Sfera-perm.ru

Сфера Пермь
18 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Тепловое действие тока физика кратко

Использование теплового действия электрического тока в устройстве теплиц и инкубаторов

Нагревание проводника при прохождении электрического тока. Расчет тепла, выделяющегося в проводе. Преимущества электрического обогрева теплиц и парников. Мощность нагревательного кабеля или ленты. Поддержание температуры и влажности воздуха в инкубаторе.

РубрикаФизика и энергетика
Виддоклад
Языкрусский
Дата добавления05.12.2015
Размер файла13,9 K

Соглашение об использовании материалов сайта

Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

Тепловое действие электрического тока. Сущность закона Джоуля-Ленца. Понятие теплицы и парника. Эффективность использования тепловентиляторов и кабельного обогрева грунта теплиц. Тепловое воздействие электрического тока в устройстве инкубаторов.

презентация [50,7 K], добавлен 26.11.2013

Образование электрического тока, существование, движение и взаимодействие заряженных частиц. Теория появления электричества при соприкосновении двух разнородных металлов, создание источника электрического тока, изучение действия электрического тока.

презентация [54,9 K], добавлен 28.01.2011

Понятие электрического тока как упорядоченного движения заряженных частиц. Виды электрических батарей и способы преобразования энергии. Устройство гальванического элемента, особенности работы аккумуляторов. Классификация источников тока и их применение.

презентация [2,2 M], добавлен 18.01.2012

Условия, необходимые для существования электрического тока. Достоинства и недостатки параллельного соединения проводников. Единица силы тока. Работа электрического тока в замкнутой электрической цепи. Закон Ома для участка цепи. Химическое действие тока.

презентация [398,2 K], добавлен 07.02.2015

Определение плотности тока на поверхности и на оси провода. Численное значение частоты тока. Влияние обратного провода на поле в прямом проводе. Особенности распространения электромагнитной волны в проводящей среде. Плотность тока и напряженности поля.

задача [46,9 K], добавлен 06.11.2011

Понятие электрического тока, выбор его направления, действие и сила. Движение частиц в проводнике, его свойства. Электрические цепи и виды соединений. Закон Джоуля-Ленца о количестве теплоты, выделяемое проводником, закон Ома о силе тока на участке цепи.

презентация [194,6 K], добавлен 15.05.2009

Сущность магнетизма, поле прямого бесконечно длинного тока. Форма правильных окружностей, описываемых силовыми линиями электрического поля элемента тока. Структура латентного поля тока. Закон Био-Савара, получение «магнитного» поля из электрического.

реферат [2,2 M], добавлен 04.09.2013

Тепловое действие тока физика кратко

Урок № 37-169 Работа и мощность тока. Тепловое действие тока.

Закон Джоуля-Ленца Д/з: П.8.11; п.8.12 [1]

При упорядоченном движении заряженных частиц в проводнике электрическое поле совершает работу, ее принято называть работой тока.

Работа тока . Рассмотрим произвольный участок цепи. Это может быть однородный проводник, например нить лам­ пы накаливания, обмотка электродвигателя и др. Пусть за время Δ t через поперечное сечение проводника проходит за­ ряд Δ q .

Тогда электрическое поле совершит работу А= Δ q U .

Так как сила тока I = , то Δ q = IΔt , то работа равна: A = IU Δt

Работа тока на участке цепи равна произведению силы тока, напряжения и времени, в течение которого совершалась работа.

Согласно закону сохранения энергии эта работа долж­на быть равна изменению энергии рассматриваемого уча­стка цепи. Поэтому энергия, выделяемая на данном уча­стке цепи за время Δ t , равна работе тока A = IU Δt

В случае, если на участке цепи не совершается меха­ническая работа и ток не производит химических дейст­вий, происходит только нагревание проводника. Нагре­тый проводник отдает теплоту окружающим телам.

Нагревание проводника происходит следующим обра­зом. Электрическое поле ускоряет электроны. После столк­новения с ионами кристаллической решетки они переда­ют ионам свою энергию. В результате энергия беспоря­дочного движения ионов около положений равновесия воз­растает. Это и означает увеличение внутренней энергии. Температура проводника при этом повышается, и он на­чинает передавать теплоту окружающим телам. Спустя небольшое время после замыкания цепи процесс устанав­ливается, и температура перестает изменяться со време­нем. К проводнику за счет работы электрического поля непрерывно поступает энергия. Но его внутренняя энер­гия остается неизменной, так как проводник передает ок­ружающим телам количество теплоты, равное работе то­ка. Таким образом, формула A = IU Δt для работы тока определяет количество теплоты, передаваемое проводни­ком другим телам.

Читайте так же:
Тепловое поражение электрическим током это тест

Если в формуле A = IU Δt выразить либо напряжение че­ рез силу тока, либо силу тока через напряжение с помо­ щью закона Ома для участка цепи, то получим три эк­ вивалентные формулы: A = IU Δt = I 2 R Δt = ∙ Δt = Q

Формулой A = I 2 R Δt удобно пользоваться для последо­ вательного соединения проводников, так как сила тока в этом случае одинакова во всех проводниках. При парал­ лельном соединении удобна формула А= ∙ Δt , так как на­ пряжение на всех проводниках одинаково.

Закон Джоуля—Ленца : количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопро­тивления проводника и времени прохождения тока по проводнику: Q =I 2 RΔt

Мы получили этот закон с помощью рассуждений, основанных на законе сохранения энергии. Эта формула позволяет вычислить количество теплоты, выде­ляемое на любом участке цепи, содержащем какие угод­но проводники.

Мощность тока. Любой электрический прибор (лампа, электродвигатель) рассчитан на потребление определен­ной энергии в единицу времени. Поэтому наряду с рабо­той тока особое значение имеет понятие мощность тока. Мощность тока равна отношению работы тока за время Δt к этому интервалу времени.

Согласно этому определению Р = = IU . Это выражение для мощности можно переписать в не­скольких эквивалентных формах, если использовать за­кон Ома для участка цепи: Р = IU = I 2 R =

Основные формулы для решения задач

A=IUΔt=I 2 RΔt=Δt=Q

P==IU

33. Какую работу совершили силы электростатического поля при перемещении 2 Кл из точки с потенциалом 20 В в точку с потенциалом 0 В? А. 40 Дж. Б. 20 Дж. В. 10 Дж. Г. 0 Дж.

34. Какая из приведенных ниже формул применяется для вычисления мощности электрического то ка?

А . I = ; Б . I = ; В .IUΔt; Г . P = UI ; Д. ρ = ρ 0 (1+α t ).

35. При перемещении электрического заряда в электрическом поле по любой замкнутой тр аектории работа сил электрического поля оказалась равной нулю. Какое это было поле?

А. Это могло быть любое поле. Б. Это могло быть только поле точечного заряда. В. Это могло быть только однородное электрическое поле. Г. Это могло быть только поле двух равных по модулю и пр отивоположных по знаку двух точечных зарядов. Д. Такого поля быть не может.

36 . Какая из приведенных ниже формул применяется для вычисления работы электрического тока?

А. ; Б. ; В. IUΔt ; Г. UI ; Д. ρ 0 (1+α t ).

37 . При перемещении заряда 2 Кл в электрическом поле силы, действующие со стороны этого поля, совершили работу 8 Дж. Чему равна разность потенциалов между начальной и конечной точками пути?

А. 16 В. Б. 4 В. В. 0,25 В. Г. По условию задачи разность определить нельзя. Д. Среди ответов А — Г нет правильного.

38. При перемещении электрического заряда q между точками с разностью потенциалов 8 В силы, действующие на заряд со стороны электрического поля, совершили работу 4 Дж. Чему равен заряд q ?

А. По условию задачи заряд определить невозможно. Б. 32 Кл. В. 2 Кл. Г. 0,5 Кл. Д.Среди ответов А-Г правильного нет.

Читайте так же:
Установка теплового реле по току

1. Мощность электрического утюга 1 кВт. Каково его сопротивление при включении в сеть с напряжением 220 В?

2. Сопротивление резистора 440 Ом, напряжение в цепи равно 220 В. Определить мощность тока.

3. По проводнику сопротивлением 20 Ом за 5 минут прошло количество электричества 300 Кл. Вычислить работу тока за это время.

4. В сеть с напряжением 220В включены параллельно одинаковые лампочки с сопротивлением 484 Ом каждая. Сколько лампочек включили в сеть, если они потребляют мощность 800 Вт?

5. Гальванический элемент с ЭДС 6 В и внутренним сопротивлением 1 Ом замкнут на сопротивление 5 Ом. Какое количество теплоты выделится на проводнике и внутреннем сопротивлении за 10 с?

6. ЭДС источника электрической энергии равна 100 В. При внешнем сопротивлении 49 Ом сила тока в цепи 2 А. Найти падение напряжения внутри источника и его внутреннее сопротивление.

7. Аккумулятор с ЭДС 6 В и внутренним сопротивлением 0,1 Ом питает внешнюю цепь сопротивлением 12,4 Ом. Какое количество теплоты выделится за время 10 минут во всей цепи?

8. На каком из сопротивлений будет выделяться наибольшее количество теплоты

в единицу времени, если R 1 =4 Ом ; R 2 =2 Ом ; R 3 =1 Ом ; R 4 =2 Ом?

9. При ремонте электроплитки её спираль укоротили на 0,2 первоначальной длины.

Как при этом изменится мощность плитки?

№ 1.Определить сопротивление электрического паяльника мощностью 300 Вт, включенного в сеть напряжением 220 В.

№ 2. По проводнику сопротивлением 20 Ом за 5 мин прошло количество электричества 300 Кл. Вычислить работу тока за это время.

№ 3. Сколько электронов проходит каждую секунду через поперечное сечение вольфрамовой нити лампочки мощностью 70 Вт, включенной в сеть с напряжением 220 В?

№ 4. Определить стоимость электрической энергии, потребляемой лампой мощностью 100 Вт за 200 ч горения

( k =0,04 ).

№ 5. Какое сопротивление нужно включить в сеть с напряжением 220 В, чтобы в нем за 10 минут выделилось 66 кДж теплоты?

Тепловое действие тока

Существует большое число электрических нагревательных приборов, например электрические плиты, утюги, самовары, кипятильники, обогреватели, электрические одеяла, фены для сушки волос, в которых используется тепловое действие тока. Основным нагревательным элементом является спираль из материала с большим удельным сопротивлением. Она помещается в керамические изоляторы с хорошей теплопроводностью… Читать ещё >

  • свойства электрического тока
  • Выдержка
  • Похожие работы
  • Помощь в написании

Тепловое действие тока ( реферат , курсовая , диплом , контрольная )

Закон Джомуля — Лемнца — физический закон, дающий количественную оценку теплового действия электрического тока. Установлен в 1841 году Джеймсом Джоулем и независимо от него в 1842 году Эмилием Ленцем Электрический ток нагревает проводник. Это явление нам хорошо известно. Объясняется оно тем, что свободные электроны в металлах, перемещаясь под действием электрического поля, взаимодействуют с ионами или атомами вещества проводника и передают им свою энергию. В результате работы электрического тока увеличивается скорость колебаний ионов и атомов и внутренняя энергия проводника увеличивается. Опыты показывают, что в неподвижных металлических проводниках вся работа тока идет на увеличение их внутренней энергии. Нагретый проводник отдает полученную энергию окружающим телам, но уже путем теплопередачи. Значит, количество теплоты, выделяемое проводником, по которому течет ток, равно работе тока. Мы знаем, что работу тока рассчитывают по формуле:

Обозначим количество теплоты буквой Q. Согласно сказанному выше Q = A, или Q = U*I*t. Пользуясь законом Ома, можно количество теплоты, выделяемое проводником с током, выразить через силу тока, сопротивление участка цепи и время. Зная, что U = IR, получим: Q = I*R*I*t, т. е. Q=I *R*t Количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени. К этому же выводу, но на основании опытов впервые пришли независимо друг от друга английский ученый Джоуль и русский ученый Ленц. Поэтому сформулированный выше вывод называется законом Джоуля — Ленца.

Читайте так же:
Тепловой расцепитель автоматического выключателя иэк

Рассмотрим устройство лампы накаливания. Нагреваемым элементом в ней является свернутая в спираль тонкая вольфрамовая нить 1. Вольфрам для изготовления нити выбран потому, что он тугоплавок и имеет достаточно большое удельное сопротивление. Спираль с помощью специальных держателей 2 укрепляется внутри стеклянного баллона, наполненного инертным газом, в присутствии которого вольфрам не окисляется. Баллон крепится к цоколю 3, к которому припаян один конец токоведущего провода в точке 4. Второй конец провода через изолирующую прокладку 5 припаян к нижнему контакту. Лампа ввертывается в патрон. Он представляет собой пластмассовый корпус А, в котором имеется металлическая гильза Б с резьбой; к ней присоединен один из проводов сети. Патрон контактирует с цоколем 3. Второй провод от сети присоединен к контакту В, который касается нижнего контакта лампы. Лампы накаливания удобны, просты и надежны, но экономически они невыгодны. Так, например, в лампе мощностью 100 Вт лишь небольшая часть электроэнергии (4 Вт) преобразуется в энергию видимого света, а остальная энергия преобразуется в невидимое инфракрасное излучение и в форме тепла передается окружающей среде (17, «https://referat.bookap.info»).

Для оценки эффективности того или иного устройства в технике введена специальная величина — коэффициент полезного действия (КПД). Коэффициентом полезного действия называют отношение энергии, полезно преобразованной (работы или мощности), ко всей потребленной энергии, или затраченной (работе или мощности):

Часто КПД выражают в процентах (%). Вычислим КПД электрической лампы накаливания по данным, приведенным выше: h=4/100=0.04=4%;

Для сравнения укажем, что КПД лампы дневного света примерно 15%, а у натриевых ламп наружного освещения около 25%.

Существует большое число электрических нагревательных приборов, например электрические плиты, утюги, самовары, кипятильники, обогреватели, электрические одеяла, фены для сушки волос, в которых используется тепловое действие тока. Основным нагревательным элементом является спираль из материала с большим удельным сопротивлением. Она помещается в керамические изоляторы с хорошей теплопроводностью, которые изготовлены в виде своеобразных бус. В приборах, предназначенных для нагревания жидкостей, изолированная спираль помещается в трубки из нержавеющей стали. Ее выводы тоже тщательно изолируются от металлических частей приборов. Температура спирали при работе нагревательного прибора остается постоянной. Объясняется это тем, что очень быстро устанавливается баланс между потребляемой из сети электроэнергией и количеством теплоты, отдаваемым путём теплообмена окружающей среде. теплота сверхпроводимость постоянный ток Очень эффективным преобразователем электрической энергии, дающим много тепла и света, является электрическая дуга. Ее широко используют для электрической сварки металлов, а также в качестве мощного источника света. Для наблюдения электрической дуги надо два угольных стержня с присоединенными к ним проводами закрепить в хорошо изолирующих держателях, а затем подключить стержни к источнику тока, дающему невысокое напряжение (от 20 до 36 В) и рассчитанному на большие силы тока (до 20 А). Последовательно стержням обязательно надо включить реостат. Ни в коем случае нельзя подключать угли в городскую сеть (220 или 127 В), так как это приведет к сгоранию проводов и к пожару. Коснувшись углями друг друга, можно заметить, что в месте соприкосновения они сильно раскалились. Если в этот момент угли раздвинуть, между ними возникает яркое слепящее пламя, имеющее форму дуги. Это пламя вредно для зрения. Пламя электрической дуги имеет высокую температуру, при которой плавятся самые тугоплавкие материалы, поэтому электрическая дуга используется в дуговых электрических печах для плавки металлов. Пламя дуги является очень ярким источником света, поэтому его часто используют в прожекторах, стационарных кинопроекторах и т. д.

Читайте так же:
Что вызывает тепловое поражение электрическим током

Электрические цепи всегда рассчитаны на определенную силу тока. Если по той или иной причине сила тока в цепи становится больше допустимой, то провода могут значительно нагреться, а покрывающая их изоляция — воспламениться. Причиной значительного увеличения силы тока в сети может быть или одновременное включение мощных потребителей тока, например электрических плиток, или короткое замыкание. Коротким замыканием называют соединение концов участка цепи проводником, сопротивление которого очень мало по сравнению с сопротивлением участка цепи. Короткое замыкание может возникнуть, например, при ремонте проводки под током (рис. 86) или при случайном соприкосновении оголенных проводов. Сопротивление цепи при коротком замыкании незначительно, поэтому в цепи возникает большая сила тока, провода при этом могут сильно накалиться и стать причиной пожара. Чтобы избежать этого, в сеть включают предохранители. Назначение предохранителей — сразу отключить линию, если сила тока вдруг окажется больше допустимой нормы.

Рассмотрим устройство предохранителей, применяемых в квартирной проводке. Главная часть предохранителя, изображенного на рисунке проволока С из легкоплавкого металла (например, из свинца), проходящая внутри фарфоровой пробки П. Пробка имеет винтовую нарезку Р и центральный контакт К. Нарезка соединена с центральным контактом свинцовой проволокой. Пробку ввинчивают в патрон, находящийся внутри фарфоровой коробки Свинцовая проволока представляет, таким образом часть общей цепи. Толщина свинцовых проволок рассчитана так, что они выдерживают определенную силу тока, например 5, 10 А и т. д. Если сила тока превысит допустимое значение, то свинцовая проволока расплавится и цепь окажется разомкнутой. Предохранители с плавящимся проводником называют плавкими предохранителями.

Физика. 10 класс

Конспект урока

Физика, 10 класс

Урок 30. Закон Джоуля — Ленца. ЭДС

Перечень вопросов, рассматриваемых на уроке:

1) Работа электрического тока;

2) Мощность электрического тока;

3) Закон Джоуля — Ленца;

4) Сторонние силы;

5) Электродвижущая сила.

Глоссарий по теме

Работа тока на участке цепи равна произведению силы тока, напряжения на этом участке и времени, в течении которого совершалась работа.

Мощность тока равна отношению работы тока ко времени прохождения тока.

Количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока.

Любые силы, действующие на электрически заряженные частицы, за исключением электростатических (кулоновских) сил, называются сторонними силами.

Электродвижущая сила (ЭДС) в замкнутом проводящем контуре равна отношению работы сторонних сил по перемещению заряда вдоль контура к этому заряду.

Основная и дополнительная литература по теме урока:

1. Г.Я. Мякишев., Б.Б.Буховцев., Н.Н.Сотский. Физика.10 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. – С. 343 – 347.

Рымкевич А.П. Сборник задач по физике. 10-11 класс. — М.: Дрофа,2009.- 68 – 74.

Основное содержание урока

При упорядоченном движении заряженных частиц в проводнике электрическое поле совершает работу, равную произведению заряда, прошедшего через проводник, и напряжения.

Сила тока равна отношению заряда прошедшего через проводник ко времени прохождения

Выразим заряд из формулы силы тока

через силу тока и время:

после подстановки в формулу (1) получим

Работа тока на участке цепи равна произведению силы тока, напряжения и времени, в течение которого шёл ток.

Из закона Ома для участка цепи выразим напряжение через силу тока и напряжение

и подставив в формулу работы получим:

При последовательном соединении проводников для определения работы тока удобнее пользоваться этой формулой, так как сила тока одинакова во всех проводниках.

При параллельном соединении проводников формулой:

так как напряжение на всех проводниках одинаково.

Работа тока показывает, сколько электроэнергии превратилось в другие виды энергии за конкретный период времени. Для электроэнергии справедлив закон сохранения энергии.

Читайте так же:
Производство теплостойкого обмоточного провода

Мощность определяется по формуле:

Мощность тока равна отношению работы тока ко времени прохождения тока.

Так же формулу для мощности можно переписать в нескольких эквивалентных формах:

Если на участке цепи не совершается механическая работа и ток не производит химических действий, то происходит только нагревание проводника.

Электрическое поле действует с силой на свободные электроны, которые начинают упорядоченно двигаться, одновременно участвуя в хаотическом движении, ускоряясь в промежутках между столкновениями с ионами кристаллической решетки. Во время этих столкновений расходуется кинетическая энергия заряженных частиц. Именно эта энергия и становится теплом. Последующие столкновения электронов с другими ионами увеличивают амплитуду их колебаний и соответственно температуру всего проводника.

В неподвижных металлических проводниках вся работа тока идет на увеличение их внутренней энергии:

Количество теплоты, выделяемое проводником, по которому течет ток, равно работе тока.

Количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока по проводнику:

При последовательном соединении большее количество теплоты выделяется в проводнике с большим сопротивлением, а при параллельном соединении – с меньшим.

Измерения, приводящие к закону Джоуля-Ленца, можно выполнить, поместив в калориметр с водой проводник с известным сопротивлением и пропуская через него ток определенной силы в течение известного времени. Количество выделяющейся при этом теплоты определяют, составив уравнение теплового баланса.

Если соединить проводником два металлических шарика, несущих заряды противоположных знаков, под влиянием электрического поля этих зарядов в проводнике возникает кратковременный электрический ток. Заряды быстро нейтрализуют друг друга, и электрическое поле исчезнет.

Чтобы ток был постоянным, надо поддерживать постоянное напряжение между шариками. Для этого необходимо устройство, которое перемещало бы заряды от одного шарика к другому в направлении, противоположном направлению сил, действующих на эти заряды со стороны электрического поля шариков. В таком устройстве на заряды, должны действовать силы неэлектростатического происхождения. Одно лишь электрическое поле заряженных частиц не способно поддерживать постоянный ток в цепи.

Любые силы, действующие на электрически заряженные частицы, за исключением сил электростатического происхождения (то есть кулоновских), называют сторонними силами. Необходимости сторонних сил для поддержания постоянного тока в цепи объясняет закон сохранения энергии.

Электростатическое поле потенциально. Работа этого поля при перемещении в нем заряженных частиц вдоль замкнутой электрической цепи равна нулю. Прохождение же тока по проводникам сопровождается выделением энергии — проводник нагревается. Следовательно, в цепи должен быть какой-то источник энергии, поставляющий ее в цепь. Работа этих сил вдоль замкнутого контура отлична от нуля. Внутри источника тока заряды движутся под действием сторонних сил против кулоновских сил (электроны от положительно заряженного электрода к отрицательному), а во внешней цепи их приводит в движение электрическое поле.

Действие сторонних сил характеризуется важной физической величиной, называемой электродвижущей силой (сокращенно ЭДС).

Электродвижущая сила источника тока равна отношению работы сторонних сил при перемещении заряда по замкнутому контуру к величине этого заряда:

Электродвижущую силу выражают в вольтах.

Разбор тренировочных заданий

1. Электрочайник со спиралью нагревательного элемента сопротивлением 30 Ом включен в сеть напряжением 220 В. Какое количество теплоты выделится в нагревательном элемента за 5 мин?

Решение. Количество теплоты выделяемой нагревательным элементом определяется законом Джоуля – Ленца:

Правильный ответ 3) 484000 Дж.

2. Определите работу сторонних сил при перемещении по проводнику заряда 10 Кл, если ЭДС равно 9 В. Ответ округлите до десятых.

=9В

Решение. Из формулы ЭДС выражаем

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector