Sfera-perm.ru

Сфера Пермь
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Тепловое проявление электрического тока это

Предполагается, что пожар произошёл в результате теплового проявления электрического тока

10 марта 2020 года, в 05 часов 24 минуты, караул 123 пожарно-спасательной части, под руководством Дмитрия Пылькина выезжал по адресу: улица Академика Глушко, дом 14, корпус 2, в районе «Северное Бутово», где на кухне, двухкомнатной квартиры, на четвертом этаже, обгорели мебель и личные вещи на площади 4 квадратных метра.

На момент прибытия первого подразделения по внешним признакам из окна четвертого этажа наблюдался слабый дым. Звеном ГДЗС вскрыли дверь в горящую квартиру, и на тушение пожара был подан водяной ствол

В ходе разведки из горящей квартиры вынесены два человека, которые были переданы нарядам СС и НМП ДЗ г. Москвы, один из которых скончался.

Предполагается, что пожар произошёл в результате теплового проявления электрического тока при аварийном режиме работы радиоприёмника.

рекомендуемые действия при возникновении пожара:

Большинство пожаров происходит в жилых домах. Причины их практически всегда одинаковы — обветшавшие коммуникации, неисправная электропроводка, курение в неположенных местах и оставленные без присмотра электроприборы.

Если у вас или у ваших соседей случился пожар, главное — сразу же вызвать пожарную охрану.

Если загорелся бытовой электроприбор, постарайтесь его обесточить, если телевизор — прежде всего, выдерните вилку из розетки или обесточьте квартиру через электрощит. Помните! Горящий телевизор выделяет множество токсических веществ, поэтому постарайтесь сразу же вывести из помещения людей. Накройте телевизор любой плотной тканью, чтобы прекратить доступ воздуха. Проверьте, закрыты ли все окна и форточки, иначе доступ свежего воздуха прибавит огню силы. Если горят другие электрические приборы или проводка, то надо выключить рубильник и после этого вызвать пожарных.

Если пожар возник и распространился в одной из комнат, не забудьте плотно закрыть двери горящей комнаты — это помешает огню распространиться по всей квартире и лестничной площадке. Уплотните дверь мокрыми тряпками, чтобы в остальные помещения дым не проникал. В сильно задымленном пространстве нужно двигаться ползком или пригнувшись.

Если вы видите, что ликвидировать возгорание своими силами не удается, немедленно уходите. Возьмите документы и покиньте квартиру через входную дверь. Если путь к входной двери отрезан постарайтесь укрыться в не горящем помещении плотно закрыв дверь и по возможности уплотнив дверь тряпками. Можно использовать мокрую ткань в качестве респиратора. Самые безопасные места в горящей квартире — на балконе или возле окна. Здесь пожарные найдут вас быстрее. Открывайте дверь на балкон осторожно, поскольку пламя от большого притока свежего воздуха может усилиться. Не забудьте плотно закрыть дверь балкона за собой. Постарайтесь сообщить по телефону в пожарную охрану о своем местонахождении и через окно или с балкона голосом и жестами обозначить себя.

Читайте так же:
Удельная теплота мощности тока

Поскольку огонь и дым распространяются снизу-вверх, особенно осторожными должны быть жители верхних этажей.

Соблюдайте правила пожарной безопасности, берегите себя и свое имущество!

При обнаружении пожара необходимо немедленно сообщить об этом по телефону 01 или 101 в пожарную охрану, назвать адрес объекта, место возникновения пожара, сообщить свою фамилию, а также принять посильные меры по эвакуации людей и тушению пожара.

Если вы нашли ошибку: выделите текст и нажмите Ctrl+Enter

Электрический ток

Электрическим током называется упорядоченный поток отрицательно заряженных элементарных частиц – электронов. Электрический ток необходим для освещения домов и улиц, обеспечения работоспособности бытовой и производственной техники, движения городского и магистрального электротранспорта и.т.п.

  • Rн – сопротивление нагрузки
  • A – индикатор
  • К – коммутатор цепи

Ток – количество зарядов прошедших в единицу времени через поперечное сечение проводника.

Исторически принято считать, что ток в замкнутой цепи, движется от положительного, к отрицательному полюсу источника питания.

  • I – сила тока
  • q – количество электричества
  • t – время

Единицу силы тока называют амперам А , по имени французского учёного Ампера.

1А = 10 3 мА = 10 6 мкА

Плотность электрического тока

Электрическому току присущ ряд физических характеристик, имеющих количественные значения, выражаемые в определенных единицах. Основными физическими характеристиками электротока являются его сила и мощность. Сила тока количественно выражается в амперах, а мощность тока – в ваттах. Не менее важной физической величиной считается векторная характеристика электрического тока, или плотность тока. В частности, понятием плотности тока пользуются при проектировании линий электропередач.

  • J – плотность электрического тока А / ММ 2
  • S – площадь поперечного сечения
  • I – ток

Постоянный и переменный ток

Электропитание всех электрических устройств осуществляется постоянным либо переменным током.

Электрический ток, направление и значение которого не меняются, называется постоянным.

Электрический ток, направление и значение которого способны изменяться называется переменным.

Электропитание многих электротехнических устройств осуществляется переменным током, изменение которого графически представлено в виде синусоиды.

Использование электрического тока

Можно с уверенностью констатировать, что самым великим достижением человечества является открытие электрического тока и его использование. От электрического тока зависят тепло и свет в домах, поступление информации из внешнего мира, общение людей, находящихся в различных точках планеты, и многое другое.

Читайте так же:
Тепловые потери переменного тока

Современную жизнь невозможно представить без повсеместного наличия электричества. Электричество присутствует абсолютно во всех сферах жизнедеятельности людей: в промышленности и сельском хозяйстве, в науке и космосе.

Электричество также является неизменной составляющей повседневного быта человека. Такое повсеместное распространение электричества стало возможным благодаря его уникальным свойствам. Электрическая энергия может мгновенно передаваться на огромные расстояния и преобразовываться в различные виды энергий иного генезиса.

Основными потребителями электрической энергии являются промышленная и производственная сферы. При помощи электроэнергии приводятся в действие различные механизмы и устройства, осуществляются многоэтапные технологические процессы.

Невозможно переоценить роль электроэнергии в обеспечении работы транспорта. Практически полностью электрифицирован железнодорожный транспорт. Электрификация железнодорожного транспорта сыграла значительную роль в обеспечении пропускной способности дорог, увеличении скорости передвижения, снижении себестоимости пассажироперевозок, решении проблемы экономии топлива.

Наличие электричества является непременным условием обеспечения комфортных условий жизни людей. Вся бытовая техника: телевизоры, стиральные машины, микроволновые печи, нагревательные приборы – нашла свое место в жизни человека только благодаря развитию электротехнического производства.

Главенствующая роль электроэнергии в развитии цивилизации неоспорима. Нет такой области в жизни человечества, которая обходилась бы без потребления электрической энергии и альтернативу которой могла бы составить мускульная сила.

Охрана труда

Пороговые ощутимый, неотпускающий и фибрилляционный токи

Обычно человек начинает ощущать раздражающее действие переменного тока промышленной частоты 50 Гц при величине 0,6-1,5 мА и постоянного тока 5-7 мА. Эти токи называются ощутимыми пороговыми токами. Они не представляют опасности для человека, и человек может самостоятельно отключиться от цепи.

При переменных токах 5-10 мА раздражающее действие электрического тока становится более сильным, появляется боль в мышцах и непроизвольное их сокращение. При токах 10-15 мА боль в мышцах становится такой сильной, что человек уже не в состоянии самостоятельно освободиться от действия тока (не может разжать руку, отбросить от себя провод и т.д.). Переменные токи 10-15 мА и выше и постоянные токи 50-80 мА и выше называются неотпускающими токами.

Переменный ток 25 мА и выше (в зависимости от того где человек прикоснулся к токоведущим частям – в зависимости от пути прохождения тока) воздействует на мышцы грудной клетки, что может привести к параличу дыхания и вызвать смерть человека.

Электрический ток около 100 мА и более при частоте 50 Гц и 300 мА и более при постоянном напряжении за короткое время (1-2 с) поражает мышцу сердца человека и вызывает его фибрилляцию. Эти токи называются фибрилляционными.

Читайте так же:
Можно ли спаять провода теплого пола

Токи более 5 А вызывают паралич сердца и дыхания, минуя стадию фибрилляции сердца. При длительном протекании тока (несколько секунд) – тяжелые ожоги, разрушение тканей организма человека.

Ощутимый ток – электрический ток, вызывающий при прохождении через тело человека ощутимые раздражения.

Неотпускающий ток – электрический ток, вызывающий при прохождении через тело человека непреодолимые судорожные сокращения мышц руки, в которой зажат провод.

Фибрилляционный ток – электрический ток, вызывающий при прохождении через тело человека фибрилляцию сердца.

Наименьшие значения этих токов называются пороговыми.

Пороговые значения ощутимого, неотпускающего, фибрилляционного токов, полученные в результате экспериментальных исследований, приведены в таблице 1.1.

Таблица 1.1. Пороговые значения ощутимого, неотпускающего и фибрилляционного токов

Переменный ток 50 Гц

Постоянный ток, мА

Путь протекания тока через человека

Большое значение в исходе поражения имеет путь протекания электрического тока через тело человека. Наиболее тяжелые последствия будут, если на пути тока оказывается сердце, грудная клетка, головной и спинной мозг (путь тока: рука-ноги, рука-рука, шея-ноги, шея-рука).

Приведенные в таблице 1.1 данные соответствуют прохождению тока через человека по пути рука-рука или рука-ноги.

Из таблицы 1.1 так же видно, что воздействие на человека постоянного и переменного тока различно – переменный ток промышленной частоты опаснее постоянного тока того же значения.

Продолжительность воздействия электрического тока

Важное значение для оценки опасности поражения электрическим током имеет продолжительность протекания тока через человека. С увеличением продолжительности протекания повышается вероятность тяжелого или смертельного исхода. Кратковременное (несколько сотых секунды) воздействие даже значительных токов (100 А и более) может и не иметь тяжелых последствий. Влияние длительности прохождения тока через тело человека на исход поражения можно оценить формулой:

где: Ih — ток, проходящий через тело человека, мА, t — продолжительность прохождения тока, с.

Указанное следует из факта, что с увеличением времени прохождения тока сопротивление тела человека падает, так как при этом усиливается местный нагрев кожи, что приводит к расширению её сосудов и усилению снабжения этого участка кровью и увеличению токовыделения.

На рисунке 1.2. приведен полученный экспериментально график, определяющий степень опасности поражения человека при воздействии электрического тока различных значений в течение различных интервалов времени.

Рис.1.2 График 0,5% вероятности возникновения фибрилляции сердца.

Из графика следует, что для пары значений тока и продолжительности его протекания, находящейся вне заштрихованной области, вероятность возникновения фибрилляции выше 0,5%.

Читайте так же:
Номинальный тепловой ток выключатель безопасности

Зависимость представленная на рис. 1.2., может быть выражена формулой:

где: Iф.0,5%— ток, вызывающий фибрилляцию с вероятностью 0,5%, мА; t— продолжительность протекания электрического тока через тело человека, с.

Индивидуальные свойства человека

Установлено, что физически здоровые и крепкие люди легче переносят электрические удары. Повышенною восприимчивостью к электрическому току отличаются лица, страдающие болезнями кожи, сердечно-сосудистой системы, органов внутренней секреции, лёгких, нервными болезнями.

Условия внешней среды

Состояние окружающей среды существенно влияет на опасность поражения электрическим током. Сырость, токопроводящая пыль, едкие пары и газы, разрушающе действуют на изоляцию электроустановок, а высокая температура окружающего воздуха снижает электрическое сопротивление человека, что ещё больше увеличивает опасность поражения его током. Воздействие тока на человека усугубляют токопроводящие полы и близко расположенные к электрооборудованию металлические конструкции, имеющие связь с землёй, так как при одновременном касании к этим предметам и корпусу электрооборудования, случайно оказавшемуся под напряжением, через человека пойдёт ток опасной величины.

Воздействие на человека электромагнитных полей

При эксплуатации электроэнергетических установок высокого напряжения (330 кВ и выше) – открытых распределительных устройств (ОРУ), воздушных линий электропередачи (ВЛ), необходимо учитывать отрицательное воздействие на человека электромагнитного поля. Биологически активными являются электрические и магнитные поля, напряженность которых превышает допустимые значения.

Предельно допустимый уровень напряженности (Е) воздействующего электрического поля (ЭП) составляет 25 кВ/м. Нахождение человека в ЭП напряженностью более 25 кВ/м без применения индивидуальных средств защиты не допускается.

При уровне напряженности ЭП свыше 5 до 20 кВ/м допустимое время пребывания людей рассчитывается по формуле:

где: Е — уровень напряженности воздействующего ЭП (кВ/м); Т — допустимое время пребывания (ч)

При уровне напряженности ЭП, не превышающем 5 кВ/м, пребывание людей в ЭП допускается в течение всего рабочего времени ( 8 час).

Допустимая напряженность (Н) или индукция (В) магнитного поля (МП) для условий общего (на все тело) и локального (на конечности) воздействия в зависимости от пребывания в МП определяется в соответствии с таблицей 1.2.

Табл. 1.2. Допустимые уровни магнитного поля

Время пребывания, ч.

Допустимые уровни МП Н(А/м)/В(мкТл) при воздействии

Как в реальности протекает электрический ток?

Подписка на рассылку

  • ВКонтакте
  • Facebook
  • ok
  • Twitter
  • YouTube
  • Instagram
  • Яндекс.Дзен
  • TikTok

Существование современного мира невозможно представить без электрического тока. Он обеспечивает функционирование огромного множества устройств и электроприборов, а также целых систем. Понятие «электрический ток» помогает провести аналогию между этим явлением и протеканием жидкости, что придает данному термину некоторую наглядность.
Электрический ток протекает благодаря тому, что электромагнитное поле движется вдоль проводящей среды со скоростью, примерно равной скорости света. Данное движение идет в направлении от большего потенциала к меньшему, то есть от «+» к «-». Одновременно с этим носители зарядов перемещаются с чуть медленнее и в разных направлениях (в зависимости от материала).

Читайте так же:
Тепловое действие электрического тока закон джоуля ленца это

Какие бывают носители зарядов?

Существуют два вида носителей зарядов – отрицательные и положительные. Заряд со знаком «минус» может иметь ионы и электроны, а положительный заряд в основном имеют только ионы. Отрицательные заряды перемещаются в направлении большему потенциала, а положительные – наоборот. Это движение и приводит к появлению электрического тока.
Данная неопределенность устранена в общепринятом правиле, которое гласит, что ток всегда протекает от «+» к «-», вне зависимости от типа зарядов.

Как заряды движутся в металлах?

Почти все металлы, применяемые в электротехнике, не содержат ионов, поскольку пребывают в твердом состоянии.
Для них свойственна проводимость электронного типа. Это означает, что свободные электроны, выступающие в роли носителей зарядов, движутся в направлении, обратном току.

Металлы обладают относительно низким электрическим сопротивлением. Если разность потенциалов отсутствует, электрическое поле срывает электроны со своих орбит. По этой причине при небольшой разности потенциалов возникает значимое количество носителей зарядов.

Как заряды движутся в полупроводниках?

Полупроводники имеют гораздо более низкую проводимость, чем металлы (в условиях комнатной температуры). Существуют полупроводники двух типов – n и p. Полупроводники первого типа содержат избыток электронов. Когда они переходят к p-типу, возникает их недостаток. Остальные электроны без особых трудностей перемещаются по своим возможным местам внутри атома. Это равноценно движению зарядов со знаком «+».
Поскольку в полупроводниках электроны слабо связаны с атомами, при повышении температуры изменяется количество несвязанных электронов, и проводимость полупроводника быстро возрастает.
Вывод: в полупроводниках заряды могут двигаться в направлении протекания тока или же в противоположном направлении (p- и n-тип соответственно).

Как заряды движутся в газах и жидкостях?

В жидкостях и газах носителями зарядов выступают ионы, которые бывают отрицательными (так называемые катионы) и положительными (анионы). Если количество катионов больше, они движутся обратно направлению тока. Если же преобладают анионы, их движение совпадает с направлением тока.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector