Sfera-perm.ru

Сфера Пермь
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Тепловой ток кремниевого диода

Выпрямительные диоды

Диод – двухэлектродный полупроводниковый прибор с одним p–n-переходом, обладающий односторонней проводимостью тока. Существует много различных типов диодов – выпрямительные, импульсные, туннельные, обращенные, сверхвысокочастотные диоды, а также стабилитроны, варикапы, фотодиоды, светодиоды и др.

Работа выпрямительного диода объясняется свойствами электрического p–n-перехода.

Вблизи границы двух полупроводников образуется слой, лишенный подвижных носителей заряда (из-за рекомбинации) и обладающий высоким электрическим сопротивлением, – так называемый запирающий слой. Этот слой определяет контактную разность потенциалов (потенциальный барьер).

Если к p–n-переходу приложить внешнее напряжение, создающее электрическое поле в направлении, противоположном полю электрического слоя, то толщина этого слоя уменьшится и при напряжении 0,4 — 0,6 В запирающий слой исчезнет, а ток существенно возрастет (этот ток называют прямым).

При подключении внешнего напряжения другой полярности запирающий слой увеличится и сопротивление p–n-перехода возрастет, а ток, обусловленный движением неосновных носителей заряда, будет незначительным даже при сравнительно больших напряжениях.

Прямой ток диода создается основными, а обратный – неосновными носителями заряда. Положительный (прямой) ток диод пропускает в направлении от анода к катоду.

На рис. 1 показаны условное графическое обозначение (УГО) и характеристики выпрямительных диодов (их идеальная и реальная вольт-амперная характеристики). Видимый излом вольт-амперной характеристики диода (ВАХ) в начале координат связан с различными масштабами токов и напряжений в первом и третьем квадранте графика. Два вывода диода: анод А и катод К в УГО не обозначаются и на рисунке показаны для пояснения.

На вольт-амперная характеристика реального диода обозначена область электрического пробоя, когда при небольшом увеличении обратного напряжения ток резко возрастает.

Электрический пробой является обратимым явлением. При возвращении в рабочую область диод не теряет своих свойств. Если обратный ток превысит определенное значение, то электрический пробой перейдет в необратимый тепловой с выходом прибора из строя.

Рис. 1. Полупроводниковый выпрямительный диод: а – условное графическое изображение, б – идеальная вольт-амперная характеристика, в – реальная вольт-амперная характеристика

Промышленностью в основном выпускаются германиевые (Ge) и кремниевые (Si) диоды.

Кремниевые диоды обладают малыми обратными токами, более высокой рабочей температурой (150 — 200 °С против 80 — 100 °С), выдерживают большие обратные напряжения и плотности тока (60 — 80 А/см2 против 20 — 40 А/см2). Кроме того, кремний – широко распространенный элемент (в отличие от германиевых диодов, который относится к редкоземельным элементам).

К преимуществам германиевых диодов можно отнести малое падение напряжения при протекании прямого тока (0,3 — 0,6 В против 0,8 — 1,2 В). Кроме названных полупроводниковых материалов, в сверхвысокочастотных цепях используют арсенид галлия GaAs.

Полупроводниковые диоды по технологии изготовления делятся на два класса: точечные и плоскостные.

Точечный диод образуют Si- или Ge-пластина n-типа площадью 0,5 — 1,5 мм2 и стальная игла, образующая p–n-переход в месте контакта. В результате малой площади переход имеет малую емкость, следовательно, такой диод способен работать в высокочастотных цепях. Но ток через переход не может быть большим (обычно не более 100 мА).

Плоскостной диод состоит из двух соединенных Si- или Ge-пластин с разной электропроводностью. Большая площадь контакта ведет к большой емкости перехода и относительно низкой рабочей частоте, но проходящий ток может быть большим (до 6000 А).

Основными параметрами выпрямительных диодов являются:

  • максимально допустимый прямой ток Iпр.max,
  • максимально допустимое обратное напряжение Uобр.max,
  • максимально допустимая частота fmax.

По первому параметру выпрямительные диоды делят на диоды:

  • малой мощности, прямой ток до 300 мА,
  • средней мощности, прямой ток 300 мА — 10 А,
  • большой мощности – силовые, максимальный прямой ток определяется классом и составляет 10, 16, 25, 40 — 1600 А.

Импульсные диоды применяются в маломощных схемах с импульсным характером подводимого напряжения. Отличительное требование к ним – малое время перехода из закрытого состояния в открытое и обратно (типичное время 0,1 — 100 мкс). УГО импульсных диодов такое же, как у выпрямительных диодов.

Рис.2. Переходные процессы в импульсных диодах: а – зависимость тока при переключении напряжения с прямого на обратное, б – зависимость напряжения при прохождении через диод импульса прямого тока

К специфическим параметрам импульсных диодов относятся:

  • время восстановления Tвосст
  • это интервал времени между моментом переключения напряжения на диоде с прямого на обратное и моментом, когда обратный ток уменьшится до заданного значения (рис 2,а),
  • время установления Tуст – это интервал времени между началом протекания через диод прямого тока заданной величины и моментом, когда напряжение на диоде достигнет 1,2 установившегося значения (рис 2,б),
  • максимальный ток восстановления Iобр.имп.макс., равный наибольшему значению обратного тока через диод после переключения напряжения с прямого на обратное (рис 2,а).
Читайте так же:
Приведите пример использования тепловых действий тока ответ

Обращенные диоды получают при концентрации примесей в p- и n-областях большей, чем у обычных выпрямительных диодов. Такой диод оказывает малое сопротивление проходящему току при обратном включении (рис.3) и сравнительно большое сопротивление при прямом включении. Поэтому их применяют при выпрямлении малых сигналов с амплитудой напряжения в несколько десятых вольта.

Рис. 3. УГО и ВАХ обращенных диодов

Диоды Шоттки получают, используя переход металл-полупроводник. При этом применяют подложки из низкоомного n-кремния (или карбида кремния) с высокоомным тонким эпитаксиальным слоем того же полупроводника (рис.4).

На поверхность эпитаксиального слоя наносят металлический электрод, обеспечивающий выпрямление, но не инжектирующий неосновные носители в базовую область (чаще всего золото). Благодаря этому в этих диодах нет таких медленных процессов, как накопление и рассасывание неосновных носителей в базе. Поэтому инерционность диодов Шоттки не высока. Она определяется величиной барьерной емкости выпрямляющего контакта (1 — 20 пФ).

Кроме этого, у диодов Шоттки оказывается значительно меньшее, чем у выпрямительных диодов последовательное сопротивление, так как металлический слой имеет малое сопротивление по сравнению с любым даже сильно легированным полупроводником. Это позволяет использовать диоды Шоттки для выпрямления значительных токов (десятки ампер). Обычно их применяют в импульсных вторичных источниках питания для выпрямления высокочастотных напряжений (частотой до нескольких МГц).

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Полупроводниковые диоды

Полупроводниковый диод — элемент электрической цепи, имеющий два вывода и обладающий односторонней электропроводностью [1,2,3,4,5]. Все полупроводниковые диоды можно разделить на две группы: выпрямительные и специальные. Выпрямительные диоды, как следует из самого названия, предназначены для выпрямления переменного тока. В зависимости от частоты и формы переменного напряжения они делятся на высокочастотные, низкочастотные и импульсные. Специальные типы полупроводниковых диодов используют различные свойства p-n переходов: явление пробоя, барьерную емкость, наличие участков с отрицательным сопротивлением и др.

Конструктивно выпрямительные диоды делятся на плоскостные и точечные, а по технологии изготовления на сплавные, диффузионные и эпитаксиальные. Плоскостные диоды благодаря большой площади p-n-перехода используются для выпрямления больших токов. Точечные диоды имеют малую площадь перехода и, соответственно, предназначены для выпрямления малых токов. Для увеличения напряжения лавинного пробоя используются выпрямительные столбы, состоящие из ряда последовательно включенных диодов.

Выпрямительные диоды большой мощности называют силовыми. Материалом для таких диодов обычно служит кремний или арсенид галлия. Германий практически не применяется из-за сильной температурной зависимости обратного тока. Кремниевые сплавные диоды используются для выпрямления переменного тока с частотой до 5 кГц. Кремниевые диффузионные диоды могут работать на повышенной частоте до 100 кГц. Кремниевые эпитаксиальные диоды с металлической подложкой (с барьером Шотки) могут использоваться на частотах до 500 кГц. Арсенид-галлиевые диоды способны работать в диапазоне частот до нескольких МГц.

Работа диодов основана на использовании электронно-дырочного перехода – тонкого слоя материала между двумя областями разного типа электропроводности — n и p. Основное свойство этого перехода – несимметричная электропроводность, при которой кристалл пропускает ток в одном направлении и не пропускает в другом. Устройство электронно-дырочного перехода показано на рис.1.1,а. Одна часть его легирована донорной примесью и имеет электронную проводимость (n-область); другая, легированная акцепторной примесью, имеет дырочную проводимость (p-область). Концентрации носителей в областях резко отличаются. Кроме того, в обеих частях имеется небольшая концентрация неосновных носителей.

Рис.1.1. p-n переход:

а – устройство, б – объёмные заряды

Электроны в n-области стремятся проникнуть в p-область, где концентрация электронов значительно ниже. Аналогично, дырки из p-области перемещаются в n-область. В результате встречного движения противоположных зарядов возникает так называемый диффузионный ток. Электроны и дырки, перейдя через границу раздела, оставляют после себя противоположные заряды, которые препятствуют дальнейшему прохождению диффузионного тока. В результате на границе устанавливается динамическое равновесие, и при замыкании p— и n-областей ток в цепи не протекает. Распределение плотности объёмного заряда в переходе приведено на рис.1.1,б. При этом внутри кристалла на границе раздела возникает собственное электрическое поле Есоб., направление которого показано на рис.1.1,а. Напряжённость его максимальна на границе раздела, где происходит скачкообразное изменение знака объёмного заряда. А далее полупроводник – нейтрален.

Читайте так же:
Выключатель тепловой завесы ballu

Высота потенциального барьера на p-n переходе определяется контактной разностью потенциалов n— и p-областей, которая, в свою очередь, зависит от концентрации примесей в них:

, (1.1)

где — тепловой потенциал, Nn и Pp – концентрации электронов и дырок в n— и p-областях, ni – концентрация носителей зарядов в нелигированном полупроводнике.

Контактная разность потенциалов для германия имеет значение 0,6…0,7В, а для кремния – 0,9…1,2В. Высоту потенциального барьера можно изменять приложением внешнего напряжения к p-n переходу. Если поле внешнего напряжения совпадает с внутренним, то высота потенциального барьера увеличивается; при обратной полярности приложенного напряжения высота барьера уменьшается. Если приложенное напряжение равно контактной разности потенциалов, то потенциальный барьер исчезает полностью.

Отсюда, если внешнее напряжение снижает потенциальный барьер, оно называется прямым, а если повышает его – обратным.

Условное обозначение и вольтамперная характеристика (ВАХ) идеального диода представлены на рис.1.2.

Тот вывод, на который нужно подать положительный потенциал, называется анодом, вывод с отрицательным потенциалом называется катодом (рис.1.2,а). Идеальный диод в проводящем направлении имеет нулевое сопротивление. В непроводящем направлении — бесконечно большое сопротивление (рис.1.2,б).

Рис.1.2.Условное обозначение (а) и ВАХ

характеристика идеального диода (б)

В полупроводниках р-типа основны­ми носителями являются дырки. Дыроч­ная электропроводность создана путем внесения атомов акцепторной примеси. Их валентность на единицу меньше, чем у атомов полупроводника. При этом атомы примеси захватывают электроны полупроводника и создают дырки — подвижные носители заряда.

В полупроводниках n-типа основными носителями являются электроны. Электронная электропроводность создается путем внесения атомов донорной примеси. Их валентность на единицу больше, чем у атомов полупроводника. Образуя ковалентные связи с атомами полупроводника, атомы примеси не используют 1 электрон, который становится свободным. Сами атомы становятся неподвижными положительными ионами.

Если к внешним выводам диода подключить источник напряжения в прямом направлении, то этот источник напряжения создаст в р-n переходе электрическое поле, направленное навстречу внутреннему. Результирующее поле будет уменьшаться. При этом пойдет процесс диффузии. В цепи диода потечет прямой ток. Чем больше величина внешнего напряжения, тем меньше величина внутреннего поля, тем уже запирающий слой, тем больше величина прямого тока. С ростом внешнего напряжения прямой ток возрастает по экспоненциальному закону (рис.1.3). При достижении некоторой величины внешнего напряжения ширина запирающего слоя снизится до нуля. Прямой ток будет ограничен только объемным сопротивлением и будет возрастать линейно при увеличении напряжения.

Рис.1.3. ВАХ реального диода

При этом падение напряжения на диоде — прямое падение напряжения. Его величина невелика и зависит от материала:

германий Ge: Uпр = (0,3 — 0,4) В;

кремний Si: Uпр =(0,6 — 1) В.

Если поменять полярность внешнего напряжения, то электрическое поле этого источника будет совпадать с внутренним. Результирующее поле увеличится, ширина запирающего слоя увеличится, и ток в идеальном случае в обратном направлении протекать не будет; но так как полупроводники не идеальные и в них кроме основных подвижных носителей есть незначительное количество неосновных, то, как следствие, возникает обратный ток. Его величина зависит от концентрации неосновных носителей и обычно составляет единицы -десятки микроампер.

Концентрация неосновных носителей меньше концентрации основных, поэтому обратный ток мал. Величина этого тока не зависит от величины обратного напряжения. У кремния обратный ток на несколько порядков меньше, чем у германия, но у кремниевых диодов выше прямое падение напряжения. Концентрация неосновных носителей зависит от температуры и при ее увеличении растет обратный ток, поэтому его называют тепловой ток Io:

Есть приблизительная формула

где Т * — приращение температуры, которому соответствует удвоение теплового тока,

Т * Ge=8. 10 o C; T * Si=6 o C.

Аналитическое выражение для ВАХ р-п перехода имеет вид:

, (1.2)

где U— приложенное внешнее напряжение.

Для температуры 20 о С φт=0.025В.

С увеличением температуры за счет роста теплового тока и снижения потенциального барьера, уменьшения сопротивления полупроводниковых слоев происходит смещение прямой ветви ВАХ в области больших токов. Уменьшается объемное сопротивление полупроводников n и р. В результате прямое падение напряжения будет меньше. С ростом температуры за счет уменьшения разницы между концентрацией основных и неосновных носителей уменьшается потенциальный барьер запирающего слоя, что приведет также к уменьшению Uпр, т. к. запирающий слой исчезнет при меньшем напряжении.

Читайте так же:
Работа мощность количество теплоты электрического тока формула

Одному и тому же току будут соответствовать разные прямые напряжения (рис.1.4), образуя разность DU,

где e-температурный коэффициент напряжения.

Если ток через диод постоянен, то уменьшится падение напряжения на диоде. При увеличении температуры на один градус прямое падение напряжения уменьшается на 2 мВ.

Рис. 1.4. ВАХ р-п перехода при Рис. 1.5. ВАХ германиевого и

различных температурах кремниевого диодов

С ростом температуры обратная ветвь вольтамперной характеристики смещается вниз (рис.1.4). Рабочий диапазон температуры для германиевых диодов 80 о С, для кремниевых диодов 150 о С.

ВАХ германиевых и кремниевых диодов приведены на рис.1.5.

Дифференциальное сопротивление р-п перехода (рис.1.6):

(1.3)

С ростом величины тока rд — уменьшается.

Сопротивление постоянному току р-п перехода: .

Сопротивление постоянному току характеризуется коэффициентом угла наклона прямой, проведенной из начала координат в данную точку. Сопротивление это также зависит от величины тока: с ростом I сопротивление падает. RGe 0, U=Um.

Данная полярность является прямой для диода. Ток и напряжение всегда будут удовлетворять ВАХ:

,

при прямом включении Um>>Uпр (рис. 1.10).

При практическом применении Uпр>0 (Uпр— прямое напряжение), когда диод открыт. При работе диода в прямом направлении напряжение на нем минимальное — (Ge-0,4 B; Si-0,7 B), и его можно считать приблизительно равным нулю. Ток при этом будет максимальным.


Рис.1.11. Сигналы напряжений и тока в цепи диода с нагрузкой

.

Отрицательная полуволна U о …200 о С), чем для германиевых (75 о …90 о С).

При этом пробое р-п переход разрушается.

Контрольные вопросы.

1. Что такое полупроводниковый диод? Вольтамперная характеристика идеального и реального диода?

2. Какие материалы используются для изготовления полупроводниковых диодов? Как создавать в полупроводниковой подложке области того или иного типа проводимости?

3. Что такое собственное электрическое поле в кристалле на границе p-n-перехода? Как оно видоизменяется при подаче внешнего напряжения?

4. Чем объясняется эффект односторонней проводимости p-n-перехода в полупроводнике?

5. Вольтамперные характеристики p-n-переходов для германиевых и кремниевых диодов при изменении внешней температуры?

6. Как определяется дифференциальное сопротивление диода?

7. Как строятся вольтамперные характеристики диода с нагрузочной прямой?

8. Объясните механизм формирования барьерной и диффузионной ёмкостей диода? Как они сказываются при работе диода в цепях переменного тока?

Лекция 2.Специальные типы

Дата добавления: 2016-06-29 ; просмотров: 3793 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Какая мощность рассеивается на полупроводнике в виде тепла?

Диод, светодиод, транзистор, микросхема: Вычисление значений рассеиваемой
тепловой мощности с последующим расчётом площади радиатора.

Простая, казалось бы, задача, связанная с расчётом мощности, выделяемой полупроводником в виде тепла, для некоторых на поверку может оказаться и не так уж и очевидной, как это виделось с первого взгляда.
Конечно, мозг опытного и высокоразвитого радиолюбителя возмутится подобной постановке вопроса, ибо совершит подобное незамысловатое действие до того, как его владелец доберётся до середины статьи. Однако, базируясь на немалом количестве писем в мой адрес по данной тематике, а также, для того, чтобы тупо избежать ряда неясностей и ошибок при оценке выделяемого тепла — всё ж таки подниму данную тему и продолжу:

1. Тепловая мощность, выделяемая (рассеиваемая) на диоде.

Тут всё просто как ситцевые трусы! В соответствии с основными законами электротехники тепловая мощность, выделяемая полупроводником, равна Pt = Uд × Iд , где Uд — напряжение на выводах диода, возникающее при прохождении через него прямого рабочего тока, а Iд — это сам рабочий ток диода.
Принято считать, что величина падения напряжения на диоде составляет 0,6…0,8 В для кремниевых диодов и 0,3…0,4 В — для германиевых и диодов Шоттки. Однако, если внимательно посмотреть справочные характеристики выпрямительных диодов (а, как правило, именно они работают при существенных токах), то окажется, что при токах, близких к максимальным, падение напряжения на кремниевых диодах составляет 1…1,1 В, а на диодах Шоттки — 0,5. 0,6 В. Значения падений напряжений на светодиодах имеют довольно большой разброс (в зависимости от цвета) и составляют величины 1,5. 3 В. Именно эти значения и следует подставлять в формулу для расчёта выделяемой диодами тепловой мощности.

2. Тепловая мощность, выделяемая на выпрямительных мостах.

Тут всё рассчитывается точно так же, как и в предыдущем случае с диодами — Pt = Uпр × Iнагр , только в качестве Uпр подставляем значение падения прямого напряжения на мосте, а в качестве Iнагр — максимальный ток, протекающий через нагрузку.
Поскольку в диодных мостах используются силовые диоды с малым падением прямого напряжения, то параметр Uпр обычно составляет величину 1. 1,1 В (справочная характеристика).

Читайте так же:
Как возникает тепловой ток

3. Тепловая мощность, выделяемая на линейных стабилизаторах.

Данный тип стабилизаторов может быть выполнен как на дискретных элементах (когда основную часть тепла выделяет регулирующий транзистор), так и в виде интегральной микросхемы — в этом случае тепло рассеивается на всём корпусе элемента. Тепловая мощность, выделяемая транзистором или ИМС, равна Pt ≈ (Uвх — Uвых) × Iнагр

4. Тепловая мощность, выделяемая на импульсных (ключевых) стабилизаторах.

В импульсных стабилизаторах напряжения регулирующий элемент работает в ключевом режиме, то есть периодически открывается и закрывается, а поэтому по сравнению с линейным стабилизатором имеет значительно меньшие потери энергии на нагрев, а потому и более высокий показатель КПД. В данном случае тепловая мощность, выделяемая полупроводником, равна Pt ≈ Uоткр × Iнагр , где Uоткр — падение напряжения на полностью открытом управляющем ключевом элементе (Uкэ нас — для биполярного транзистора или Iнагр × Rоткр — для полевого).
Современные силовые полевые транзисторы за счёт очень низких величин сопротивлений сток-исток открытого канала (Rоткр) являются предпочтительными для использования в ключевых схемах. Значение Uоткр для них, как правило, не превышает величины 1В даже при очень высоких токах нагрузки.

5. Тепловая мощность, выделяемая выходными каскадами транзисторных усилителей.

Этот пункт имеет массу нюансов и вызывает максимальное количество вопросов. Связано это, прежде всего, с многообразием классов режимов работы транзисторов в выходных каскадах усилителей. Все эти режимы мы подробно рассмотрели на странице (ссылка на страницу).
Самым простым методом, позволяющим определить примерную величину тепловой мощности, выделяемой выходным каскадом, является примитивное перемножение величины максимальной выходной мощности, отдаваемой в нагрузку, и значения КПД выходного каскада.
Для этого нам, естественным образом, надо понимать в каком классе у нас работает выходной каскад. Итак, вспоминаем.
1. Класс А однотактный: КПД — около 30%,
2. Класс А двухтактный: КПД 40. 45%,
3. Класс АВ двухтактный: КПД 60. 75% (зависит от тока покоя транзисторов и выходной мощности),
4. Класс В двухтактный: КПД — около 80%,
5. Класс С двухтактный: КПД 80. 90%,
3. Класс D: КПД 90. 95%.

Ну вот, а теперь можно подставить значения в формулу для расчёта выделяемой тепловой мощности:
Pt ≈ Pвых × (100 — КПД) / КПД и далее со спокойной совестью переходить на следующую страницу для расчёта площади радиатора.

КОМПРЕССОРНАЯ СТАНЦИЯ ГПА-Ц-16 НЕИСПРАВНОСТИ ВИДЕО

Данный сайт ориентирован для сотрудников компаний, занимающихся транспортировкой газа по магистральным газопроводам, а также для тех, кто только собирается начать свою трудовую деятельность в газовой промышленности. Тематика данного ресурса нацелена на обучение, проведение технической учебы, охрану труда, что обеспечивает нашу с Вами безопасность.
Если у Вас возникли вопросы и пожелания по работе нашего ресурса, вы всегда можете направить их через форму обратной связи. Ни одно обращение не останется без внимания.

Вниманию сотрудников, работающих с агрегатами ГПА-Ц-16.

Представляем новую площадку INFOKS ОБУЧЕНИЕ для изучения устройства и принципа действия оборудования компрессорной станции с данными типами ГПА.

Площадка является веб версией уже известной интерактивной программы Infoks, работающей без установки на любом устройстве.

Сейчас уже доступны разделы по темам: Общестанционные системы, ГПА-Ц-16 (двигатель НК-16-18СТ и нагнетатель НЦ-16/76-1,44).

Доступ к платформе — пожизненный.

Последние опубликованные материалы

Биполярные транзисторы. Назначение, вид…

Транзисторы предназначены для решения задач усиления и переключения электрических сигналов. Время бурного развития транзисторов – 50 – 80 годы прошлого столетия. В настоящее время следует признать, что транзисторы как отдельные.

Светодиоды

Светодиод – полупроводник, в котором при прохождении электрического тока создается световое излучение. Другое его название – светоизлучающий диод. Современные светодиоды предназначены для решения трёх основных задач: отображения состояния электронных устройств (в т.ч.

Стабилитроны

Стабилитроны (диоды Зенера) – особая разновидность диодов, предназначенная для формирования стабилизированного напряжения питания. ВАХ, графема стабилитрона и типовые характеристики представлены на рисунке 2.8. Обратите внимание, что рабочий ток стабилитрона втекает в .

Выпрямительные диоды. Назначение, характ…

Основное назначение полупроводниковых диодов выпрямление переменного тока. Существуют диоды других назначений, о которых будем говорить позже. Итак, диоды — это буквально двухэлектродные компоненты. Электроды имеют названия: анод и катод. Типовая графема.

Читайте так же:
Тяговые генераторы постоянного тока для тепловозов
Катушки индуктивности: назначение, ха…

Катушки индуктивности (КИ; индуктивность; индуктор; катушка) используются в электронных схемах нечасто: обычное их место в схемах преобразователей питания. Так называемые, высокочастотные катушки применяют в фильтрации напряжений питания чувствительных (аналоговых) компонентов. Общее.

Конденсаторы: назначение, характеристики…

Конденсаторы, как и резисторы, наиболее распространённые компоненты в принципиальных схемах. Их основное назначение – распределённая по электрической схеме фильтрация (сглаживание) пульсаций напряжений питания, а также использование как времязадающих элементов в.

Резисторы. Назначение, виды, характер…

Происхождение названия Резистор от латинского resisto – сопротивляюсь. На схемах обозначается латинской буквой R. При прохождении электрического тока через резистор он нагревается – рассеивает электрическую энергию в виде тепла. Можно.

Устройство и работа основных блоков двиг…

Проставка двигателя ГТД ДН80Л1 Проставка (рис.59) предназначена для подвода воздуха к ГТД из станционного воздуховода и для снижения уровня шума. В нее входят следующие функциональные блоки: переходники 1, 2, 3, 12; опора 4; диафрагма 5.

Кожух двигателя ГТД ДН80Л1

Кожух двигателя (рис. 58) выполнен теплозвукоизолирующим и предназначен для защиты машинного отделения от тепловыделения нагретых частей двигателя, а также для уменьшения шума, исходящего от двигателя, и состоит из кожуха газогенератора.

Рама и опоры двигателя ГТД ДН80Л1

Рама двигателя ГТД ДН80 Рама двигателя (рис. 57) предназначена для крепления двигателя и агрегатов, обслуживающих двигатель. Рама состоит из двух частей: рамы газогенератора 1 и рамы силовой турбины 2, которые представляют.

Коробки приводов двигателя ГТД ДН80Л1

Коробки приводов двигателя предназначены для передачи вращения от электростартеров ротору КНД при запуске, холодных и технологических прокрутках и для привода агрегатов, обеспечивающих работу двигателя. На двигателе расположены нижняя и выносная коробки .

Турбина силовая (СТ) двигателя ГТД ДН80…

Назначение и устройство турбины силовой двигателя ГТД ДН80Л1 Турбина силовая (рис.40) осевого типа. Предназначена для привода во вращение вала потребителя мощности. Турбина силовая (СТ) четырехступенчатая, состоит из: сопловых аппаратов; ротора; опорного венца. Ротор силовой турбины Ротор СТ .

Последние видео

Действия персонала при возникновении пожара

Организация и проведение работ в электроустановках

Испытания магистрального газопровода

Организация и проведение огневых работ на газовых объектах ПАО «Газпром»

Производство работ кранами-трубоукладчиками на линейной части магистральных газопроводов

Производство земляных работ экскаватором, булдозером
Один из видов эффективного обучения является визуализация процессов, протекающих в технических устройствах. Предлагаем Вашему вниманию небольшой ролик работы приложения по визуализации внутренних процессов в оборудовании и устройствах компрессорной станции.
Скачать данное приложение можно в разделе программы для технической учебы
Посмотреть другие ролики из этого приложения можно в разделе обучающее видео

Облако тегов

  • Вы здесь:
  • Главная

Подписка на новости сайта позволит всегда быть в курсе новых публикаций на сайте

Предупреждение об использовании файлов cookies на сайте Info KS

В соответствии с законами ЕС, поставщики цифрового контента обязаны предоставлять пользователям своих сайтов информацию о правилах в отношении файлов cookie и других данных. Администрация сайта должна получить согласие конечных пользователей из ЕС на хранение и доступ к файлам cookie и другой информации, а также на сбор, хранение и применение данных при использовании продуктов Google.

Файл cookie – файл, состоящий из цифр и букв. Он хранится на устройстве, с которого Вы посещаете сайт Info KS. Файлы cookie необходимы для обеспечения работоспособности сайтов, увеличения скорости загрузки, получения необходимой аналитической информации.

Сайт использует следующие cookie:

Необходимые для работы сайта: навигация, скачивание файлов. Происходит отличие человека от робота.

Файлы cookie для увеличения быстродействия и сбора аналитической информации. Они помогают администрации сайта понять взаимодействие посетителей сайтом, дают информацию о страницах, которые были посещены. Эта информация помогает улучшать работу сайта.

Рекламные cookie. В эти файлы предоставляют сведения о посещении наших страниц, данные о ссылках и рекламных блоках, которые Вас заинтересовали. Цель — отражать на страницах контент, наиболее ориентированный на Вас.

Если Вы не согласны с использованием нами файлов cookie Вашего устройства, пожалуйста покиньте сайт.

Продолжением просмотра сайта Info KS Вы даёте своё согласие на использование файлов cookie.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector