Sfera-perm.ru

Сфера Пермь
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Таймер 555 регулятор тока

555-й таймер. Часть 1. Как устроен и как работает таймер NE555. Расчёт схем на основе NE555

Эта статья посвящена микросхеме, сохраняющей популярность уже более 30 лет и имеющей множество клонов. Встречайте — таймер NE555 (он же — LM555, LC555, SE555, HA555, а также
множество других, есть даже советский аналог — КР1006ВИ1). Такую популярность этой микросхеме обеспечили простота, дешивизна, широкий диапазон напряжений питания (4,5-18В), высокая точность и стабильность (температурный дрейф 0,005% / o С, дрейф от напряжения питания — менее 0,1% / Вольт), ну и конечно же, самое главное, — широчайшие возможности применения.

Но, обо всём по порядку. Начнём мы с того, как эта микросхема устроена.

Итак, функциональная схема таймера показана на рисунке 1.

1. GND — земля/общий провод.

2. Trigger — инвертирующий вход компаратора, ответственного за установку триггера. Когда напряжение на этой ноге становится меньше 1/3 Vcc (то есть меньше, чем напряжение на неинвертирующем входе компаратора) — на вход SET триггера поступает логическая 1. Если при этом отсутствуют сигналы сброса на входах Reset, то триггер установится (на его выходе появится логический 0, так как выход инвертированный).

3. Output — выход таймера. На этом выводе присутствует инвертированный сигнал с выхода триггера, то есть когда триггер взведён (на его выходе ноль) — на выводе Output высокий уровень, когда триггер сброшен — на этом выводе низкий уровень.

4. Reset — сброс. Если этот вход подтянуть к низкому уровню, триггер сбрасывается (на его выходе устанавливается 1, а на выходе таймера низкий уровень).

5. Control — контроль/управление. Этот вывод позволяет изменять порог срабатывания компаратора, управляющего сбросом триггера. Если вывод 5 не задействован, то этот порог определяется внутренним делителем напряжения на резисторах и равен 2/3 Vcc. Вывод Control можно использовать, например, для организации обратной связи по току или напряжению (об этом я позднее расскажу).

6. Threshold — порог. Когда напряжение на этом выводе становится выше порогового (которое при незадействованном выводе 5, как вы помните, равно 2/3 Vcc) — происходит сброс триггера и на выходе таймера устанавливается низкий уровень.

7. Discharge — разряд. На этом выходе 555-й таймер имеет транзистор с открытым коллектором. Когда триггер сброшен — этот транзистор открыт и на выходе 7 присутствует низкий уровень, когда триггер установлен — транзистор закрыт и вывод 7 находится в Z-состоянии. (Почему эта нога называется «разряд» вы скоро поймёте.)

8. Vcc — напряжение питания.

Далее, давайте рассмотрим, в чём же основная идея использования этого таймера. Для этого добавим к нашей схеме пару элементов внешней обвязки (смотрим рисунок 2). 4-ю и 5-ю ноги мы пока не будем использовать, поэтому будем считать, что 4-я нога у нас гвоздём прибита к напряжению питания, а 5-я просто болтается в воздухе (с ней и так ничего не будет).

Итак, пусть изначально у нас на второй ноге присутствует высокий уровень. После включения наш триггер сброшен, на выходе триггера высокий уровень, на выходе таймера низкий уровень, на 7-й ноге тоже низкий уровень (транзистор внутри микрухи открыт).

Чтобы произошло переключение триггера — необходимо подать на вторую ногу уровень ниже 1/3 Vcc (тогда переключится компаратор и сформирует высокий уровень на входе Set нашего триггера). Пока уровень на 2-й ноге остаётся выше 1/3 Vcc — наш таймер находится в стабильном состоянии и никаких переключений не происходит.

Ну что ж, — давайте кратковременно подадим на 2-ю ногу низкий уровень (на землю её коротнём, да и всё) и посмотрим что будет происходить.

Как только уровень на 2-й ноге упадёт ниже 1/3 Vcc — у нас сработает компаратор, подключенный к устанавливающему входу триггера (S), что, соответственно, вызовет установку триггера.

На выходе триггера появится ноль (поскольку выход триггера инвертирован), при этом на выходе таймера (3-я нога) установится высокий уровень. Кроме этого транзистор на 7-й ноге закроется и 7-я нога перейдёт в Z-состояние.

При этом через резистор Rt начнёт заряжаться конденсатор Ct (поскольку он больше не замкнут на землю через 7-ю ногу микрухи).

Как только уровень на 6-й ноге поднимется выше 2/3 Vcc — сработает компаратор, подключенный ко входу R2 нашего триггера, что приведёт к сбросу триггера и возврату схемы в первоначальное состояние.

Вот мы и рассмотрели работу схемы, называемой одновибратором или моностабильным мультивибратором, короче говоря, устройства, формирующего единичный импульс.

Как нам теперь узнать длительность этого импульса? Очень просто, — для этого достаточно посчитать, за какое время конденсатор Ct зарядится от 0 до 2/3 Vcc через резистор Rt от постоянного напряжения Vcc.

Сначала решим эту задачку в общем виде. Пусть у нас конденсатор заряжается через резистор R напряжением Vп от начального уровня U.

Вспоминаем, как связаны ток и напряжение на конденсаторе: i=C*dU/dt. Ток через резистор: i=(Vп-U)/R. Поскольку это один и тот же ток, который течёт через резистор и заряжает конденсатор, то мы можем составить простое дифференциальное уравнение, описывающее процесс заряда нашего конденсатора: C*dU/dt=(Vп-U)/R.

Преобразуем наше уравнение к виду: RC*dU/dt + U = Vп

Это дифференциальное уравнение имеет решение, вида: U=U+(Vп-U)*(1-e -t/RC ) ( формула 1 )

Теперь вернёмся к нашей схеме. Зная, что U=0, напряжение питания равно Vcc, а конечное напряжение равно 2/3 Vcc, найдём время заряда:

2/3 Vcc = Vcc*(1-e -t/RC )

Отсюда получаем длительность импульса нашего одновибратора:

t = RC*(-ln(1/3)) ≈ 1,1*RC

А теперь мы нашу схему немного изменим. Добавим в неё ещё один резистор, и чуть изменим подключение ног (смотрим рисунок 3).

Так, что у нас получилось? На старте конденсатор Ct разряжен (напряжение на нём меньше 1/3 Vcc), значит сработает компаратор запуска и сформирует высокий уровень на входе S нашего триггера. Напряжение на 6-й ноге меньше 2/3 Vcc, значит компаратор, формирующий сигнал на входе R2, — выключен (на его выходе низкий уровень, то есть сигнала Reset нет).

Читайте так же:
Микросхема импульсного стабилизатор напряжения тока

Следовательно сразу после включения наш триггер установится, на его выходе появится логический 0, на выходе таймера установится высокий уровень, транзистор на 7-й ноге закроется и конденсатор Ct начнёт заряжаться через резисторы R1, R2. При этом напруга на 2-й и 6-й ногах начнёт расти.

Когда эта напруга вырастет до 1/3 Vcc — пропадёт сигнал Set (отключится компаратор установки триггера), но триггеру пофиг, на то он и триггер, — если уж он установился, то сбросить его можно только сигналом Reset.

Сигнал Reset сформируется верхним на нашем рисунке компаратором, когда напряжение на конденсаторе, а вместе с ним на 2-й и 6-й ногах, достигнет значения 2/3 Vcc (то есть как только напряжение на конденсаторе станет чуть больше — сразу сформируется Reset).

Этот сигнал (Reset) сбросит наш триггер и на его выходе установится высокий уровень. При этом на выходе таймера установится низкий уровень, транзистор на 7-й ноге откроется и конденсатор Ct начнёт разряжаться через резистор R2. Напряжение на 2-й и 6-й ногах начнёт падать. Как только оно станет чуть меньше 2/3 Vcc — верхний компаратор снова переключится и сигнал Reset пропадёт, но установить триггер теперь можно только сигналом Set, поэтому он так и останется в сброшенном состоянии.

Как только напряжение на Ct снизится до 1/3 Vcc (станет чуть ниже) — снова сработает нижний компаратор, формирующий сигнал Set, и триггер снова установится, на его выходе снова появится ноль, на выходе таймера — единица, транзистор на 7-й ноге закроется и снова начнётся заряд конденсатора.

Далее этот процесс так и будет продолжаться до бесконечности — заряд конденсатора через R1,R2 от 1/3 Vcc до 2/3 Vcc (на выходе таймера высокий уровень), потом разряд конденсатора от 2/3 Vcc до 1/3 Vcc через резистор R2 (на выходе таймера низкий уровень).

Таким образом наша схема теперь работает как генератор прямоугольных импульсов, то есть мультивибратор в автоколебательном режиме (когда импульсы сами возникают, без каких-либо внешних воздействий).

Осталось только посчитать длительности импульсов и пауз. Для этого снова воспользуемся формулой 1, которую мы вывели выше.

При заряде конденсатора напряжением Vcc через R1,R2 от 1/3 Vcc до 2/3 Vcc, имеем:

2/3 Vcc = 1/3 Vcc + (Vcc-1/3 Vcc)*(1-e -t/(R1+R2)C )

Отсюда получаем длительность импульса нашего мультивибратора:

tи = -ln(1/2)*(R1+R2)*C ≈ 0,693*(R1+R2)C

Аналогично находим длительность паузы, только теперь у нас начальный уровень 2/3 Vcc, конденсатор мы не заряжаем от Vcc, а разряжаем на землю (т.е. вместо Vп в формулу нужно подставить ноль, а не Vcc) и разряд идёт только через резистор R2:

1/3 Vcc = 2/3 Vcc + (0-2/3 Vcc)*(1-e -t/R2*C )

Отсюда получаем длительность паузы мультивибратора:

tп = -ln(1/2)*R2*C ≈ 0,693*R2*C

Ну и дальше уже несложно посчитать для нашего мультивибратора период импульса и частоту:

T = tи + tп = -ln(1/2)*(R1+2*R2)*C ≈ 0,693*(R1+2*R2)*C

псевдо-Бистабильные реле RM-02, RM-04, RM-05

Пример №7 — Простой генератор прямоугольных импульсов на NE555

В момент включения схемы, конденсатор C1 разряжен и на выходе 3 таймера NE555 находится высокий уровень. Затем конденсатор C1 через резистор R1 начинает постепенно заряжаться.

Профессиональный цифровой осциллограф

Количество каналов: 1, размер экрана: 2,4 дюйма, разрешен…

В момент, когда потенциал на конденсаторе, и соответственно на выводе 6 (стоп) таймера, достигнет примерно 2/3 напряжения питания, сигнал на выводе 3 переключится на низкий уровень. Теперь конденсатор через сопротивление R1 начинает разряжаться. Когда уровень напряжения на входе 2 (запуск) упадет до 1/3 Uпит., на выходе снова будет высокий уровень. И процесс повторится снова.

Если к выходу добавить еще RC-цепь (выделено красным цветом), то выходной сигнал по форме будет приближен к синусоиде.

ШИМ регулятор на микросхеме NE555

Аббревиатура «ШИМ» довольно часто встречается в технической среде, расшифровывается она как «широтно-импульсная модуляция». Шим-сигнал представляет собой непрерывную последовательность из прямоугольных импульсов, ключевыми параметрами такого сигнала будут являться длительность самого импульса (широта), и частота сигнала. Отношение длительности импульса и длительности паузы между импульсами называется скважностью, она может варьироваться от 0 до 100%, если скважность равна 0 %, сигнал будет полностью отсутствовать. Если начать понемногу увеличивать длительность, то импульсы будут выглядеть как тонкие иголки, если увеличить ещё — один станут похожи на прямоугольники. В случае, когда скважность равна 50%, длительность паузы становится равно длительности самого импульса, если же увеличить скважность до 100%, то сигнал просто превратится в некое постоянное напряжение — паузы между импульсами просто будут отсутствовать. Если же проинтегрировать такую непрерывную последовательность импульсов, то получится некое постоянное напряжение, амплитуда которого будет меньше размаха самих импульсов, причём будет строго зависеть от скважности.

Чем больше процент скважности — тем соответственно будет амплитуда постоянного напряжения после интегрирования. Именно это интересное свойство используется в ШИМ-регуляторах — устройство, мощность которого нужно регулировать, питают не постоянным напряжением, а вот таким сигналом из прямоугольных импульсов, то есть регулируя скважность меняется и напряжение на нагрузке. Интегрирование происходит «автоматически» за счёт присутствия на выходе конденсатора, а также паразитных сопротивлений и индуктивностей. Кроме того, некоторым устройствам, например, нагревателям, совершенно неважно, какая форма у питающего напряжения, импульсы это или постоянный ток. Огромным преимуществом ШИМ-регуляторов является большой КПД — именно по этой причине они и получили такое широкое распространение в электронике. Дело в том, что для создания прямоугольных импульсов на нагрузке управляющий транзистор работает в ключевом режиме — то есть находится всегда в одном из двух состояний, либо полностью закрыт, либо полностью открыт. В первом случае ток через него не протекает вообще, соответственно не выделяется никакого тепла, во втором же случае он представляет из себя перемычку с очень малым падением напряжения — тепло также практически не выделяется, особенно если применять транзисторы с максимально низким сопротивлением открытого канала. Тепловыделение на транзисторе обусловлено, в первую очередь, потерями при переключении транзистора, ведь переключает своё состояние он несколько тысяч раз в секунду. Таким образом, при коммутировании маломощной нагрузки радиатор не потребуется вообще, а для мощной же (при токе от 5-7А) небольшой радиатор может потребоваться. Схем различных ШИМ-регуляторов в интернете представлено достаточно много, в том числе и на микроконтроллерах с различными дополнительными опциями и наворотами. Представленная же ниже схема является самой типовой и простейшей — она имеет всего один орган управления (переменный резистор), которым будет регулироваться мощность на нагрузке, контакты для подключения самой нагрузки и питающего напряжения, ничего лишнего.

Читайте так же:
Стабилизатор напряжения тока схемы защита по току


Как можно увидеть, ключевым звеном схемы является микросхема-таймер NE555, которая работает в роли генератора прямоугольных импульсов. Подобный генератор также можно собрать и на паре отдельных транзисторов, но микросхема же обеспечивает большую надёжность работы и стабильность в зависимости от температуры. Резистор R1 — потенциометр, который и будет регулировать мощность. В одном его положении напряжение на нагрузке будет практически равно нуля, а во втором — напряжению питания, так, как будто нагрузка просто подключена напрямую. Этот орган управления можно установить на плате в виде подстроечного резистора, либо вывести на проводах и установить на корпусе с ручкой. Использовать здесь можно практически любой переменный резистор с сопротивлением от 10 до 50 кОм, характеристика должна быть линейной. Резистор R2 задаёт крайнее положение регулировки, установленный на схеме номинал в 1 кОм практически не влияет на границу регулировки. Диоды D1 и D2 — любые кремниевые диоды, например, подойдут дешёвые 1N4148, либо 1N4007. Особое внимание стоит обратить на конденсатор С1, ведь именно от его ёмкости будет зависеть частота работы ШИМ-регулятора. Эта частота может лежать в звуковом диапазоне, то есть быть менее 20 кГц — в этом случае возможно появление высокочастотного свиста от нагрузки. Если после запуска схемы слышен свист — можно уменьшить ёмкость этого конденсатора, в этом случае частота работы схемы просто выйдет за пределы слышимости человеческого уха. Также в этом случае не мешает поставить параллельно выходу схемы конденсатор, ёмкостью 100 нФ, а параллельно с ним электролитический на 100-220 мкФ для подавления пульсаций, то есть интегрирования прямоугольых импульсов. Конденсатор С1 можно использовать керамический, но более предпочтительным вариантом будет плёночный, так как здесь важна термостабильность и изменение ёмкости от температуры может стать критичным. С2 — керамический на 1 нФ.


Q1 на схеме — транзистор, который коммутирует нагрузку, особое внимание стоит уделить выбору этого транзистора, особенно если планирует использование регулятора с мощной нагрузкой. Стандартными вариантами будут распространённые и довольно дешёвые полевые транзисторы IRF740, IRF640, а также более низковольтные IRF3205, IRFZ55. Ключевыми параметрами транзисторов являются максимальный ток, максимальное напряжение (оно должно быть раза в два выше напряжения питания), а также сопротивление открытого канала. Резистор R4 на схеме ограничивает зарядный ток затвора транзистора, а R3 подтягивает затвор к плюсу питания. В данном регуляторе можно применить и биполярный транзистор, хоть он и будет обладать большими потерями и большим нагревом, по сравнению с полевым. Хорошим вариантом будет составной транзистор КТ827, схема с его использованием показана ниже.


А также печатная плата для данной схемы.


Обозначением N в кружке на схеме показана нагрузка, мощность на которой нужно регулировать, это может быть, например, лампочка накаливания, мощные светодиоды, какой-либо нагреватель, электродвигатель, зарядное устройство аккумулятора — практически любая нагрузка постоянного тока. Диод D3 служит для защиты транзистора от выбросов самоиндукции, которые могут возникать при коммутировании нагрузки индуктивного типа. Сюда подойдёт диод 1N4007.

Вся схема выполняется на довольно миниатюрной печатной плате, которая имеет по два контакта с каждой стороны — для подключения нагрузки и питающего напряжения. Также плата имеет посадочное место для установки подстроечного резистора — если используемый вами тип не совпадает с посадочным местом на плате, то можно открыть печатную плату в программе Sprint Layout и подредактировать, файл приложен в архиве в конце статьи. Транзистор можно оставить на плате, если на него не крепится радиатор, в противном же случае его также можно вывести на проводах и посадить на радиатор. Обратите внимание, что все провода для подключения мощной нагрузки нужно брать соответствующего сечения. Ниже показан собранный вариант платы с биполярным транзистором.

Напряжения питания регулятора составляет 9 — 15В, сама схема питается от того же источника, что и коммутируемая нагрузка. Удачной сборки!

shim-reguljator-2-1.rar [6,9 Kb] (скачиваний: 11)
Источник (Source)



Таймер 555 регулятор тока

В предлагаемой схеме регулятора мощности коммутирующим элементом является симистор (триак). В радиолюбительской литературе авторы конструкций в основном применяют фазоимпульсное управление, когда момент открывания полупроводникового ключа (тиристора, симистора) определяется подачей напряжения на управляющий электрод, а закрывание происходит тогда, когда ток через прибор становится меньше тока удержания. В описываемой схеме регулятора мощности автор остановился именно на таком принципе управления симистором. В отличие от ранее предложенных в литературе схем управления, в предлагаемой конструкции применен более эффективный способ привязки отсчёта времени задержки включения симистора к моменту перехода сетевого напряжения через ноль и более точная выдержка этой временной задержки.

Схема регулятора мощности, о котором идет речь, показана на рис.1.


Напряжение питания схемы регулятора мощности, в виду малого потребления, ограничивается с помощью гасящего конденсатора С1. Резистор R1 необходим в первоначальный момент включения устройства в сеть, для ограничения тока через диодный мост VD1-VD4, когда конденсатор ещё не заряжен. Мост выпрямляет ток, а стабилитрон VD9 обеспечивает стабилизацию напряжения питания узла, управляющего моментом включения симистора. Конденсатор С2 необходим для сглаживания пульсаций этого напряжения.

Читайте так же:
Для чего предназначен стабилизатор тока 1

С помощью диодного моста VD5-VD8, транзистора VT1, оптрона DA1 и сопутствующих радиокомпонентов осуществляется очень точная привязка момента перехода сетевого напряжения через ноль. Этот узел позаимствован из статьи [1]. Кратко рассмотрим его работу. Резисторы R2 и R3 гасят излишек сетевого напряжения, так как далее используются низковольтные компоненты. В статье [1 ] предлагалось использовать SMD-резисторы типоразмера 1206, но автор не решился на такой эксперимент. Далее напряжение сети преобразуется диодным мостом в полуволны, следующие с частотой 100 Гц, а стабилитрон VD10 ограничивает их по амплитуде уровнем, который необходим для работы каскада на транзисторе VT1, формируя трапецеидальные импульсы. Резистор R4 немного «подгружает» мост. При приходе каждого трапецеидального импульса конденсатор СЗ заряжается через диод VD11. Когда напряжение на срезе трапецеидального импульса становится ниже, чем напряжение на конденсаторе СЗ, открывается транзистор VT1. Конденсатор СЗ разряжается через ограничивающий резистор R5, участок Э-К VT1 и светоизлучающий диод оптрона DA1. При этом формируется импульс длительностью несколько сотен микросекунд. Импульс возникает примерно за 200 мкс до перехода сетевого напряжения через ноль. Оптрон DA1 увеличивает крутизну импульса и инвертирует его. Потребляемая этим узлом мощность не превышает 200 мВт.

Задержку включения симистора относительно перехода сетевого напряжения через ноль выполняет микросхема популярного таймера-генератора DA2 типа 555. На этой микросхеме выполнен регулируемый одновибратор, генерирующий на своем выходе импульсы высокой точности по длительности. Он запускается по входу «TRIGGER» входным отрицательным импульсом. При этом на выходе «OUTPUT» после запуска устанавливается напряжение, немного не доходящее до напряжения питания. Через вход оптрона DA3 и светодиод HL1 ток не протекает. Через резисторы R7 и R8 заряжаются конденсаторы С4-С6. Когда напряжение на них достигнет уровня 2/3 напряжения питания, по входу «THRESOLD» таймер переключится в противоположное состояние, то есть на выходе будет напряжение близкое к напряжению общей шины. На выходе «-DISCHARGE» также устанавливается низкое напряжение. Конденсаторы С4-С6 через внутренний транзистор микросхемы разряжаются на общую шину. Таким образом формируется высокостабильные по длительности импульсы. Стабильность их в основном зависит от временной и температурной стабильности применённых конденсаторов и резисторов R7 и R8. Резистор R7 позволяет изменять длительность времени задержки появления на выходе таймера низкого напряжения. В момент установления на выводе «OUTPUT» этого напряжения, через вход оптрона DA3 и светодиод HL1 начинает протекать ток. Тиристорный оптрон включается, подавая на управляющий вход G симистора VS1 открывающее напряжение. В результате чего триак коммутирует мощную нагрузку.

На первый взгляд может показаться, что схема регулятора мощности сложна, но более простые схемы, предлагаемые радиолюбителями, страдают одним существенным недостатком: гистерезисом регулировочной характеристики. Устранение гистерезиса схемотехническими способами приводит к их усложнению, не уступающему сложности рассмотренной выше схемы. Промышленные схемы регуляторов мощности в большинстве своем еще сложнее. Проще схемы, которые обладают высокими эксплуатационными характеристиками, только выполненные на микроконтроллерах. Для этого, правда, надо написать еще программу, а при ее наличии микроконтроллер надо запрограммировать программатором, но не у всех радиолюбителей он имеется.

Конструкция и детали. В предлагаемой схеме регулятора мощности необходимо использовать заведомо исправные радиоэлементы, в противном случае придется потратить время на поиск неисправности. В конструкции применены постоянные резисторы типа МЛТ, не менее указанной на схеме мощности, которые можно заменить аналогичными импортными. Переменный резистор типа СПЗ-4аМ. Конденсатор С1 пленочный импортный или отечественный типа К73-17. Конденсаторы СЗ-С7 импортные керамические, но конденсаторы С4-С6 лучше использовать отечественные типа К73-9 или К73-17 на напряжение 63 или 100 В. Они более габаритные, но и более стабильные. Электролитический конденсатор С2 импортный, например, фирмы HITANO. Диод VD11 можно заменить отечественным КД522Б. Диодные мосты можно заменить отдельными диодами, выдерживающими обратное напряжение не менее 400 В и прямой постоянный ток 0,3 А, например 1N4004. Светодиод может быть любого цвета свечения, как импортный типа RL50-YG213, зеленый, так и отечественный АЛ307Б. Транзистор VT1 заменяется отечественным КТ3107. Оптопарам DA1 и DA3 отечественных аналогов нет. Микросхему таймера можно заменить на КР1006ВИ1. Триак можно применить и более мощный типа ВТ139-600Е с максимальным допустимым током 16 А, всё зависит от применяемой нагрузки.

Все детали, исключая триак, размещены на печатной плате из одностороннего фольгированного стеклотекстолита толщиной 1,5 мм размерами 80×110 мм. Чертеж печатной платы показан на рис.2, а размещение радиокомпонентов — на рис.3. На плате имеются отверстия для крепления радиатора. Радиатор использован от изделия «Устройство регулировки температуры РТ-3». Размеры радиатора 70×40 мм. Радиатор имеет 8 ребер высотой 20 мм. Он установлен на втулках над переменным резистором в верхней части платы. Это сделано для того, чтобы тепловой поток от него не нагревал радиоэлементы. На радиаторе через изоляционную прокладку из слюды закреплен симистор VS1. Выводы его соединены с одноименными отверстиями на плате с помощью провода МГТФ. Монтаж внутри корпуса также выполнен этим проводом. Вся конструкция (см. фото в начале статьи) установлена в корпусе от «Устройства регулировки температуры РТ-3».

Налаживание. Собранный из заведомо исправных деталей регулятор мощности, как правило, не нуждается в налаживании. Все перепайки и замены элементов необходимо производить только при извлечённой вилки сетевого шнура из розетки бытовой сети. В противном случае можно получить поражение электрическим током, так как элементы конструкции находятся под потенциалом сети. Ввиду разброса номиналов резисторов R7, R8, в некоторых случаях понадобится подбор конденсаторов С5, С6. Для этого включают в качестве нагрузки лампу накаливания. Резистором R8 изменяют напряжение на лампе и наблюдают за изменением яркости ее свечения. Если в крайнем левом положении резистора R8 происходит мерцание лампочки, то надо уменьшить ёмкость конденсаторов С5, Сб. При тщательной настройке можно добиться того, что яркость лампочки будет изменяться от полного погасания до максимальной. Если предполагается регулировать напряжение на нагревательном элементе, то добиваться такого низкого напряжения нет смысла.

Читайте так же:
Стабилизатор напряжения сила тока

В процессе эксплуатации устройства выяснилось, что оно является источником сильных радиопомех. Вследствие этого на сетевой шнур у ввода в корпус необходимо установить помехоподавляющий фильтр. Промышленность предлагает, а некоторые магазины электронных товаров имеют в наличии такие фильтры, состоящие из нескольких ферритовых колец, через отверстие внутри которых пропускается сетевой шнур.
Регулятор напряжения используется автором для регулирования мощности ТЭНов 2-конфо-рочной электроплитки «МЕЧТА». При этом отпала необходимость использовать штатные четырехпозиционные регуляторы мощности плитки.
Литература
1. Luca Matteini. Детектор перехода сетевого напряжения через ноль с минимальным количеством высоковольтных компонентов // Радиолоцман. — 2011. — №12. — С.65-67.

От редакции. Рассмотренное в статье устройство имеет ряд недостатков, о которых не упомянул автор. Его нельзя использовать для регулировки мощности устройств, содержащих электронные схемы: энергосберегающих (люминесцентных) ламп, устройств, содержащих электронные трансформаторы, светодиодных осветительных приборов со специализированными микросхемами управления и т.д. Второй из существенных недостатков — это отсутствие гальванической развязки устройства управления и сети при наличии в схеме устройства двух, так называемых, оптоизоляторов DA1 и DA3. Даже в случае качественной изоляции корпуса прибора возможен электрический пробой в потенциометре R7 между движком и осью, случайное прикосновение к которой может привести к поражению электрическим током.
Последний недостаток легко устраним. Для этого достаточно подавать на выпрямительные мосты переменное напряжение через небольшой трансформатор, а не непосредственно от сети. Это несколько усложнит схему регулятора мощности и увеличит габариты устройства, но зато обеспечит безопасность работы с ним.

Регулировка частоты и скважности на 555. Генератор прямоугольных импульсов на NE555

Генератор прямоугольных импульсов на NE555

555 — аналоговая интегральная микросхема, универсальный таймер — устройство для формирования (генерации) одиночных и повторяющихся импульсов со стабильными временными характеристиками. Применяется для построения различных генераторов, модуляторов, реле времени, пороговых устройств и прочих узлов электронной аппаратуры. В качестве примеров применения микросхемы-таймера можно указать функции восстановления цифрового сигнала, искаженного в линиях связи, фильтры дребезга, двухпозиционные регуляторы в системах автоматического регулирования, импульсные преобразователи электроэнергии, устройства широтно-импульсного регулирования, таймеры и др.

В данной статье расскажу о построении генератора на этой микросхеме. Как написано выше мы уже знаем что микросхема формирует повторяющиеся импульсы со стабильными временными характеристиками, нам это и нужно.

Схема включения в астабильном режиме. На рисунке ниже это показано.

Так как у нас генератор импульсов, то мы должны знать их примерную частоту. Которую мы рассчитываем по формуле.

Значения R1 и R2 подставляются в Омах, C — в фарадах, частота получается в Герцах. Время между началом каждого следующего импульса называется периодом и обозначается буковкой t. Оно складывается из длительности самого импульса — t1 и промежутком между импульсами — t2. t = t1+t2.

Частота и период — понятия обратные друг другу и зависимость между ними следующая: f = 1/t. t1 и t2 разумеется тоже можно и нужно посчитать. Вот так: t1 = 0.693(R1+R2)C; t2 = 0.693R2C;

С теорией закончили так что приступим к практике.

Разработал простенькую схему с доступными всем деталями.

Расскажу о ее особенностях. Как уже многие поняли, переключатель S2 используется для переключения рабочей частоты. Транзистор КТ805 используется для усиления сигнала (установить на небольшой радиатор). Резистор R4 служит для регулировки тока выходного сигнала. Сама микросхема служит генератором. Скважность и частоту рабочих импульсов изменяем резисторами R3 и R2. Диод служит для увеличения скважности(можно вообще исключить). Также присутствует шунт и индикатор работы, для него используется светодиод со встроенным ограничителем тока(можно использовать обычный светодиод ограничив ток резистором в 1 кОм). Собственно это все, далее покажу как выглядит рабочее устройство.

Вид сверху, видны переключатели рабочей частоты.

Снизу прикрепил памятку.

Данными подстроечными резисторами регулируется скважность и частота (на памятке видно их обозначение).

Сбоку выключатель питания и выход сигнала.

Список радиоэлементов
ОбозначениеТипНоминалКоличествоПримечаниеМагазинМой блокнот
IC1Программируемый таймер и осцилляторNE5551Поиск в магазине ОтронВ блокнот
Т1Биполярный транзисторКТ805А1Поиск в магазине ОтронВ блокнот
D1Выпрямительный диод1N41481Поиск в магазине ОтронВ блокнот
С1Конденсатор1 нФ1Поиск в магазине ОтронВ блокнот
С2Конденсатор100 нФ1Поиск в магазине ОтронВ блокнот
С3Конденсатор1000 нФ1Поиск в магазине ОтронВ блокнот
C4Электролитический конденсатор100 мкФ1Поиск в магазине ОтронВ блокнот
R1Резистор500 Ом1Поиск в магазине ОтронВ блокнот
R2, R3Переменный резистор50 кОм1Поиск в магазине ОтронВ блокнот
Led1Светодиод12 вольт1Поиск в магазине ОтронВ блокнот
Добавить все
Прикрепленные файлы:
  • ген.lay (30 Кб)
  • Генератор
  • 555

Переключатель диапазонов генератора

Селектор диапазонов представляет собой однополюсный поворотный переключатель с 12-ю положениями. Каждое положение переключателя соответствует разному конденсатору.

Для удобства сделано кольцо из толстой проволоки (2,5 мм). Диаметр был примерно на 10 мм больше, чем диаметр поворотного переключателя. Спаяны два края этого провода, чтобы получилось замкнутое кольцо. Затем припаять один вывод конденсатора к одной позиции поворотного переключателя. Другой вывод конденсатора был свободен, за пределами диаметра переключателя. На этой клемме припаяем кольцо. Затем на симметричный вывод переключателя припаять аналогично еще один конденсатор. Сделать это для всех 12 конденсаторов. В итоге будут все 12 конденсаторов, подключенных непосредственно к переключателю, и теперь потребовалось бы только 2 провода для отвода от печатной платы, то есть провод массы, который подключен к кольцу, и вход COSC для микросхемы.

Читайте так же:
Lm317 в мощном стабилизаторе тока

Панель лицевая для этого проекта будет находиться рядом с основным источником питания рабочего места. Планируется закрепить кнопки на прозрачном акриловом стекле. Оно будет прикручено к дереву. Между стеклом и деревом бумага с напечатанным изображением. Это может показаться странным, но именно так мне удобнее всего. Вот файл панели:

Сначала вырезать прозрачное оргстекло размером 100 х 160 мм. Затем наклеить на него маску для сверления. Булавкой отметить места, где нужно проделать отверстия. Стоит использовал конические сверла, чтобы проделать отверстия для каждого переключателя / потенциометра.

Затем наклеить вырезанную маску на заднюю часть дерева, к которой будет прикреплен элемент управления. Ручкой обозначить периметр отрезка, который нужно вырезать. Проделать 15 мм отверстия в каждом углу для лобзика. Им удалить этот кусок.

С помощью экстрактора удалить отверстия для компонентов из художественной бумаги. Затем разместить рисунок за акриловым стеклом и плотно закрепить на нем все компоненты.

Схема имеет 5 линий (+12 / -12 / +5 / -5 и 0 В), которыми необходимо управлять с одного переключателя SPST. Так как уже есть блок питания с такими выходами, отдельного другого делать не нужно. Для управления линиями использовалось 2 реле. Вот принципиальная схема подключения:

Ну и конечно всё отлично в итоге получилось. Генератор прекрасно вписался в интерьер домашней радиолюбительской лаборатории — очень удобно вышло и полезно в работе. А если возникли проблемы с покупкой этой микросхемы — делайте схему попроще, на обычных операционных усилителях.

Генерация импульсного сигнала при помощи микросхемы 555

Теперь попробуем заменить человека и кнопку, ведь мы не хотим весь праздник включать и выключать гирлянду каждые 3 секунды.

В качестве автоматического генератора импульсов используем очень известную микросхему семейства 555. Микросхема 555 — это генератор одиночных или периодических импульсов с заданными характеристиками. По-другому данный класс микросхем называют таймерами.

Существуют разные модификации таймера 555, разработанные разными компаниями: КР1006ВИ1, NE555, TLC555, TLC551, LMC555. Как правило, все они имеют одинаковый набор выводов.

Также производители выделяют два режима работы таймера: одновибратор и мультивибратор. Нам подойдет второй режим, именно в нем таймер будет непрерывно генерировать импульсы с заданными параметрами.

Для примера, подключим к таймеру 555 один светодиод. Причем, используем вариант, когда положительный вывод светодиода соединяется с питанием, а земля к таймеру. Позже будет понятно, почему мы делаем именно так.

Внешний вид макета

В этой схеме есть три компонента без номиналов: резисторы Ra и Rb, а также конденсатор C1 (далее просто C). Дело в том, что именно с помощью этих элементов настраиваются нужные нам характеристики генерируемого импульсного сигнала. Делается это с помощью несложных формул, взятых из технической документации к микросхеме.

T = 1/F = 0.693*(Ra + 2*Rb)*C; (1)

t = 0.693*(Ra + Rb)*C; (2)

Здесь F — частота сигнала; T — период импульса; t — его длительность; Ra и Rb — искомые сопротивления. Исходя из этих формул, коэффициент заполнения не может быть меньше 50% (иначе мы получим отрицательное значение сопротивления). Вот это новость! А что же нам делать с гирляндой? Ведь согласно нашей постановке, коэффициент заполнения импульсного сигнала должен быть непременно 33%.

Чтобы обойти это ограничение имеется два способа. Первый способ заключается в использовании другой схемы подключения таймера. Существуют более сложные схемы, которые позволяют варьировать параметр D во всем диапазоне от 0 до 100%. Второй способ не требует переделки схемы. Мы просто-напросто инвертируем выход таймера!

Собственно, в предложенной выше схеме мы это уже и сделали. Вспомним, что катод светодиода мы соединили с выводом таймера. В этой схеме светодиод будет гореть, когда на выходе таймера будет низкий уровень.

Раз так, то нам нужно настроить сопротивления Ra и Rb схемы так, чтобы коэффициент заполнения D был равен 66.6%. Учитывая, что T = 3 сек, а D = 0.66, получаем:

Ra = 3*1.44*(2*0.66 — 1)/0.0001 = 13824 Ом

Rb = 3*1.44*(1-D)/0.0001 = 14688 Ом

На самом деле, если мы будет использовать более точные значения D, то получим Ra = Rb = 14400 Ом. Вряд ли мы найдем резистор с таким номиналом. Скорее всего нам потребуется поставить последовательно несколько резисторов, например: один резистор на 10 КОм и 4 штуки на 1 КОм. Для большей точности можем добавить еще два резистора по 200 Ом.

В результате должно получиться что-то подобное:

В этой схеме используются резисторы на 15 КОм.

Подключение группы светодиодов к таймеру 555

Теперь, когда мы научились задавать нужный ритм, соберем небольшую гирлянду. В новой схеме пять светодиодов будут включаться на 0.5 сек каждую секунду. Для такого ритма Ra = 0, Rb = 7.2 кОм. То есть, вместо резистора Ra мы можем поставить перемычку.

Выход микросхемы 555 слишком слабый для того, чтобы одновременно зажечь 5 светодиодов. А ведь в настоящей гирлянде их может быть штук 15, 20 и более. Чтобы решить эту проблему, используем биполярный транзистор, работающий с режиме электронного ключа. Возьмем самый распространенный NPN транзистор 2N2222. Также в этой схеме можно использовать полевой N-канальный транзистор, например 2N7000.

Нашим светодиодам потребуется токозадающий резистор. Суммарный ток пяти параллельно соединенных светодиодов должен быть равен I = 20 мА*5 = 100 мА. Напряжение питания всей схемы 9 Вольт. На светодиоде красного цвета напряжение падает на 2 Вольта. Таким образом закон ома на данном участке цепи имеет вид:

отсюда R2 = 7В/0.1А = 70 Ом.

Округлим сопротивление до 100 Ом, которое можно получить параллельным соединением двух резисторов на 200Ом. А можно и вовсе оставить один резистор на 200Ом, просто светодиоды будут гореть немного тусклее.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector