектировании строительных конструкций и зданий. На расход энергии для отопления влияют также:

  • интенсивность работы тепловых источников;
  • теплопотери разводок;
  • эффективность регулирования энергии, подведенной к зданию и помещениям.

    В настоящее время ведутся интенсивные работы по решению проблем, связанных с использованием нетрадиционных источников энергии. В качестве нетрадиционных источников энергии для отопления зданий используются солнечная энергия и вторичная теплота (теплота, образующаяся от использования теплой бытовой воды и от вентиляционного оборудования зданий).

    В значительной степени теплопотери и теплопотребность на отопление зависят от людей, проживающих в зданиях. Их отношение к этой проблеме может сделать совершенно бесполезными предпринимаемые усилия по экономии энергии или, наоборот, значительно способствовать рациональному потреблению топлива и энергии на отопление зданий.

    Таким образом, тепловой режим и теплопотребность в отоплении зданий зависят от следующих факторов:

  • теплового режима здания;
  • теплового состояния климата;
  • геометрического и диспозиционного решения здания;
  • теплотехнических свойств строительных конструкций;
  • эксплуатации системы отопления;
  • эффективности работы теплотехнического оборудования;
  • использования нетрадиционных источников энергии;
  • отношения пользователей зданий.

    Расчет теплопотерь: показатели и калькулятор теплопотерь здания

    Расчет теплопотерь дома — основа отопительной системы. Он нужен, как минимум, чтобы правильно подобрать котёл. Также можно прикинуть, сколько денег будет уходить на отопление в планируемом доме, провести анализ финансовой эффективности утепления т.е. понять окупятся ли затраты на монтаж утепления экономией топлива за срок службы утеплителя. Очень часто подбирая мощность отопительной системы помещения, люди руководствуются средним значением в 100 Вт на 1 м 2 площади при стандартной высоте потолков до трех метров. Однако, не всегда эта мощность достаточна для полного восполнения теплопотерь. Здания различаются по составу строительных материалов, их объему, нахождению в разных климатических зонах и т.д. Для грамотного расчета теплоизоляции и подбора мощности отопительных систем необходимо знать о реальных теплопотерях дома. Как их рассчитать — расскажем в этой статье.

    Основные параметры для расчета теплопотерь

    Теплопотери любого помещения зависят от трех базовых параметров:

    • объем помещения – нас интересует объем воздуха, который необходимо отопить
    • разницу температуры внутри и снаружи помещения – чем больше разница тем быстрее происходит теплообмен и воздух теряет тепло
    • теплопроводность ограждающих конструкций – способность стен, окон удерживать тепло

    Самый простой рассчет теплопотерь

    Qт (кВт/час)=(100 Вт/м2 x S (м2) x K1 x K2 x K3 x K4 x K5 x K6 x K7)/1000

    Данная формула расчета теплопотерь по укрупненным показателям, в основе которых лежат усредненные условия 100 Вт на 1кв метр. Где основными рассчетными показателями для расчета системы отопления являются следующие величины:

    — тепловая мощность предполагаемого отопителя на отработанном масле, кВт/час.

    100 Вт/м2 — удельная величина тепловых потерь (65-80 ватт/м2). В нее входят утечки тепловой энергии путем ее поглощения оконами, стенами, потолком полом; утечки через вентиляцию и негерметичности помещения и другие утечки.

    S — площадь помещения;

    K1 — коэффициент теплопотерь окон:

    • обычное остекление К1=1,27
    • двойной стеклопакет К1=1,0
    • тройной стеклопакет К1=0,85;

    К2 — коэффициент теплопотерь стен:

    • плохая теплоизоляция К2=1,27
    • стена в 2 кирпича или утеплитель 150 мм толщиной К2=1,0
    • хорошая теплоизоляция К2=0,854

    К3 коэффициент соотношения площадей окон и пола:

    • 10% К3=0,8
    • 20% К3=0,9
    • 30% К3=1,0
    • 40% К3=1,1
    • 50% К3=1,2;

    K4 — коэффициент наружной температуры:

    • -10oC K4=0,7
    • -15oC K4=0,9
    • -20oC K4=1,1
    • -25oC K4=1,3
    • -35oC K4=1,5;

    K5 — число стен, выходящих наружу:

    • одна — К5=1,1
    • две К5=1,2
    • три К5=1,3
    • четыре К5=1,4;

    К6 — тип помещения, которое находится над расчитываемым:

    • холодный чердак К6=1,0
    • теплый чердак К6=0,9
    • отапливаемое помещение К6-0,8;

    K7 — высота помещения:

    • 2,5 м К7=1,0
    • 3,0 м К7=1,05
    • 3,5 м К7=1,1
    • 4,0 м К7=1,15
    • 4,5 м К7=1,2.

    Упрощенный рассчет теплопотерь дома

    Qт = ( V x ∆t x k )/860; ( кВт )

    V — объем помещения ( куб.м )
    ∆t — дельта температур (уличной и в помещении)
    k — коэффициент рассеивания

    • k= 3,0-4,0 – без теплоизоляции. (Упрощенная деревянная конструкция или конструкция из гофрированного металлического листа).
    • k= 2,0-2,9 – небольшая теплоизоляция. (Упрощенная конструкция здания, одинарная кирпичная кладка, упрощенная конструкция окон и крыши).
    • k= 1,0-1,9 – средняя теплоизоляция. (Стандартная конструкция, двойная кирпичная кладка, небольшое число окон, крыша со стандартной кровлей).
    • k= 0,6-0,9 – высокая теплоизоляция. (Улучшенная конструкция, кирпичные стены с двойной теплоизоляцией, небольшое количество окон со сдвоенными рамами, толстое основание пола, крыша из высококачественного теплоизоляционного материала).

    В данной формуле очень условно учитываются коэффициент рассеивания и не совсем понятно каким коэффициентами пользоваться. В классике редкое современное, выполненное из современных материалов с учетом действующих стандартов, помещение обладает ограждающими конструкциями с коэффициентом рассеивания более одного. Для более детального понимания методики расчёта предлагаем следующие более точные методики.

    Рекомендуемый рассчет теплопотерь дома

    Сразу же акцентирую ваше внимание на то, что ограждающие конструкции в основном не являются однородными по структуре, а обычно состоят из нескольких слоёв. Пример: стена из ракушника = штукатурка + ракушник + наружная отделка. В эту конструкцию могут входить и замкнутые воздушные прослойки (пример: полости внутри кирпичей или блоков). Вышеперечисленные материалы имеют отличающиеся друг от друга теплотехнические характеристики. Основной такой характеристикой для слоя конструкции является его сопротивление теплопередачи R.

    q – это количество тепла, которое теряет квадратный метр ограждающей поверхности (измеряется обычно в Вт/м.кв.)

    ΔT — разница между температурой внутри рассчитываемого помещения и наружной температурой воздуха (температура наиболее холодной пятидневки °C для климатического района в котором находится рассчитываемое здание).

    В основном внутренняя температура в помещениях принимается:

    • Жилые помещения 22С
    • Нежилые 18С
    • Зоны водных процедур 33С

    Когда речь идёт о многослойной конструкции, то сопротивления слоёв конструкции складываются. Отдельно хочу акцентировать ваше внимание на расчётном коэффициенте теплопроводности материала слоя λ Вт/(м°С). Так как производители материалов чаще всего указывают его. Имея расчётный коэффициент теплопроводности материала слоя конструкции мы легко можем получить сопротивление теплопередачи слоя:

    δ — толщина слоя, м;

    λ — расчётный коэффициент теплопроводности материала слоя конструкции, с учетом условий эксплуатации ограждающих конструкций, Вт / (м2 оС).

    Итак для расчёта тепловых потерь через ограждающие конструкции нам нужны:

    1. Сопротивление теплопередачи конструкций (если конструкция многослойная то Σ R слоёв) R
    2. Разница между температурой в расчётном помещении и на улице (температура наиболее холодной пятидневки °C. ). ΔT
    3. Площади ограждений F (Отдельно стены, окна, двери, потолок, пол)
    4. Ориентация здания по отношению к сторонам света.

    Формула для расчёта теплопотерь ограждением выглядит так:

    Qогр=(ΔT / Rогр)* Fогр * n *(1+∑b)

    Qогр — тепло потери через ограждающие конструкции, Вт
    Rогр – сопротивление теплопередаче, м.кв.°C/Вт; (Если несколько слоёв то ∑ Rогр слоёв)
    Fогр – площадь ограждающей конструкции, м;
    n – коэффициент соприкосновения ограждающей конструкции с наружным воздухом.

    Тип ограждающей конструкции

    Коэффициент n

    1. Наружные стены и покрытия (в том числе вентилируемые наружным воздухом), перекрытия чердачные (с кровлей из штучных материалов) и над проездами; перекрытия над холодными (без ограждающих стенок) подпольями в Северной строительно-климатической зоне

    2. Перекрытия над холодными подвалами, сообщающимися с наружным воздухом; перекрытия чердачные (с кровлей из рулонных материалов); перекрытия над холодными (с ограждающими стенками) подпольями и холодными этажами в Северной строительно-климатической зоне

    3. Перекрытия над не отапливаемыми подвалами со световыми проемами в стенах

    4. Перекрытия над не отапливаемыми подвалами без световых проемов в стенах, расположенные выше уровня земли

    5. Перекрытия над не отапливаемыми техническими подпольями, расположенными ниже уровня земли

    (1+∑b) – добавочные потери теплоты в долях от основных потерь. Добавочные потери теплоты b через ограждающие конструкции следует принимать в долях от основных потерь:

    а) в помещениях любого назначения через наружные вертикальные и наклонные (вертикальная проекция) стены, двери и окна, обращенные на север, восток, северо-восток и северо-запад — в размере 0,1, на юго-восток и запад — в размере 0,05; в угловых помещениях дополнительно — по 0,05 на каждую стену, дверь и окно, если одно из ограждений обращено на север, восток, северо-восток и северо-запад и 0,1 — в других случаях;

    б) в помещениях, разрабатываемых для типового проектирования, через стены, двери и окна, обращенные на любую из сторон света, в размере 0,08 при одной наружной стене и 0,13 для угловых помещений (кроме жилых), а во всех жилых помещениях — 0,13;

    в) через не обогреваемые полы первого этажа над холодными подпольями зданий в местностях с расчетной температурой наружного воздуха минус 40 °С и ниже (параметры Б) — в размере 0,05,

    г) через наружные двери, не оборудованные воздушными или воздушно-тепловыми завесами, при высоте зданий Н, м, от средней планировочной отметки земли до верха карниза, центра вытяжных отверстий фонаря или устья шахты в размере: 0,2 Н — для тройных дверей с двумя тамбурами между ними; 0,27 H — для двойных дверей с тамбурами между ними; 0,34 H — для двойных дверей без тамбура; 0,22 H — для одинарных дверей;

    д) через наружные ворота, не оборудованные воздушными и воздушно-тепловыми завесами, — в размере 3 при отсутствии тамбура и в размере 1 — при наличии тамбура у ворот.

    Для летних и запасных наружных дверей и ворот добавочные потери теплоты по подпунктам “г” и “д” не следует учитывать.

    Отдельно возьмём такой элемент как пол на грунте или на лагах. Здесь есть особенности. Пол или стена, не содержащие в своем составе утепляющих слоев из материалов с коэффициентом теплопроводности λ меньше либо равно 1,2 Вт/(м °С), называются не утепленными. Сопротивление теплопередаче такого пола принято обозначать Rн.п, (м2 оС) / Вт. Для каждой зоны не утепленного пола предусмотрены нормативные значения сопротивления теплопередаче:

    • зона I — RI = 2,1 (м2 оС) / Вт;
    • зона II — RII = 4,3 (м2 оС) / Вт;
    • зона III — RIII = 8,6 (м2 оС) / Вт;
    • зона IV — RIV = 14,2 (м2 оС) / Вт;

    Первые три зоны представляют собой полосы, расположенные параллельно периметру наружных стен. Остальную площадь относят к четвертой зоне. Ширина каждой зоны равна 2 м. Начало первой зоны находится в месте примыкания пола к наружной стене. Если неутеплёный пол примыкает к стене заглублённой в грунт то начало переносится к к верхней границе заглубления стены. Если в конструкции пола, расположенного на грунте, имеются утепляющие слои, его называют утепленным, а его сопротивление теплопередаче Rу.п, (м2 оС) / Вт, определяется по формуле:

    Rу.п. = Rн.п. + Σ (γу.с. / λу.с)

    Rн.п — сопротивление теплопередаче рассматриваемой зоны неутепленного пола, (м2 оС) / Вт;
    γу.с — толщина утепляющего слоя, м;
    λу.с — коэффициент теплопроводности материала утепляющего слоя, Вт/(м·°С).

    Для пола на лагах сопротивление теплопередаче Rл, (м2 оС) / Вт, рассчитывается по формуле:

    Теплопотери каждой ограждающей конструкции считаются отдельно. Величина теплопотерь через ограждающие конструкции всего помещения будет сумма теплопотерь через каждую ограждающую конструкцию помещения. Важно не напутать в измерениях. Если вместо (Вт) появится (кВт) или вообще (ккал) получите неверный результат. Ещё можно по невнимательности указать Кельвины (K) вместо градусов Цельсия (°C).

    Продвинутый рассчет теплопотерь дома

    Отопление в гражданских и жилых зданиях теплопотери помещений состоят из теплопотерь через различные ограждающие конструкции, такие как окна, стены, перекрытия, полы а также теплорасходов на нагревание воздуха, который инфильтрируется сквозь неплотности в защитных сооружениях (ограждающих конструкциях) даного помещения. В промышленных зданиях существуют и другие виды теплопотерь. Расчет теплопотерь помещения производится для всех ограждающих конструкций всех отапливаемых помещений. Могут не учитываться теплопотери через внутренние конструкции, при разности температуры в них с температурой соседних помещений до 3С. Теплопотери через ограждающие конструкции расчитываются по следующей формуле, Вт:

    Qогр = F ( tвн – tнБ) (1 + Σ β ) n / Rо

    tнБ – темп-ра наружного воздуха, оС;
    tвн – темп-ра в помещении, оС;
    F – площадь защитного сооружения, м2;
    n – коэффициент, который учитывает положение ограждения или защитного сооружения (его наружной поверхности) относительно наружного воздуха;
    β – теплопотери добавочные, доли от основных;
    – сопротивление теплопередаче, м2·оС / Вт, которое определяется по следующей формуле:

    Rо = 1/ αв + Σ ( δі / λі ) + 1/ αн + Rв.п., где

    αв – коэффициент тепловосприятия ограждения (его внутренней поверхности), Вт/ м2· о С;
    λі и δі – расчетный коэффициент теплопроводности для материала данного слоя конструкции и толщина этого слоя;
    αн – коэффициент теплоотдачи ограждения (его наружной поверхности), Вт/ м2· о С;
    Rв.n – в случае наличия в конструкции замкнутой воздушной прослойки, ее термосопротивление, м2· о С / Вт (см. табл.2).
    Коэф-ты αн и αв принимаются согласно СНиП а для некоторых случаев приведены в таблице 1;
    δі – обычно назначается согласно заданию или определяется по чертежах ограждающих конструкций;
    λі – принимается по справочникам.

    Таблица 1. Коэффициенты тепловосприятия αв и теплоотдачи αн

    Поверхность ограждающей конструкции

    αв , Вт/ м2· о С

    αн , Вт/ м2· о С

    Поверхность внутренняя полов, стен, гладких потолков

    голоса
    Рейтинг статьи
    Читайте так же:
    Удельное тепловое сопротивление медного провода
  • Ссылка на основную публикацию
    Adblock
    detector