Sfera-perm.ru

Сфера Пермь
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Тепловое действие тока закон джоуля ленца в дифференциальной форме

Работа и мощность тока. Закон Джоуля – Ленца в дифференциальной форме.

Вопросы-ответы на экзамен по физике.

Закон Ома для участка цепи и в дифференциальной форме.

Закон Ома для участка цепи гласит: ток прямо пропорционален напряжению и обратно пропорционален сопротивлению.

Закон Ома в дифференциальной форме:

Полезно переписать закон Ома в так называемой дифференциальной форме, в которой зависимость от геометрических размеров исчезает, и тогда закон Ома описывает исключительно электропроводящие свойства материала. Для изотропных материалов имеем:

где:

· — вектор плотности тока,

· — удельная проводимость,

· — вектор напряжённости электрического поля.

2. Сопротивление проводников. Зависимость сопротивления от температуры. Сверхпроводимость.

Любое тело, по которому протекает электрический ток, оказывает ему определенное сопротивление. Свойство материала проводникапрепятствовать прохождению через него электрического тока называется электрическимсопротивлением. Электронная теория так объясняет сущность электрического сопротивления металлических проводников: свободные электроны при движении по проводнику бесчисленное количество раз встречают на своем пути атомы и другие электроны и, взаимодействуя с ними, неизбежно теряют часть своей энергии. Электроны испытывают как бы сопротивление своему движению. Различные металлические проводники, имеющие различное атомное строение, оказывают различное сопротивление электрическому току.

Удельное сопротивление, а следовательно, и сопротивление металлов, зависит от температуры, увеличиваясь с ее ростом. Температурная зависимость сопротивления проводника объясняется тем, что

1. возрастает интенсивность рассеивания (число столкновений) носителей зарядов при повышении температуры;

2. изменяется их концентрация при нагревании проводника.

Опыт показывает, что при не слишком высоких и не слишком низких температурах зависимости удельного сопротивления и сопротивления проводника от температуры выражаются формулами:

где ρ, ρt — удельные сопротивления вещества проводника соответственно при 0 °С и t °C; R, Rt — сопротивления проводника при 0 °С и t °С, α — температурный коэффициент сопротивления: измеряемый в СИ в Кельвинах в минус первой степени (К -1 ). Для металлических проводников эти формулы применимы начиная с температуры 140 К и выше.

Сверхпроводи́мость — свойство некоторых материалов обладать строго нулевым электрическим сопротивлением при достижении ими температуры ниже определённого значения (критическая температура).

Работа и мощность тока. Закон Джоуля – Ленца в дифференциальной форме.

Работа тока — это работа электрического поля по переносу электрических зарядов вдоль проводника.

Работа тока на участке цепи равна произведению силы тока, напряжения и времени, в течение которого работа совершалась.

Применяя формулу закона Ома для участка цепи, можно записать несколько вариантов формулы для расчета работы тока:

Закон Джоуля-Ленца в дифференциальной форме: объемная плотность тепловой мощности тока в проводнике равна произведению его удельной электрической проводимости на квадрат напряженности электрического поля:

(с учетом закона Ома в дифференциальной форме ).

Дата добавления: 2018-08-06 ; просмотров: 251 ; Мы поможем в написании вашей работы!

Урок физики по теме «Закон Джоуля–Ленца»

Разделы: Физика

Физика как наука о наиболее общих законах природы, выступая в качестве учебного предмета в школе, вносит существенный вклад в систему знаний об окружающем мире. Она раскрывает роль науки в экономическом и культурном развитии общества, способствует формированию современного научного мировоззрения. Для решения задач формирования основ научного мировоззрения, развития интеллектуальных способностей и познавательных интересов школьников в процессе изучения физики основное внимание следует уделять не передаче суммы готовых знаний, а знакомству с методами научного познания окружающего мира, постановке проблем, требующих от учащихся самостоятельной деятельности по их разрешению.
Физика вооружает школьника научным методом познания, позволяющим получать объективные знания об окружающем мире.
Знание физических законов необходимо для изучения химии, биологии, физической географии, технологии, ОБЖ.

Читайте так же:
Выключатель тепловой завесы ballu

Изучение физики направлено на достижение следующих целей:

  • освоение знаний о механических, тепловых, электромагнитных и квантовых явлениях; величинах, характеризующих эти явления; законах, которым они подчиняются; методах научного познания природы и формирование на этой основе представлений о физической картине мира;
  • овладение умениями проводить наблюдения природных явлений, описывать и обобщать результаты наблюдений, использовать простые измерительные приборы для изучения физических явлений; представлять результаты наблюдений или измерений с помощью таблиц, графиков и выявлять на этой основе эмпирические зависимости; применять полученные знания для объяснения разнообразных природных явлений и процессов, принципов действия важнейших технических устройств, для решения физических задач;
  • развитие познавательных интересов, интеллектуальных и творческих способностей, самостоятельности в приобретении новых знаний при решении физических задач и выполнении экспериментальных исследований с использованием информационных технологий;
  • воспитание убежденности в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважения к творцам науки и техники; отношения к физике как элементу общечеловеческой культуры;
  • применение полученных знаний и умений для решения практических задач повседневной жизни, для обеспечения безопасности своей жизни, рационального природопользования и охраны окружающей среды.

Приоритетами являются:

  • Познавательная деятельность:
    • использование для познания окружающего мира различных естественно-научных методов: наблюдение, измерение, эксперимент, моделирование;
    • формирование умений различать факты, гипотезы, причины, следствия, доказательства, законы, теории;
    • овладение адекватными способами решения теоретических и экспериментальных задач.
  • Информационно-коммуникативная деятельность:
    • владение монологической и диалогической речью, развитие способности понимать точку зрения собеседника и признавать право на иное мнение.
  • Рефлексивная деятельность:
    • владение навыками контроля и оценки своей деятельности, умением предвидеть возможные результаты своих действий.

Цели урока:

  • Образовательные:
    • выяснить причины нагревания проводника с током;
    • усвоить закона Джоуля Ленца, показать универсальность закона сохранения и превращения энергии.
  • Развивающие:
    • развитие коммуникативных навыков через разнообразные виды речевой деятельности;
    • развитие таких аналитических способностей учащихся, как умение анализировать, сопоставлять, сравнивать, обобщать познавательные объекты, делать выводы; развития памяти, внимания, воображения.
  • Воспитательные: содействовать повышению уровня мотивации на уроках через средства обучения.

Оборудование: ноутбук, мультимедиа-проектор, компьютерная презентация, модели кристаллических решеток, электронагревательные приборы, проводники из разных веществ для демонстрации нагревания электрическим током, источник питания, соединительные провода.

Тип урока: урок изучения нового материала.

Структура урока:

I. Организационный этап.
II. Мотивация.
III. Актуализация опорных знаний.
IV. Изучение нового материала.
V. Закрепление и обратная связь.
VI.Домашнее задание.

I. Организационный этап

Сообщение темы урока, целей и плана урока.

II. Мотивация

Учитель: Тепловое действие тока находит очень широкое применение в быту и промышленности. Как вы думаете, как в быту используется тепловое действие тока?

Ученики: Утюги, кипятильники, электрические чайники, нагреватели, плиты.

Учитель: В промышленности используется в паяльниках, сварочных аппаратах. Российские специалисты г.Петрозаводска, фирма «Карбон-Шунгит» предложили подогрев дороги электрическим током, т.к. соль портит обувь и шины машин. Разработанная ими технология основана на использовании минерала «шунгит». Этот минерал – природный аналог стеклоуглерода имеет несколько разновидностей и обладает ценными свойствами для промышленности и строительства. Для борьбы с зимним оледенением дорог использована хорошая электропроводность шунгита. Он добавляется в асфальт или бетон, к ним подводятся токопроводящие шины и электрический ток пропускается через само дорожное покрытие.

III. Актуализация опорных знаний

Письменная проверочная работа по вариантам.

1. Напряжение на концах электрической цепи 45 В. Какую работу совершит в ней электрический ток в течение 10с при силе тока 0,05 А?
2. По проводнику, к концам которого приложено напряжение 5 В, прошло 100 Кл электричества. Определите работу тока.

1. Какую работу совершит ток силой 3 А за 10 мин при напряжении в цепи 15 В?
2. Электрическая лампочка включена в цепь с напряжением 10 В. Током была совершена работа 150 Дж. Какое количество электричества прошло через нить накала лампочки?

Фронтальный опрос:

Учитель: Чтобы понять, почему нагревается проводник, нужно вспомнить какая связь между температурой вещества и движением молекул или атомов, из которых оно состоит.

Ученики: Чем быстрее движутся молекулы или атомы, тем выше температура вещества.

Учитель: Каково внутреннее строение металла?

Ученики: Металл состоит из атомов, расположенных в узлах кристаллической решетки, которые совершают колебательные движения. Электроны, оторванные от атомов, свободные. Они хаотично двигаются внутри проводника.

Учитель: Что называется электрическим током?

Ученики: Электрический ток – это упорядоченное движение заряженных частиц.

Учитель: Условия возникновения тока?

Ученики: Наличие электрического поля и свободных заряженных частиц.

IV. Изучение нового материала

Учитель: Электрический ток нагревает проводник. Это явление всем известно. Объясняется оно тем, что свободные электроны в металлах, перемещаясь под действием электрического поля, взаимодействуют с ионами и атомами вещества проводника и передают им свою энергию. В результате работы электрического тока увеличивается скорость колебаний ионов и атомов и внутренняя энергия проводника увеличивается. Работа тока идет на увеличение их внутренней энергии. Нагретый проводник отдает полученную энергию окружающим телам, но уже путем теплопередачи.

Демонстрация:

На опыте с лампой накаливания вы убеждались в том, что накал лампы возрастал при увеличении силы тока. Но нагревание проводников зависит не только от силы тока, но и от сопротивления проводников. Соберем цепь из трех последовательно соединенных проводников разного сопротивления: медного, стального и никелинового. Ток во всех последовательно соединенных проводниках одинаков. Количество выделяющейся теплоты в проводниках разное. Из опыта делаем вывод:
Нагревание проводников зависит от их сопротивления. Чем больше сопротивление проводника, тем большее количество теплоты он выделяет.
Из какого материала нужно изготовлять спирали для лампочек накаливания?
Какими свойствами должен обладать металл, из которого изготовляют спирали нагревательных элементов?

Запишем в тетради:

q – электрический заряд, проходящий через поперечное сечение проводника

Из формулы I = , q = It, где I – сила тока, t – время прохождения тока.
Из формулы U = , A = Uq, где А – работа электрического поля, U – напряжение поля.
Работу тока можно вычислить так: A = UIt

Из сказанного выше следует, что количество теплоты, выделяемое проводником, по которому течет ток, равно работе тока.

Из закона Ома для участка цепи I = , U = IR, где R – сопротивление проводника.

Пользуясь законом Ома, можно количество теплоты, выделяемое проводником с током, выразить через силу тока, сопротивление участка цепи и время. Зная, что U = IR, получим Q = IRIt, т.е.

Закон Джоуля – Ленца: количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени протекания тока.

К этому же выводу, но на основании опытов впервые пришли независимо друг от друга английский ученый Джоуль и русский ученый Ленц. Поэтому данный вывод называется законом Джоуля – Ленца.

V. Закрепление и обратная связь

1. В проводнике сопротивлением 2 Ом сила тока 20 А. Какое количество теплоты выделится в проводнике за 1 мин?

Дано: СИ: Формулы: Решение:

I = 20 А Q = I 2 Rt Q = (20 А) 2 * 2 Ом * 60 с = 48000 Дж
R = 2 Ом
t = 1 мин 60 с
Найти:
Q
Ответ: Q = 48 к Дж.

2. Электрический паяльник рассчитан на напряжение 12 В силу тока 5 А. Какое количество теплоты выделится в паяльнике за 30 мин работы?

Дано: СИ: Формулы: Решение:

U = 12 В A = UIt Q = 12 В * 5А * 1800с = 108000 Дж
I = 5А Q = A
T = 30 мин 1800 c Q = UIt
Найти:
Q
Ответ: Q = 108 кДж.

3. Как изменится количество теплоты, выделяемое проводником с током, если силу тока в проводнике увеличить в 2 раза?

4. Как изменится количество теплоты, выделяемое проводником с током, если силу тока в проводнике уменьшить в 4 раза?

VI. Домашнее задание

Прочитать параграф 53, ответить на вопросы на стр.125, письменно выполнить упражнение 27. Желающие могут подготовить доклады к следующему уроку по темам:

  • «Лампы накаливания и история их изобретения»
  • «Использование теплового действия тока в промышленности и сельском хозяйстве»
  • «Джеймс Преснот Джоуль».

Закон Джоуля-Ленца: определение, практическое значение

Закон Джоуля-Ленца был открыт в 1841 и 1842 году двумя учеными Джеймсом Джоулем и Эмилием Ленцем. Ленц опубликовал результаты своей работы в 1842 году, на год позже Джоуля, но его эксперименты были более точными и вывод из опытов он вывел раньше.

Содержание статьи

  • Закон Джоуля-Ленца: определение, практическое значение
  • Как понизить силу тока
  • Что такое электрический ток

Закон Джоуля-Ленца

Закон Джоуля-Ленца определяет количество теплоты, выделяющейся в проводнике, обладающим сопротивлением за время t, при прохождении через него электрического тока.

Q = a*I*2R*t, где
Q — колическтво выделяемой теплоты (в Джоулях)
a — коэффициент пропорциональности
I — сила тока ( в Амперах)
R — Сопротивление проводника (в Омах)
t — Время прохождения (в секундах)

Закон Джоуля-Ленца объясняет, что электрический ток — это заряд, который перемещается под действием электрического поля. При этом поле совершает работу, а ток обладает мощностью и выделяется энергия. Когда эта энергия проходит по неподвижному металлическому проводнику, то она становится тепловой, так как направлена на нагревание проводника.

В дифференциальной форме закон Джоуля-Ленца выражается как объемная плотность тепловой мощности тока в проводнике будет равна произведению удельной электрической проводимости на квадрат напряженности электрического поля.

Применение закона Джоуля-Ленца

Лампы накаливания были придуманы в 1873 году русским инженером Лодыгиным. В лампах накаливания, как и в электронагревательных приборах, применяется закон Джоуля-Ленца. В них используют нагревательный элемент, который является проводником с высоким сопротивлением. За счет этого элемента можно добиться локализованного выделения тепла на участке. Выделение тепла будет появляться при повышении сопротивления, увеличении длины проводника, выбором определенного сплава.

Одной из областей применения закона Джоуля-Ленца является снижение потерь энергии.
Тепловое действие силы тока ведет к потерям энергии. При передаче электроэнергии, передаваемая мощность линейно зависит от напряжения и силы тока, а сила нагрева зависит от силы тока квадратично, поэтому если повышать напряжение, при этом понижая силу тока перед подачей электроэнергии, то это будет более выгодно. Но повышение напряжения ведет к снижению электробезопасности. Для повышения уровня электробезопасности повышают сопротивление нагрузки соответственно повышению напряжения в сети.

Также закон Джоуля-Ленца влияет на выбор проводов для цепей. При неправильном подборе проводов возможен сильный нагрев проводника, а так же его возгорание. Это происходит когда сила тока превышает предельно допустимые значения и выделяется слишком много энергии. При правильном подборе проводов для электрических цепей стоит следовать нормативным документам.

Закон Джоуля — Ленца

Закон Джо́уля — Ле́нца — физический закон, дающий количественную оценку теплового действия электрического тока. Установлен в 1841 году Джеймсом Джоулем и независимо от него в 1842 году Эмилием Ленцем [1] .

Содержание

  • 1 Определения
  • 2 Практическое значение
    • 2.1 Снижение потерь энергии
    • 2.2 Выбор проводов для цепей
    • 2.3 Электронагревательные приборы
    • 2.4 Плавкие предохранители
  • 3 См. также
  • 4 Примечания

Определения [ | ]

В словесной формулировке звучит следующим образом [2] :

Мощность тепла, выделяемого в единице объёма среды при протекании постоянного электрического тока, равна произведению плотности электрического тока на величину напряженности электрического поля.

Математически может быть выражен в следующей форме:

w = j → ⋅ E → = σ E 2 , >cdot >=sigma E^<2>,>

где w — мощность выделения тепла в единице объёма, j → >> — плотность электрического тока, E → >> — напряжённость электрического поля, σ — проводимость среды, а точкой обозначено скалярное произведение.

Закон также может быть сформулирован в интегральной форме для случая протекания токов в тонких проводах [3] :

Количество теплоты, выделяемое в единицу времени в рассматриваемом участке цепи, пропорционально произведению квадрата силы тока на этом участке и сопротивления участка.

В интегральной форме этот закон имеет вид

d Q = I 2 R d t , Rdt,> Q = ∫ t 1 t 2 I 2 R d t , >^>I^<2>Rdt,>

где d Q — количество теплоты, выделяемое за промежуток времени d t , I — сила тока, R — сопротивление, Q — полное количество теплоты, выделенное за промежуток времени от t 1 > до t 2 > . В случае постоянных силы тока и сопротивления:

Q = I 2 R t . Rt.>

Применяя закон Ома, можно получить следующие эквивалентные формулы:

Q = U 2 t / R = I U t . t/R =IUt.>

Практическое значение [ | ]

Снижение потерь энергии [ | ]

При передаче электроэнергии тепловое действие тока в проводах является нежелательным, поскольку ведёт к потерям энергии. Подводящие провода и нагрузка соединены последовательно — значит, ток в сети I на проводах и нагрузке одинаков. Мощность нагрузки и сопротивление проводов не должны зависеть от выбора напряжения источника. Выделяемая на проводах и на нагрузке мощность определяется следующими формулами

Q w = R w ⋅ I 2 , =R_cdot I^<2>,> Q c = U c ⋅ I . =U_cdot I.>

Откуда следует, что Q w = R w ⋅ Q c 2 / U c 2 =R_cdot Q_^<2>/U_^<2>> . Так как в каждом конкретном случае мощность нагрузки и сопротивление проводов остаются неизменными и выражение R w ⋅ Q c 2 cdot Q_^<2>> является константой, то тепло, выделяемое на проводе, обратно пропорционально квадрату напряжения на потребителе. Повышая напряжение, мы снижаем тепловые потери в проводах. Это, однако, снижает электробезопасность линий электропередачи.

Выбор проводов для цепей [ | ]

Тепло, выделяемое проводником с током, в той или иной степени выделяется в окружающую среду. В случае, если сила тока в выбранном проводнике превысит некоторое предельно допустимое значение, возможен столь сильный нагрев, что проводник может спровоцировать возгорание находящихся рядом с ним объектов или расплавиться сам. Как правило, при выборе проводов, предназначенных для сборки электрических цепей, достаточно следовать принятым нормативным документам, которые регламентируют выбор сечения проводников.

По этой причине для передачи необходимой мощности через современные магистральные воздушные линии электропередач, их проектируют под сверхвысокое напряжение (до 1150 кВ), чтобы обеспечить сверхнизкие токи в ЛЭП.

Электронагревательные приборы [ | ]

Если сила тока одна и та же на всём протяжении электрической цепи, то в любом выбранном участке будет выделять тепла тем больше, чем выше сопротивление данного участка.

За счёт сознательного увеличения сопротивления участка цепи можно добиться локализованного выделения тепла в этом участке. По этому принципу работают электронагревательные приборы. В них используется нагревательный элемент — проводник с высоким сопротивлением. Повышение сопротивления достигается (совместно или по отдельности) выбором сплава с высоким удельным сопротивлением (например, нихром, константан), увеличением длины проводника и уменьшением его поперечного сечения. Подводящие провода имеют обычное низкое сопротивление и поэтому их нагрев, как правило, незаметен.

Плавкие предохранители [ | ]

Для защиты электрических цепей от протекания чрезмерно больших токов используется отрезок проводника со специальными характеристиками. Это проводник относительно малого сечения и из такого сплава, что при допустимых токах нагрев проводника не перегревает его, а при чрезмерно больших перегрев проводника столь значителен, что проводник расплавляется и размыкает цепь.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector