Sfera-perm.ru

Сфера Пермь
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Тепловой импульс при расчете тока кз

Расчет токов короткого замыкания

Расчет токов короткого замыкания производится для выбора и проверки по электродинамической и термической стойкости электрических аппаратов и проводников, проектирования и настройки релейной защиты.

Источниками питания места короткого замыкания являются генераторы электростанций, энергосистемы и электродвигатели напряжением свыше 1000 В, если они связаны с местом короткого замыкания непосредственно, кабельными линиями, токопроводами или через линейные реакторы. Подпитывающее действие электродвигателей учитывается только в начальный момент короткого замыкания.

Для вычисления токов короткого замыкания составляют расчетную схему, соответствующую нормальному режиму, которая составляется на основе анализа схемы СЭС и представляет собой однолинейную электрическую схему.

На расчетной схеме указывают все источники питания и элементы сети, намечают необходимые места, в которых будет выполняться расчет токов короткого замыкания. Параметры источников питания и элементов СЭС приведены в исходных данных. Для синхронных генераторов и электродвигателей напряжением свыше 1000 В ЭДС принимают равной сверхпереходной ЭДС Е«.

В качестве примера на рис. 3.4 приведена расчетная схема для схемы электроснабжения, показанной на рис. 3.2. По расчетной схеме составляют схему замещения. При этом все электромагнитные связи между элементами схемы путем эквивалентных преобразований заменяются электрическими [2, 4]. Рядом с каждым элементом схемы в числителе указывается его порядковый номер n, а в знаменателе – величина сопротивления (Ом) или относительных базисных единицах, приведенных к базовой ступени. В качестве базовой ступени обычно принимают ступень трансформации, на которой рассчитывают ток короткого замыкания. Напряжение базовой ступени Uб принимается равным среднему (номинальному) напряжению Uн ступени трансформации в соответствии со шкалой: 230; 154; 115; 37; 10,5; 6,3 кВ.

Расчет токов короткого замыкания может производиться в физических единицах или относительных базисных единицах. При расчете тока короткого замыкания в относительных единицах за базовую мощность удобно принимать мощность, кратную 10 (например, 100 или 1000 MB×A), или мощность энергосистемы, питающей предприятие электроэнергией, или номинальную мощность какого-либо элемента СЭС. Если расчет тока короткого замыкания выполняется приближенно с помощью расчетных кривых, то базовая мощность должна быть принята равной мощности питающей энергосистемы.

Базисный модуль полного сопротивления Zб до места короткого замыкания, ток Iб и мощность Sб определяются по формулам:

; ; . (3.28)

Для трехфазных двухобмоточных трансформаторов величины активного Rт и индуктивного Xт сопротивлений, приведенные к обмотке высшего напряжения и используемые при расчете приведенных сопротивлений, даны в табл. П1.5. Для трехфазных трехобмоточных трансформаторов величины активных Rт.в, Rт.с, Rт.н и индуктивных Хт.в, Хт.с, Хт.н сопротивлений обмоток высшего, среднего и низшего напряжений, необходимые для вычисления приведенных сопротивлений, указаны в работе [4]. Индуктивные сопротивления реакторов Xр приведены в работе [3] и в табл. П1.9.

При расчёте тока короткого замыкания ЭДС всех источников принимаются совпадающими по фазе. Поэтому расчет выполняется с использованием метода наложения: ток от каждого источника питания в месте короткого замыкания рассчитывают отдельно, а затем находят результирующий ток путем арифметического суммирования составляющих от отдельных источников.

Действующее значение периодической составляющей тока трехфазного короткого замыкания в физических единицах:

· при питании от энергосистемы:

; (3.29)

· при питании от синхронного генератора или электродвигателя напряжением 1000 В:

, (3.30)

где ; ; ; p – число последовательно соединенных активных сопротивлений от источника питания до места короткого замыкания; m – число последовательно соединенных индуктивных сопротивлений от источника питания до места короткого замыкания.

Действующее значение периодической составляющей тока трехфазного короткого замыкания в относительных базисных единицах:

· при питании от энергосистемы:

; (3.31)

· при питании от синхронного генератора или электродвигателя напряжением свыше 1000 В:

, (3.32)

где – мощность трехфазного симметричного короткого замыкания,

; ; . (3.33)

Переход от тока и мощности короткого замыкания в относительных единицах к току и мощности в физических единицах производится по формулам:

; . (3.34)

Если 7 89>

Дата добавления: 2016-06-18 ; просмотров: 3438 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Расчет соединений трансформатора

Главная > Задача >Коммуникации и связь

a ) Проверить, будет ли термически устойчив трансформатор тока, установленный в цепи с периодической составляющей тока КЗ I п,о =40 кА Постоянная времени затухания апериодического тока T a =0,07 с . Время отключения КЗ t отк =0,5с . Параметры трансформатора тока U ном =35кВ , I 1,ном =1000А , кратность тока термической устойчивости К Т =40 .

Тепловой импульс тока КЗ в месте установки трансформатора тока

при t отк = 0,5 с > 3 ∙ T а = 0,21 с :

При времени отключения t отк = 0,5 с ≤ t т = 1 с , допустимое значение теплового импульса тока КЗ для трансформатора тока:

Ответ: трансформатор тока термически не устойчив, т.к.

б) Определить усилие, с которым две одинаковые плоские катушки притягиваются друг к другу, если по ним протекают токи I1=I2=I=300А . Расстояние между катушками х=19см , размеры катушек r=24см , D =76см , каждая катушка имеет по w =75витков провода.

Взаимная индуктивность двух плоских катушек:

Читайте так же:
Сверхпроводники тепловое действие тока

,тогда усилие действующие между катушками:

Определить сопротивление контактного соединения, образованного медной и алюминиевой шинами, стянутыми двумя болтами (М-24) диаметром d = 24 мм .. Размеры соединения: длина l =0.08м ; ширина b =0.08м . Толщина шин: медной δ 1 =0,006м , алюминиевой δ 2 =0,01м . Шины зачищены напильником. Класс зачистки 4. Температура окружающего воздуха  1 =25  С . Температура шин  2 =60  С . Номинальный ток, протекающий по шинам I ном =1200А.

Определим усилие затяжки контактного соединения по формуле:

где M — крутящий момент затяжки болта, H∙м; d диаметр болта, м.

Так как контактное соединение стянуто двумя болтами, то усилие затяжки равно:

Определим переходное сопротивление контактного соединения через параметры шероховатости поверхности:

где  1 и  2 удельные сопротивления металлов соединяемых шин при температуре  2 , Омּм; S m средний шаг неровностей профиля шин, м; H ’ — микротвердость металла более пластичной шины при температуре  2 , МПа; β эф коэффициент, учитывающий состояние поверхности контактирования соединяемых деталей, для алюминиевых контактных соединений β эф = 0,01…0,03 , а для соединений медных β эф = 0,03…0,04 .

Определим удельное сопротивление, медной и алюминиевой, шин при температуре их нагрева  2 =60  С по формулам:

где  0 удельное сопротивление материалов шин при температуре  = 0  С , Омּм;

α эс — температурный коэффициент электрического сопротивления, K -1 ; для алюминия

α эс = 0,0042 K -1 , для меди α эс = 0,00433 K -1 .

Определим микротвердость медной и алюминиевой шин при их температуре J 2 =60 ° С :

J пл — температура плавления металла шин,

для меди J пл = 1083ºС, для алюминия J пл = 660ºС.

Микротвердость H 0 , МПа, для меди = 800, для алюминия = 550.

Определим средний шаг неровностей профиля шин Sm м и Sm а , приняв Ra м = 7∙10 -6 м,

Так как соединяются между собой шины из меди и алюминия, принимаем β эф = 0,02 , тогда переходное сопротивление равно:

Определим сопротивление на участке соприкосновения двух шин:

где — коэффициент искривления линий тока.

Определим поперечное сечение соединяемых шин:

Сопротивление контактного соединения равно

Ответ: R КС = 2,704 ∙ 10 –6 [Ом].

пределить число железных пластин в решетке, учитывая, что прочность должна быстро нарастать во времени и через 100 мкс должна увеличиться в 2 раза по сравнению с начальной величиной. Действующее значение напряжения U =600В . Напряжение восстанавливается с частотой F 0 =5000Гц . Коэффициент превышения амплитуды k = 1,4 . Начальное расчетное пробивное напряжение единичного промежутка U пр1 =120В .

Амплитуда восстанавливающегося напряжения:

Через 100 мкс прочность еденичного промежутка:

Число пластин решетки при 20%-ном запасе амплитуды восстановления напряжения:

1 фланец верхний; 2 якорь;

3 стоп; 4 корпус;

5 фланец нижний

пределить, как изменится величина начальной электромагнитной силы броневого электромагнита, если изменить форму торцов якоря и стопа с плоской на коническую с углом при вершине 2α =70 ْ. Величина рабочего воздушного зазора δ нач =1·10 -2 м , н.с. катушки (Iω) кат =950 А ; удельная проводимость рассеяния g s = 9·10 -6 Г/м; d = d я = d c = 3,4·10 -2 м; l я = 4,5·10 — 2 м; l кат = 10,2·10 — 2 м. Насыщение стали не учитывать; падением н.с. в паразитном зазоре пренебречь ( е ).

Расчёт сил для двух случаев проводим по энергетической формуле. Принимаем

(Iω) кат = (Iω) δ – насыщение стали и падение н.с. в паразитном зазоре не учитываем.

При плоской форме торцов:

При конической форме:

Ответ: при переходе от плоской формы торцов к конической получаем увеличение F э.нач

в 2,764 раза (без учета влияния н.с., затрачиваемой на проведение потока в стали магнитопровода).

Обоснование способов ограничения токов короткого замыкания в сэс

Способы ограничения токов короткого замыкания

В мощных электроустановках и питаемых ими электросетях токи короткого замыкания могут достигать больших величин, что приводит к завышению сечения проводников и утяжелению электрооборудования. Применение электрооборудования и проводников, рассчитанных на большие токи короткого замыкания, приводит к значительному завышению затрат. Поэтому в мощных электроустановках применяют искусственные меры ограничения токов короткого замыкания, чем достигается возможность применения более дешевого электрооборудования: более легких типов электроаппаратов, токоведущих частей меньших сечений.

Основные способы ограничения токов короткого замыкания:

— раздельная работа трансформаторов и питающих линий;

— применение трансформаторов с расщепленными обмотками;

Выбор того или иного способа ограничения токов короткого замыкания определяется местными условиями конкретной электроустановки и технико-экономическим сопоставлением вариантов.

Раздельная работа трансформаторов и питающих линий.

Раздельная работа трансформаторов и питающих линий, при Sc= , xc=0, позволяет снизить ток КЗ в 2 раза:

Необходимо отметить, что мощность трансформаторов и пропускная способность каждой линии, с учетом возможной перегрузки, должна быть достаточно для питания полной нагрузки электроустановки. С целью обеспечения бесперебойного питания потребителей на секционном выключателе предусматривается установка автоматического ввода резерва (АВР).

Применение трансформаторов с расщепленными обмотками.

Применение трансформаторов с расщепленными обмотками и раздельной работе обмоток низшего напряжения. Сопротивление обмотки низшего напряжения (хн) в 2 раза больше индуктивности сопротивления двухобмоточного трансформатора без расщепления обмоток. Поэтому, при Sc= , xc=0 и расщеплении обмоток ток КЗ на стороне низшего напряжения можно снизить в 2 раза.

Читайте так же:
Вещество плохо проводящее тепло или электрический ток

Во всех электроустановках при рассмотрении вопроса ограничения токов КЗ и неудовлетворительных результатах рассмотренных выше способов возникает необходимость включение дополнительных сопротивлений (реакторов).

Активное сопротивление реактора незначительно, поэтому при расчетах токов КЗ его не учитывают.

Все реакторы выбираются по номинальному напряжению, по номинальному току и индуктивному сопротивлению.

Номинальное напряжение

выбираем в соответствии с номинальным напряжением установки. При этом предполагается, что реакторы должны длительно выдерживать максимальные рабочие напряжения.

Номинальный ток

реактора (ветви сдвоенного реактора) недолжен быть меньше максимального длительного тока нагрузки цепи, в которую он включен:

Для шинных (секционных) реакторов номинальный ток должен соответствовать мощности, передаваемой от секции к секции при нарушении нормального режима.

где Iном.г – номинальный ток генератора.

Индуктивное сопротивление

реактора определяют, исходя из условий ограничения тока КЗ до заданного уровня. В большинстве случаев уровень ограничения тока КЗ определяется по коммутационной способности выключателей, намечаемых к установке или установленных в данной точке сети. Как правило, первоначально известно начальное значение периодической составляющей тока КЗ Iпо, которое с помощью реактора необходимо уменьшить до требуемого уровня.

Рассмотрим порядок определения сопротивления индивидуального реактора. Требуется ограничить ток КЗ так, чтобы можно было в данной цепи установить выключатель с номинальным током отключения Iном.отк (действующее значение периодической составляющей тока отключения)

По значению Iном.отк определяется значение периодической составляющей тока КЗ, при котором обеспечивается коммутационная способность выключателя. Для упрощения обычно принимают Iпо.треб =Iном.отк

Результирующее сопротивление [Ом] в цепи КЗ до установки реактора можно определить по выражению:

Требуемое сопротивление цепи КЗ для обеспечения Iпо.треб

Разность полученных значений сопротивлений даст требуемое сопротивление реактора

Далее по каталожным и справочным материалом выбирают тип реактора с ближайшим большим индуктивным сопротивлением.

Фактическое значение тока при КЗ за реактором определяют следующим образом:

вычисляется значение результирующего сопротивления цепи КЗ с учетом реактора:

а затем, определяется начальное значение периодической составляющей тока КЗ:

Аналогично выбираемое сопротивление групповых и сдоенных реакторов.

Выбранный реактор следует проверить на электродинамическую стойкость и термическую стойкость при протекании через него тока КЗ.

Электродинамическая стойкость реактора гарантируется при соблюдении следующего условия:

где – ударный ток при трех фазном КЗ за реактором;

– ток электродинамической стойкости реактора, т.е максимальный ток (амплитудное значение), при котором не наблюдается остаточная деформация обмоток:

Термическая стойкость реактора характеризуется заводом изготовителем величиной tТ временем термической стойкости

Поэтому условие термической стойкости реактора имеет вид:

где – расчетный тепловой импульс тока при КЗ за реактором.

При соблюдении указанного условия нагрев обмотки реактора при КЗ не будет превышать допустимого значения.

Необходимо также определить остаточное напряжение на шинах:

Значение по условиям работы потребителей должно быть не менее 65 %.

Потеря напряжения при протекании максимального тока в нормальном режиме работы определяется по формуле:

где – коэффициент связи (из каталога для реактора).

9ВЫБОР ЭЛЕКТРИЧЕСКИХ АППАРАТОВ,

ТОКОВЕДУЩИХ ЧАСТЕЙ

ВЫБОР ТОКООГРАНИЧИВАЩИХ РЕАКТОРОВ И МЕСТ ИХ УСТАНОВКИ

3.1. До проведения мероприятий по ограничению токов КЗ в электрической сети 110 — 220 кВ должен быть выполнен расчет токов однофазного КЗ для нормального (максимального) режима и выявлены точки, в которых необходимо ограничение токов с учетом перспективы развития сети.

3.2. Расчет токов однофазного КЗ должен производиться для нормальной схемы сети. При расчете токов КЗ в сети, где выполнено деление КЗ, последнее не должно предусматриваться.

3.3. При выборе токоограничивающих реакторов необходимо руководствоваться следующим:

— уровень напряжения на нейтрали трансформатора или автотрансформатора при включении в нейтраль реактора в указанных ниже режимах (пп. 3.4, 3.5) не должен превышать приведенного в приложении допустимого уровня напряжения с учетом его продолжительности;

— за расчетное время воздействия тока однофазного КЗ на реактор и длительность повышения напряжения частоты 50 Гц на нейтрали, на оборудовании и изоляции неповрежденных фаз должно приниматься время действия первых ступеней резервных токовых защит нулевой последовательности трансформаторов и автотрансформаторов;

— реактор, включаемый в нейтраль, должен длительно выдерживать прохождение тока естественной несимметрии сети, ограничивать ток КЗ до заданного значения, выдерживать воздействие токов КЗ, а также токов при неполнофазных режимах в сети в течение расчетного времени;

— при включении в нейтраль реакторов должно сохраняться эффективное заземление нейтрали автотрансформаторов (напряжение на неповрежденных фазах при однофазном КЗ, а также напряжение «фаза-земля» при неполнофазных режимах не должно во всех случаях превышать значения 1,37 U

ф.н.р, соответствующего напряжению гашения вентильных разрядников);

— при включении в нейтраль реактора для ограничения грозовых перенапряжений на нейтрали трансформаторов и автотрансформаторов параллельно реактору должна быть включена резисторная установка с номинальным значением сопротивления 850 ± 150 Ом (приложение ).

Читайте так же:
Можно ли нарастить провод датчика температуры теплого пола

3.4. Расчетным режимом для определения значения сопротивления реактора, включаемого в нейтраль автотрансформатора со средним напряжением 220 кВ, и уровня напряжения на нейтрали является режим включения (трехфазного) автотрансформатора со стороны высокого напряжения на однофазное КЗ на стороне среднего напряжения.

3.5. Расчетным режимом для определения значения сопротивления реактора, включаемого в нейтраль автотрансформатора со средним напряжением 110 или 150 кВ, и уровня напряжения на нейтрали является сохранение эффективного заземления нейтрали автотрансформатора при отключении его со стороны среднего напряжения.

3.6. Значение индуктивного сопротивления токоограничивающего реактора, включаемого в нейтраль силового (блочного) трансформатора электростанции, выбирается из условия сохранения эффективного заземления нейтрали автотрансформаторов и рассматриваемого блочного трансформатора, а также ограничения напряжения на их нейтралях до уровня, не превышающего указанный в приложении .

3.7. Расчетные формулы и схемы замещения для определения значения индуктивного сопротивления токоограничивающих реакторов приведены в приложении .

Рекомендуемые значения индуктивных сопротивлений реакторов, рассчитанных при сопротивлениях примыкающей системы X

1 =
X
2 =
X
0 = 0, и типы реакторов, предназначенных для включения в нейтрали силовых (блочных) трансформаторов и автотрансформаторов, даны в приложении .

Значения индуктивных сопротивлений токоограничивающих реакторов рассчитаны на основе положений пп. 3.3 — 3.7 и значений предельных мощностей (токов) КЗ, указанных в технических условиях и стандартах на трансформаторы и автотрансформаторы.

Выбор значений сопротивлений реакторов более указанных в приложении для соответствующих типов трансформаторов и автотрансформаторов не рекомендуется. При необходимости более глубокого ограничения токов однофазных КЗ сопротивления реакторов могут быть приняты с учетом реального сопротивления прямой, обратной и нулевой последовательностей сети высшего напряжения. Расчет и выбор реакторов должен быть произведен с учетом изложенного в пп. 3.3 ÷ 3.6 и приложения . При этом необходимо корректировать значения сопротивлений реакторов по мере развития энергосистемы.

3.8. При выбранных значениях сопротивления и местах установки токоограничивающих реакторов должны быть произведены расчет токов однофазного КЗ в сети с учетом изложенного в п. 3.2 и сравнение их с допустимыми значениями.

3.9. В случаях, когда при исключении стационарного деления сети токи трехфазного КЗ становятся выше допустимых для оборудования, следует предусматривать опережающее деление сети при трехфазных и двухфазных КЗ.

3.10. При получении от установки реакторов большего, чем требуется эффекта токоограничения, целесообразно часть трансформаторов блоков электростанций (один-два) оставить с глухозаземленной нейтралью и повторно произвести расчет токов однофазного КЗ в сети.

3.11. Схема включения реакторов в нейтрали силовых трансформаторов и автотрансформаторов приведена на рис. .

Рис. 1. Схема включения реакторов в нейтрали трансформаторов и автотрансформаторов:

,
2
— разъединители РНД-35-100 УХЛ1;
3
— роговой разрядник (устанавливается при соответствующем обосновании);
4
— резисторная установка БРУ-Н;
5
— реактор ТРОС-35-Х-Х;
6
— фазные обмотки ВН трансформатора (автотрансформатора)

3.12. При выбранных значениях сопротивлений реакторов и местах их расстановки в сети 110 — 220 кВ следует:

— перестроить уставки релейных защит для обеспечения необходимой чувствительности;

— оценить (при необходимости) на «слабых связях» в электрических сетях влияние реакторов на статическую устойчивость параллельной работы при ОАПВ.

3.13. После выполнения токоограничивающих мероприятий в сети 110 — 220 кВ не допускается шунтирование в нормальном режиме реакторов, установленных в нейтралях автотрансформаторов.

3.14. Примеры выполнения токоограничивающих мероприятий и расчета их эффективности приведены в приложении .

3.15. Токоограничивающий реактор, устанавливаемый в нейтраль автотрансформатора (со средним напряжением 110 кВ) с вольтодобавочным трансформатором со стороны нейтрали, выбирается без учета трансформатора.

Значение сопротивления реактора, включаемого в нейтраль автотрансформатора со средним напряжением 150 кВ и вольтодобавочным трансформатором со стороны нейтрали, принимается вдвое меньшим, чем значение, полученное в соответствии с п. 3.5.

Выбор токоограничивающего реактора, устанавливаемого в нейтраль автотрансформатора со средним напряжением 220 кВ и вольтодобавочным трансформатором со стороны нейтрали, должен быть согласован с Главтехуправлением.

ПУЭ: Глава 1.4. Выбор электрических аппаратов и проводников по условиям короткого замыкания

Область применения

1.4.1. Настоящая глава Правил распространяется на выбор и применение по условиям КЗ электрических аппаратов и проводников в электроустановках переменного тока частотой 50 Гц, напряжением до и выше 1 кВ.

Общие требования

1.4.2. По режиму КЗ должны проверяться (исключения см. в 1.4.3):

1. В электроустановках выше 1 кВ:

а) электрические аппараты, токопроводы, кабели и другие проводники, а также опорные и несущие конструкции для них;

б) воздушные линии электропередачи при ударном токе КЗ 50 кА и более для предупреждения схлестывания проводов при динамическом действии токов КЗ.

Кроме того, для линий с расщепленными проводами должны быть проверены расстояния между распорками расщепленных проводов для предупреждения повреждения распорок и проводов при схлестывании.

Провода ВЛ, оборудованные устройствами быстродействующего автоматического повторного включения, следует проверять и на термическую стойкость.

2. В электроустановках до 1 кВ — только распределительные щиты, токопроводы и силовые шкафы. Трансформаторы тока по режиму КЗ не проверяются.

Читайте так же:
Где применяется тепловое действие тока в быту

Аппараты, которые предназначены для отключения токов КЗ или могут по условиям своей работы включать короткозамкнутую цепь, должны, кроме того, обладать способностью производить эти операции при всех возможных токах КЗ.

Стойкими при токах КЗ являются те аппараты и проводники, которые при расчетных условиях выдерживают воздействия этих токов, не подвергаясь электрическим, механическим и иным разрушениям или деформациям, препятствующим их дальнейшей нормальной эксплуатации.

1.4.3. По режиму КЗ при напряжении выше 1 кВ не проверяются:

1. Аппараты и проводники, защищенные плавкими предохранителями с вставками на номинальный ток до 60 А, — по электродинамической стойкости.

2. Аппараты и проводники, защищенные плавкими предохранителями независимо от их номинального тока и типа, — по термической стойкости.

Цепь считается защищенной плавким предохранителем, если его отключающая способность выбрана в соответствии с требованиями настоящих Правил и он способен отключить наименьший возможный аварийный ток в данной цепи.

3. Проводники в цепях к индивидуальным электроприемникам, в том числе к цеховым трансформаторам общей мощностью до 2,5 МВ·А и с высшим напряжением до 20 кВ, если соблюдены одновременно следующие условия:

а) в электрической или технологической части предусмотрена необходимая степень резервирования, выполненного так, что отключение указанных электроприемников не вызывает расстройства технологического процесса;

б) повреждение проводника при КЗ не может вызвать взрыва или пожара;

в) возможна замена проводника без значительных затруднений.

4. Проводники к индивидуальным электроприемникам, указанным в п. 3, а также к отдельным небольшим распределительным пунктам, если такие электроприемники и распределительные пункты являются неответственными по своему назначению и если для них выполнено хотя бы только условие, приведенное в п. 3, б.

5. Трансформаторы тока в цепях до 20 кВ, питающих трансформаторы или реактированные линии, в случаях, когда выбор трансформаторов тока по условиям КЗ требует такого завышения коэффициентов трансформации, при котором не может быть обеспечен необходимый класс точности присоединенных измерительных приборов (например, расчетных счетчиков); при этом на стороне высшего напряжения в цепях силовых трансформаторов рекомендуется избегать применения трансформаторов тока, не стойких к току КЗ, а приборы учета рекомендуется присоединять к трансформаторам тока на стороне низшего напряжения.

6. Провода ВЛ (см. также 1.4.2, п. 1, б).

7. Аппараты и шины цепей трансформаторов напряжения при расположении их в отдельной камере или за добавочным резистором, встроенным в предохранитель или установленным отдельно.

1.4.4. При выборе расчетной схемы для определения токов КЗ следует исходить из предусматриваемых для данной электроустановки условий длительной ее работы и не считаться с кратковременными видоизменениями схемы этой электроустановки, которые не предусмотрены для длительной эксплуатации (например, при переключениях). Ремонтные и послеаварийные режимы работы электроустановки к кратковременным изменениям схемы не относятся.

Расчетная схема должна учитывать перспективу развития внешних сетей и генерирующих источников, с которыми электрически связывается рассматриваемая установка, не менее чем на 5 лет от запланированного срока ввода ее в эксплуатацию.

При этом допустимо вести расчет токов КЗ приближенно для начального момента КЗ.

1.4.5. В качестве расчетного вида КЗ следует принимать:

1. Для определения электродинамической стойкости аппаратов и жестких шин с относящимися к ним поддерживающими и опорными конструкциями — трехфазное КЗ.

2. Для определения термической стойкости аппаратов и проводников — трехфазное КЗ; на генераторном напряжении электростанций — трехфазное или двухфазное в зависимости от того, какое из них приводит к большему нагреву.

3. Для выбора аппаратов по коммутационной способности — по большему из значений, получаемых для случаев трехфазного и однофазного КЗ на землю (в сетях с большими токами замыкания на землю); если выключатель характеризуется двумя значениями коммутационной способности — трехфазной и однофазной — соответственно по обоим значениям.

1.4.6. Расчетный ток КЗ следует определять, исходя из условия повреждения в такой точке рассматриваемой цепи, при КЗ в которой аппараты и проводники этой цепи находятся в наиболее тяжелых условиях (исключения см. в 1.4.7 и 1.4.17, п. 3). Со случаями одновременного замыкания на землю различных фаз в двух разных точках схемы допустимо не считаться.

1.4.7. На реактированных линиях в закрытых распределительных устройствах проводники и аппараты, расположенные до реактора и отделенные от питающих сборных шин (на ответвлениях от линий — от элементов основной цепи) разделяющими полками, перекрытиями и т. п., набираются по току КЗ за реактором, если последний расположен в том же здании и соединение выполнено шинами.

Шинные ответвления от сборных шин до разделяющих полок и проходные изоляторы в последних должны быть выбраны исходя из КЗ до реактора.

1.4.8. При расчете термической стойкости в качестве расчетного времени следует принимать сумму времен, получаемую от сложения времени действия основной защиты (с учетом действия АПВ), установленной у ближайшего к месту КЗ выключателя, и полного времени отключения этого выключателя (включая время горения дуги).

Читайте так же:
Количество теплоты выделяемое током буква 1

При наличии зоны нечувствительности у основной защиты (по току, напряжению, сопротивлению и т. п.) термическую стойкость необходимо дополнительно проверять, исходя из времени действия защиты, реагирующей на повреждение в этой зоне, плюс полное время отключения выключателя. При этом в качестве расчетного тока КЗ следует принимать то значение его, которое соответствует этому месту повреждения.

Аппаратура и токопроводы, применяемые в цепях генераторов мощностью 60 МВт и более, а также в цепях блоков генератор — трансформатор такой же мощности, должны проверяться по термической стойкости, исходя из времени прохождения тока КЗ 4 с.

Определение токов короткого замыкания для выбора аппаратов и проводников

1.4.9. В электроустановках до 1 кВ и выше при определении токов КЗ для выбора аппаратов и проводников и определения воздействия на несущие конструкции следует исходить из следующего:

1. Все источники, участвующие в питании рассматриваемой точки КЗ, работают одновременно с номинальной нагрузкой.

2. Все синхронные машины имеют автоматические регуляторы напряжения и устройства форсировки возбуждения.

3. Короткое замыкание наступает в такой момент времени, при котором ток КЗ будет иметь наибольшее значение.

4. Электродвижущие силы всех источников питания совпадают по фазе.

5. Расчетное напряжение каждой ступени принимается на 5% выше номинального напряжения сети.

6. Должно учитываться влияние на токи КЗ присоединенных к данной сети синхронных компенсаторов, синхронных и асинхронных электродвигателей. Влияние асинхронных электродвигателей на токи КЗ не учитывается при мощности электродвигателей до 100 кВт в единице, если электродвигатели отделены от места КЗ одной ступенью трансформации, а также при любой мощности, если они отделены от места КЗ двумя или более ступенями трансформации либо если ток от них может поступать к месту КЗ только через те элементы, через которые проходит основной ток КЗ от сети и которые имеют существенное сопротивление (линии, трансформаторы и т. п.).

1.4.10. В электроустановках выше 1 кВ в качестве расчетных сопротивлений следует принимать индуктивные сопротивления электрических машин, силовых трансформаторов и автотрансформаторов, реакторов, воздушных и кабельных линий, а также токопроводов. Активное сопротивление следует учитывать только для ВЛ с проводами малых сечений и стальными проводами, а также для протяженных кабельных сетей малых сечений с большим активным сопротивлением.

1.4.11. В электроустановках до 1 кВ в качестве расчетных сопротивлений следует принимать индуктивные и активные сопротивления всех элементов цепи, включая активные сопротивления переходных контактов цепи. Допустимо пренебречь сопротивлениями одного вида (активными или индуктивными), если при этом полное сопротивление цепи уменьшается не более чем на 10%.

1.4.12. В случае питания электрических сетей до 1 кВ от понижающих трансформаторов при расчете токов КЗ следует исходить из условия, что подведенное к трансформатору напряжение неизменно и равно его номинальному напряжению.

1.4.1З. Элементы цепи, защищенной плавким предохранителем с токоограничивающим действием, следует проверять на электродинамическую стойкость по наибольшему мгновенному значению тока КЗ, пропускаемого предохранителем.

Выбор проводников и изоляторов, проверка несущих конструкций по условиям динамического действия токов короткого замыкания

1.4.14. Усилия, действующие на жесткие шины и передающиеся ими на изоляторы и поддерживающие жесткие конструкции, следует рассчитывать по наибольшему мгновенному значению тока трехфазного КЗ ip с учетом сдвига между токами в фазах и без учета механических колебаний шинной конструкции. В отдельных случаях (например, при предельных расчетных механических напряжениях) могут быть учтены механические колебания шин и шинных конструкций.

Импульсы силы, действующие на гибкие проводники и поддерживающие их изоляторы, выводы и конструкции, рассчитываются по среднеквадратическому (за время прохождения) току двухфазного замыкания между соседними фазами. При расщепленных проводниках и гибких токопроводах взаимодействие токов КЗ в проводниках одной и той же фазы определяется по действующему значению тока трехфазного КЗ.

Гибкие токопроводы должны проверяться на схлестывание.

1.4.15. Найденные расчетом в соответствии с 1.4.14 механические усилия, передающиеся при КЗ жесткими шинами на опорные и проходные изоляторы, должны составить в случае применения одиночных изоляторов не более 60% соответствующих гарантийных значений наименьшего разрушающего усилия; при спаренных опорных изоляторах — не более 100% разрушающего усилия одного изолятора.

При применении шин составных профилей (многополосные, из двух швеллеров и т. д.) механические напряжения находятся как арифметическая сумма напряжений от взаимодействия фаз и взаимодействия элементов каждой шины между собой.

Наибольшие механические напряжения в материале жестких шин не должны превосходить 0,7 временного сопротивления разрыву по ГОСТ.

Выбор проводников по условиям нагрева при коротком замыкании

1.4.16. Температура нагрева проводников при КЗ должна быть не выше следующих предельно допустимых значений, °С:

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector