Sfera-perm.ru

Сфера Пермь
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Тахометрические счетчики принцип действия

Лабораторные расходомеры газов, объемные счетчики газа.

Задача измерения расхода газа, т.е его общего объема, прошедшего или пропущенного через систему, а также выделившегося в результате определенного технологического или лабораторного процесса требует применения специальных устройств.

Эти устройства называют газовыми счетчиками или расходомерами.

Одним из наиболее распространенных видов газовых счетчиков являются объемные газовые счетчики (positive displacement gas meter).

Другие их названия:

  • Газовые счетчики объемные с принудительным наполнением.
  • Расходомеры объемные камерные.
  • Камерные счетчики газа.

Принцип действия объемного газового счетчика объемного типа состоит в том, что измеряемый газ заполняет попеременно камеры (ячейки) фиксированного объема внутри счетчика. Процесс заполнения реализуется с помощью синхронной работы соответствующих клапанов. Их переключение инициирует вращательное движение ротора, по количеству оборотов которого затем рассчитывается объем прошедшего газа.

Объемный газовый счетчик барабанного типа.

Из всех объемных счетчиков газа самую длительную историю производства имеют счетчики газа барабанного типа с жидкостным затвором. Выпускаемые с начала 19-го века, они до настоящего времени являются наиболее точными устройствами для измерения расхода газа. Принцип действия таких счетчиков предельно ясен – проходящий через жидкость газ вращает лопасти барабана. Тем не менее, необходимо понимать, что эта простота только поверхностная. Эти устройства имеют многолетнюю историю, их инженерное исполнение у признанных производителей доведено до совершенства и позволяют считать барабанные счетчики газа наиболее точными.

Счетчики с жидкостным затвором имеют различное применение. Они используются в:

  • лабораторных экспериментах (Лабораторные расходомеры газов),
  • при учете энергоресурсов,
  • на экспериментальных производствах,
  • а также в качестве счетчиков для поверки газовых счетчиков менее точных, например бытовых, их калибровки или стандартизации.

Необходимо учитывать, что у счетчиков с жидкостным затвором есть две существенные особенности эксплуатации. Во-первых, уровень залитой в счетчик жидкости должен строго контролироваться, а во-вторых, нельзя допускать ее замерзания. Эти нюансы полтора века назад послужили толчком к изобретению другого типа газовых счетчиков.

Объемный газовый счетчик диафрагменного типа.

В 1843 году англичанин Томас Гловер (Thomas Glover) изобрел суховоздушный лопастной счетчик с двумя диафрагмами. Мембраны (диафрагмы) первых диафрагменных счетчиков изготавливались из овечьей кожи, а в последствии они были заменены резиновыми. Отсеки (иначе компартменты или ячейки) поначалу изготавливались из железа, а затем их стали отливать из алюминиевых сплавов. За 150 лет производства счетчиков данного типа было сделано множество усовершенствований и в плане материалов, и дизайна, и методов калибровки, однако основной принцип работы остался неизменным!

Принцип действия объемного счетчика газа диафрагменного типа.

Этапы работы диафрагменного счетчика газа представлены на рисунке.

Измерительный отсек состоит из четырех ячеек (компартментов), границы которых с одной стороны сформированы мембранами и центральной частью счетчика, а с другой мембранами и стенками корпуса. Перепад давления вызывает расширение одной диафрагмы и одновременное сужение другой. Происходит поочередное заполнение/опустошение четырёх компартментов. Синхронность движения диафрагм обеспечивается системой клапанов-задвижек и кривошипного механизма, которые гарантируют плавный поток измеряемого газа. Эти узлы разработаны таким образом, что полностью исключают заклинивание механизма в верхних мертвых точках.

Вращающаяся часть кривошипного механизма посредством редуктора соединена с одометром, который отображает количество прошедшего через систему газа.

Небольшие диафрагменные счетчики рассчитаны на скорости потока, выраженные кубических футах в час (или 0,03 м3/ч) для газа с удельным весом 0,6, что вызывает падение давления на 0,13 кПа водяного столба на манометре диаметром 0,5 дюйма. Большие счетчики рассчитаны на поток, приводящий к падению давления на 0,5 кПа водяного столба манометра диаметром 2 дюйма.

Читайте так же:
Код моего счетчика hotlog

Значение удельного веса (плотности) 0,6 характерно для природного газа. Если же измеряется газ с другим значением удельного веса, то формула для пересчета выглядит следующим образом:

Qn – новое значение потока

Qc – текущее значение потока

Производителей мембранных счетчиков довольно много. Приборами, работающими по этому принципу, оснащают также все узлы учета газа, включая домашнее хозяйство для контроля потребления бытового газа населением.

Они, как правило, рассчитаны на высокие значения потоков.

Общеизвестными произодителями лабораторных мембранных счетчиков газа являются Ritter (Германия) и Shinagawa (Япония).

Среди лабораторных расходомеров газов, помимо счетчиков объемного типа распространены также модели счетчиков, требующие подключения к электропитанию.

Лабораторный расходомер газа тахометрический.

Одним из типов таких счетчиков являются тахометрические, например счетчики РГС производства ООО «Мониторинг». В основу их работы положен принцип измерения объемного расхода газа тахометрическим преобразователем. В них количество оборотов тахометра регистрируется оптопарой. Приборы такого рода не предназначены для измерения потоков взрывоопасных газов и газов, загрязненных механическими примесями.

Лабораторный расходомер газа термоанемометрический.

К другому типу таких счетчиков относятся термоанемометрические, например счетчики РГТ производства ООО «Мониторинг». Эти приборы также не предназначены для измерения потоков взрывоопасных газов и газов, загрязненных механическими примесями. Как правило, они используются для поверки и калибровки аспираторов, а также для регулировки расходов газов в хроматографах или газоанализаторах.

Газовые счетчики ГОСТ 15528-86

В отраслевом стандарте ГОСТ 15528-86 прописаны все методы измерения расхода газов и жидкостей, включая терминологию и принципы действия.

К таким в первую очередь относятся счетчики барабанного типа с жидкостным затвором. Они не имеют ограничений по типам измеряемых газов или смесей. Могут применяться для измерения взрывоопасных газов, что обязательно должно подтверждаться наличием сертификата о взрывобезопасности. Эти счетчики используются также для измерения коррозионно активных газов. Материал, из которого изготавливаются такие счетчики – это сталь марок AISI 304 или AISI 316.

Как правило, барабанные счетчики газа заполняются водой, однако если предполагается их использовать в низкотемпературной атмосфере, при которой вода замерзает, возможно использование антифризов (это должно оговариваться изначально с производителем).

Большинство моделей барабанных счетчиков оснащены стрелочными циферблатами для визуального считывания результатов, однако некоторые модели барабанных счетчиков позволяют отображать данные также и в цифровом виде и передавать их для обработки на компьютер или в ЛИМС. К таким счетчикам относятся модели отечественного производства ВИКС (ООО «Прагматех»).

Ниже представлена сравнительная таблица технических характеристик лабораторных расходомеров газов. Мы перевели рабочие диапазоны для разных приборов, указанные в различных источниках, в одни единицы измерения для удобства подбора (используйте фильтры).

Принцип работы расходомера, из чего состоят счетчики воды

Выбор способа учета расхода жидкости в крупных организациях-потребителях воды, на предприятиях, использующих воду на технологические нужды и сбрасывающих стоки, на ТЭЦ и других промышленных объектах зависит от многих факторов. Это степень загрязнения потока, тип системы (напорная или безнапорная), место планируемой установки и др.

Основные типы расходомеров

Рассматривая основные конструкции счетчиков по принципу их устройства и работы можно выделить такие виды расходомеров:

  1. Тахометрические. Они состоят корпуса с установленной в нем лопастной крыльчаткой, которая вращается за счет перемещения воды и передает количество сделанных оборотов на считывающее устройство. Учитывая их простоту и дешевизну, именно такие счетчики используются в качестве бытовых водомеров на малых диаметрах напорных трубопроводов. В промышленном учете, где оперируют большими расходами, они не применяются из-за громоздкости и металлоемкости, а также создания гидравлического сопротивления для движения потока и возможных механических поломок.
  2. Электромагнитные полнопроходные. Это высокоточные приборы объемного учета расхода жидкости, используемые в трубопроводных системах с избыточным давлением жидкости.
  3. Штанговые электромагнитные. С их помощью выполняется замер скорости в середине потока в закрытых полностью заполненных трубах (под давлением). Используются для различных диаметров.
  4. Ультразвуковые. Различают водомеры, работающие по время-импульсному методу измерения, методу Доплера и кросс-корреляционные. Сигнал на считывающее устройство передается с ультразвуковых датчиков. Это одни из наиболее широко применяемых промышленных счетчиков. В зависимости от применяемых датчиков используются в напорных и самотечных системах.
  5. Радарные и лазерные системы измерения расходов. Бесконтактные устройства, применяемые в промышленности. Применяются для самотечных потоков.
  6. Счетчики на основе уровнемера. Их используют в безнапорных системах на лотках Вентури или Паршаля, на каналах с малым водопотреблением либо для технологического учета. При помощи беспроводных уровнемеров можно получить данные об удаленных и труднодоступных объектах.
Читайте так же:
Счетчик топлива проточный между шлангом механический

Рассмотрим более подробно устройство и принцип действия основных расходомеров, применяемых для промышленного учета.

Время-импульсные ультразвуковые счетчики

Время-импульсный метод (или, по-другому, фазового сдвига) основан на измерении времени прохода сигнала против движения потока и по направлению перемещения жидкости. Для преобразования ультразвукового сигнала на трубопроводе устанавливают два или четыре смещенных вдоль движения воды пьезоэлемента. Как правило, применяются дисковые элементы, реже – кольцевые (на малых диаметрах).

Пьезоэлементы могут устанавливаться внутри потока (на внутренних стенках трубы или канала) или снаружи трубопровода (в этом случае сигнал проходит через наружную стенку). В зависимости от применяемых датчиков счётчики могут устанавливаться в самотечных системах (как открытых, так и закрытых), а также в полностью закрытых трубопроводах с избыточным давлением среды. Различают такие виды датчиков скорости:

  • трубные – врезаются в водопровод с внешней стороны. Могут применяться в напорной и безнапорной среде;
  • клиновидные – устанавливаются на дне или внутренней стенке трубы. Как правило, используются в безнапорных каналах либо в трубопроводах больших диаметров, если установка и обслуживание датчика снаружи неудобна;
  • сферические или полусферические – монтируются на наклонных стенках открытых трапециевидных каналов;
  • штанговые – имеют вид трубок, устанавливаются на вертикальных стенках каналов;
  • накладные – бесконтактные датчики, ставятся на внешнюю поверхность трубопровода.

В зависимости от способа установки датчиков различают контактные и бесконтактные устройства. Преимущество бесконтактных переносных расходомеров в возможности устанавливать их на трубопроводы без нарушения целостности. Они достаточно редко устанавливаются стационарно, чаще используются для поверочных замеров в разных точках.

Время-импульсные расходомеры пригодны для нахождения расхода чистой воды или немного загрязненной (с незначительным включением взвешенных частиц). Их применяют в водоснабжении и водоотведении, в охлаждающих контурах, в ирригационных схемах орошения, на насосных напорных станциях, в открытых природных и искусственных каналах и реках. Применяются как для коммерческого, так и для технологического учета.

Метод Доплера

Счетчики, работающие по данному методу, измеряют разность длины волны, отраженной от движущегося потока, относительно длины волны излучаемого сигнала. Измерение принимаемого и передаваемого сигнала для определения разницы между ними производится при помощи клиновидных или трубных датчиков скорости, устанавливаемых на дне канала или трубы.

Работающие по эффекту Доплера водомеры используют в напорных и самотечных системах, полностью и частично заполненных трубах, открытых каналах. Они работают в потоках разной степени загрязнения (кроме чистой воды). Доплеровские расходомеры используют для коммерческого учета в трубопроводах и самотечных каналах, для измерения расходов в реках и каналах ирригационных систем, в ливневых канализациях, на насосных станциях, трубопроводах водозабора и сброса стоков в водоемы.

Читайте так же:
Счетчик пара руководство по эксплуатации

Кросс-корреляционные ультразвуковые счетчики

Такие расходомеры работают по методу кросс-корреляции ультразвукового сигнала. Эта методика основана на принципе построения скоростей по различным уровням потока, счетчик дает возможность строить реальную диаграмму распределения скоростей в потоке. Также выполняется замер уровня потока.

С водомерами используются ультразвуковые трубные и клиновидные датчики скорости, устанавливаемые в потоке, уровень жидкости определяется при помощи надводных и подводных датчиков. Возможно исполнение комбинированных датчиков скорости и уровня.

Счетчики используются в напорных и самотечных, открытых и закрытых системах. Это точный метод измерения, дающий достоверные результаты для потоков различной степени загрязненности, в том числе он эффективен в неоднородных средах. Расходомеры используют в технологических трубопроводах, на очистных сооружениях, в реках и водоемах и др. В крупных каналах можно устанавливать несколько датчиков по всей ширине для получения более точных результатов.

Электромагнитные расходомеры

Их принцип работы основан на законе электромагнитной индукции, согласно которой в электропроводной жидкости, проходящей через электромагнитное поле, индуцируется ЭДС, пропорциональная скорости потока (проводника).

Такие расходомеры нашли применение в системах объемного учета теплоносителя и воды на промышленных и энергетических предприятиях. Недостаток – высокая стоимость и вес для диаметров более 300-400 мм, сложность снятия на поверку.

Штанговые электромагнитные водосчетчики работают по принципу погружения датчика в жидкость, где происходит измерение скорости потока. Такие счетчики определяют расход холодной воды в полностью заполненных трубопроводах.

Радарные и лазерные расходомеры

Бесконтактные узлы учета замеряют поверхностную скорость движения потока в открытых и закрытых самотечных потоках. Вычисление объемного расхода производится путем вычисления его через скорость на поверхности.

Такие устройства используют в труднодоступных местах и сильно загрязненных потоках, где нет возможности установить погружные датчики. Их применяют для учета канализационных и технических стоков.

Принцип работы счётчика воды

Механический счётчик воды (тахометрический)

Принцип действия механического счётчика воды основан на использовании энергии проходящего потока воды для вращения крыльчатки. Вращение рабочего колеса передаётся механическому счётному устройству.

Для подключения механического расходомера в схемы автоматизации с использованием данных о расходе воды, в конструкции может быть предусмотрен герконовый передатчик импульсов. Импульсный выход механического водомера можно использовать для подключения к вычислителю с целью накопления и архивации данных о водопотреблении.

Ультразвуковой счётчик воды

Принцип действия ультразвукового счётчика воды основан на измерении разности времени прохождения ультразвука в направлении соответствующем направлению потока воды и в направлении противоположном ему. Генерация и приём ультразвуковых колебаний реализована пьезоэлектрическими датчиками, которые работают попеременно в режиме источник/приёмник. Движение воды через ультразвуковой расходомер с различной скоростью, в различной степени влияет на время прохождения ультразвуковых колебаний в обоих направлениях. Данные о времени прохождения ультразвука передаются в вычислитель счётчика воды, где по известным зависимостям вычисляется скорость движения потока и расход воды. Данные о расходе заносятся в энергонезависимую память вычислителя и сохраняются в его архиве.

Электромагнитный счётчик воды

Принцип действия электромагнитного счётчика воды основан законе Фарадея, согласно которого — в проводнике, пересекающем силовые линии магнитного поля, индуцируется ЭДС, пропорциональная скорости движения проводника, а направление тока, возникающего в проводнике — перпендикулярно направлению движения проводника и направлению магнитного поля.

Проводником в электромагнитном водомере служит вода, протекающая между полюсами магнита, на неё и наводится ЭДС. ЭДС измеряется и преобразовывается в вычислителе прибора учёта в скорость движения воды и расход. Данные о расходе заносятся в архив вычислителя водомера.

Резонансный счётчик воды (суперстатический)

Принцип действия резонансного счётчика воды основан на измерении частоты перебрасывания струи генерируемой внутри расходомерного участка.

Читайте так же:
Окоф счетчик лейкоцитарной формулы крови

Расходомерный участок разделён на три канала, основной и два боковых. Все три канала соединены между собой в двух местах — на входе в расходомерный участок и на выходе из него, условно, они параллельны друг другу.

В основном канале установлен формирователь потока направляющий струю попеременно во вспомогательные каналы, при этом направление движения воды во вспомогательных каналах противоположно направлению движения в основном канале.

Вода частично входит в первый вспомогательный канал перед выходом основного потока из расходомера, а выходит из него перед его входом, при этом струя из первого вспомогательного канала в месте смешения с основным потоком настолько сильна, что отклоняет вектор его движения от оси трубопровода направляя поток во второй вспомогательный канал.

Струя попадая во второй вспомогательный канал проходит по нему к месту входа воды в расходомер и сливается с потоком отклоняя его в первый канал.

Частота изменения канала входа воды — пропорциональна расходу через счётчик. Частота перебрасывания измеряется пьезоэлектрическим методом и передаётся в вычислитель расходомера, который и определяет расход и заносит данные в архив.

Cистемы обнаружения утечек

Общая классификация расходомеров

Общая классификация расходомеров

Из всего многообразия в составе СОУ преимущественно используются кориолисовы расходомеры и ультразвуковые расходомеры. Информация о расходомерах других типов приведена справочно.

1 Тахометрические расходомеры
Расходомеры жидкости, принцип действия которых основан на зависимости скорости движения (частоты вращения) преобразовательного элемента, установленного в трубопроводе или в специальной камере, от расхода жидкости.
1.1 Шариковые расходомеры
Тахометрический расходомер, в котором преобразовательным элементом является движущийся шарик. В шариковом расходомере шарик непрерывно двигается по кругу за счет тангенциального подвода измеряемой среды или закручивания потока винтовым аппаратом. Частота вращения шарика по кругу преобразуется в электрический частотный сигнал индукционным или индуктивным преобразователем.
1.2 Роторно-шаровые расходомеры
У роторно-шаровых расходомеров, в отличие от шариковых, шар (или другое тело вращения) не движется по кругу, а вращается вокруг своей оси под воздействием потока измеряемого вещества.
1.3 Турбинные расходомеры
Тахометрический расходомер, в котором преобразовательным элементом является турбина. Турбина может быть расположена как аксиально, так и тангенциально.
Вращение турбины преобразуется в электрический выходной сигнал расходомера.
1.4 Крыльчатые расходомеры
Разновидность турбинного расходомера, в котором турбина расположена тангенциально.

2 Камерные расходомеры
Тахометрический расходомер с одним или более подвижным преобразовательным элементом, осуществляющим циклическое измерение определенных расходов жидкости.
2.1 Камерные расходомеры с подвижными разделяющими элементами
Расходомеры данного типа имеют жесткую камеру, в которой при непрерывном перемещении одного или нескольких разделительных элементов (поршня, диска, роторов и т. п.) осуществляется отмеривание объемов жидкости.
2.2 Камерные расходомеры с неподвижными разделяющими элементами
Расходомеры данного типа имеют одну или нескольких мерных камер, которые последовательно опорожняются и заполняются.

3 Электромагнитные расходомеры
Расходомер жидкости, принцип действия которого основан на зависимости взаимодействия движущейся жидкости с магнитным полем от объемного расхода жидкости. Основное применение получили такие электромагнитные расходомеры, у которых измеряется ЭДС, индуцируемая в жидкости при пересечении ею магнитного поля [19].

4 Расходомеры перепада давления
Расходомер жидкости, принцип действия которого основан на зависимости перепада давления, создаваемого неподвижным устройством, устанавливаемым в трубопроводе, или элементом трубопровода, от расхода жидкости. Измеряемый датчиком давления перепад давления пропорционален расходу жидкости.
4.1 Расходомеры с сужающими устройствами
Расходомер переменного перепада давления, принцип действия которого основан на зависимости перепада давления, образующегося в сужающем устройстве в результате частичного перехода потенциальной энергии потока в кинетическую, от расхода жидкости.
4.2 Расходомеры с гидравлическим сопротивлением
Расходомер перепада давления, принцип действия которого основан на зависимости перепада давления, образующегося на гидравлическом сопротивлении, от расхода жидкости.
4.3 Центробежные расходомеры
Расходомер переменного перепада давления, принцип действия которого основан на зависимости давления, образующегося на закруглении трубопровода в результате действия центробежной силы в потоке, от расхода жидкости.
4.4 Расходомеры с напорным устройством
Расходомер переменного перепада давления, принцип действия которого основан на зависимости перепада давления, создаваемого напорным устройством в результате перехода кинетической энергии струи в потенциальную, от расхода жидкости.

Читайте так же:
Счетчик пс4 4тм 05м

5 Акустические расходомеры
Расходомер жидкости, принцип действия которого основан на зависимости акустического эффекта в потоке жидкости от ее расхода. Акустический расходомер, в котором используются звуковые колебания частотой свыше 20 кГц принято называть ультразвуковым расходомером.
5.1 Корреляционные расходомеры
Расходомер жидкости, принцип действия которого основан на зависимости времени перемещения местной неоднородности потока на участке пути, определяемого при помощи корреляционной функции, от расхода жидкости.
5.2 Ультразвуковые доплеровские расходомеры
Ультразвуковой расходомер, принцип действия которого основан на зависимости допплеровской разности частот, возникающей при отражении ультразвуковых колебаний частицами потока, от расхода жидкости.
5.3 Ультразвуковые время-пролетные расходомеры
Ультразвуковой время-пролетный расходомер (далее по тексту УЗР) — ультразвуковой расходомер, принцип действия которого основан на измерении разницы времени распространения звукового луча проходящего под углом к оси трубы в двух направлениях («по потоку» и против потока). На базе измеренной разницы времен распространения и геометрии трубы вычисляется средняя скорость потока жидкости [17]. Далее по тексту обзора данный тип расходомеров обозначается УЗР.

6 Вихревые расходомеры
Расходомер жидкости, принцип действия которого основан на зависимости частоты колебаний, возникающих в потоке в процессе вихреобразования, от расхода жидкости.
Частота колебаний измеряется с помощью пьезодатчиков или за счет явления электромагнитной индукции (при измерении расходе электропроводных жидкостей).
6.1 Вихревые расходомеры с вращающимся потоком
Вихревой расходомер, принцип действия которого основан на зависимости частоты следования вихрей, создаваемых закручиваемым потоком жидкости, от ее расхода.
6.2 Вихревые расходомеры с телом обтекания
Вихревой расходомер, принцип действия которого основан на зависимости частоты образования вихрей, периодически срываемых с плохообтекаемого тела, от расхода жидкости.

7 Силовые расходомеры
Расходомер жидкости, принцип действия которого основан на зависимости эффекта силового воздействия, сообщающего ускорение потоку, от массового расхода жидкости.
7.1 Турбосиловые расходомеры
Силовой расходомер, в котором осуществляется закручивание потока.
7.2 Гироскопические расходомеры
Силовой преобразователь расхода, в котором создается гироскопический момент, зависящий от массового расхода.
7.3 Кориолисовые расходомеры
Силовой расходомер, в котором потоку сообщается ускорение Кориолиса (постоянное или знакопеременное).
Подробнее о силовых расходомерах.

8 Прочие расходомеры
Расходомеры приведенных ниже типов не получили широкого распространения и в силу конструкционных особенностей не подходят для измерения на магистральных нефтепроводах и нефтепродуктопроводах. Информация о них приводится лишь для полноты картины методов измерения расхода.
8.1 ЯМР расходомеры
Расходомер жидкости, принцип действия которого основан на зависимости эффекта ядерно-магнитного резонанса в потоке от объемного расхода жидкости.
8.2 Оптические расходомеры
Расходомер жидкости, принцип действия которого основан зависимости оптического эффекта в потоке от расхода жидкости.
8.3 Тепловые расходомеры
Расходомер жидкости, принцип действия которого основан на зависимости эффекта теплового воздействия на поток или тело, обтекаемое потоком, от массовой скорости или расхода жидкости.
8.4 Расходомеры обтекания
Расходомер жидкости, принцип действия которого основан на зависимости перемещения элемента, воспринимающего динамическое давление обтекающего его потока, от расхода жидкости.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector