Sfera-perm.ru

Сфера Пермь
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Стабилизатор тока или частоты

Стабилизатор напряжения или стабилизатор тока. Что ставить?

Любой раз, просматривая новые записи в блогах я сталкиваюсь с одной и той же неточностью — ставят стабилизатор тока в том месте, где нужен стабилизатор напряжения и напротив. Попытаюсь детально растолковать , не углубляясь в дебри формул и терминов. Особенно будет полезно тем, кто ставит драйвер для замечательных светодиодов и питает им множество маломощных. Для вас — отдельный абзац в конце статьи. 😉

Для начала разберемся с понятиями:

СТАБИЛИЗАТОР НАПРЯЖЕНИЯ
Исходя из заглавия — стабилизирует напряжение. В случае если написано, что стабилизатор 12В и 3А, то значит стабилизирует именно на напряжение 12В! А вот 3А — это большой ток, что может дать стабилизатор.

Большой! А не «постоянно отдаёт 3 ампера». Другими словами от может отдавать и 3 миллиампера, и 1 ампер, и два… какое количество ваша схема кушает, столько и отдает.

Но не больше трех. Фактически это основное.

Когда-то они были такие и подключали к ним телевизоры…

И сейчас я перейду к описанию видов стабилизаторов напряжения:

Линейные стабилизаторы (те же КРЕН либо LM7805/LM7809/LM7812 и тп)

Вот она — LM7812. Отечественный коммунистический аналог — КРЕН8Б
.
Самый популярный вид. Они не смогут трудиться на напряжении ниже, чем указанное у него на брюхе. Другими словами в случае если LM7812 стабилизирует напряжение на 12ти вольтах, то на вход ему подать необходимо как минимум приблизительно на полтора вольта больше. В случае если будет меньше, то значит и на выходе стабилизатора будет меньше 12ти вольт. Не имеет возможности он забрать недостающие вольты из ниоткуда. Потому и нехорошая это мысль — стабилизировать напряжение в авто 12-вольтовыми КРЕНками.

Когда на входе меньше 13.5 вольт, она начинает и на выходе давать меньше 12ти.

Еще один минус линейных стабилизаторов — сильный нагрев при хорошей таковой нагрузке. Другими словами деревенским языком — все что выше тех же 12ти вольт, то преобразовывается в тепло. И чем выше входное напряжение, тем больше тепла.

Впредь до температуры жарки яичницы. Чуть нагрузили ее больше, чем пара небольших светодиодов и все — взяли хороший утюг.

Импульсные стабилизаторы — значительно круче, но и дороже. В большинстве случаев для рядового клиента это уже выглядит как некая платка с детальками.

К примеру вот такая платка — импульсный стабилизатор напряжения.
Бывают трех видов: понижающие, повышающие и всеядные. Самые крутые — всеядные. Им все равно, что на входе напряжение ниже либо выше нужного.

Он сам автоматом переключается в режим повышения либо уменьшения напряжения и держит заданное на выходе. И в случае если написано, что ему на вход возможно от 1 до 30 вольт и на выходе будет стабильно 12, то так оно и будет.

Но дороже. Но круче. Но дороже…
Не желаете утюг из линейного стабилизатора и громадный радиатор охлаждения вдобавок — ставьте импульсный.
Какой вывод по стабилизаторам напряжения?
ЗАДАЛИ ЖЕСТКО ВОЛЬТЫ — а ток может плавать как угодно (в определенных пределах само собой разумеется)

СТАБИЛИЗАТОР ТОКА
В применении к светодиодам как раз их еще именуют «светодиодный драйвер». Что также будет правильно.

Вот, например, готовый драйвер. Не смотря на то, что сам драйвер — маленькая тёмная восьминогая микросхема, но в большинстве случаев драйвером именуют всю схему сходу.
Задает ток. Стабильно! В случае если написано, что на выходе 350мА, то хоть ты тресни — будет как раз так.

А вот вольты у него на выходе смогут изменяться в зависимости от требуемого светодиодам напряжения. Другими словами вы их не регулируете, драйвер сделает все за вас исходя из количества светодиодов.
В случае если весьма легко, то обрисовать могу лишь так. =)
А вывод?
ЗАДАЛИ ЖЕСТКО ТОК — а напряжение может плавать.

Сейчас — к светодиодам. Так как целый сыр-бор из-за них.

Светодиод питается ТОКОМ. Нет у него параметра НАПРЯЖЕНИЕ. Имеется параметр — падение напряжения! Другими словами какое количество на нем теряется. В случае если написано на светодиоде 20мА 3.4В, то это означать что ему нужно не больше 20 миллиампер. И наряду с этим на нем потеряется 3.4 вольта.

Не для питания необходимо 3.4 вольта, а просто на нем «потеряется»!

Другими словами вы имеете возможность питать его хоть от 1000 вольт, лишь в случае если подадите ему не больше 20мА. Он не сгорит, не перегреется и будет светить как нужно, но по окончании него останется уже на 3.4 вольта меньше. Вот и вся наука.

Ограничьте ему ток — и он будет сыт и будет светить продолжительно и счастливо.

Вот берем самый распространненый вариант соединения светодиодов (таковой практически во всех лентах употребляется) — последовательно соединены 3 светодиода и резистор. Питаем от 12 вольт. Резистором мы ограничиваем ток на светодиоды, дабы они не сгорели (про расчет не пишу, в сети навалом калькуляторов).

По окончании первого светодиода остается 12-3.4= 8.6 вольт………Нам до тех пор пока хватает. На втором потеряется еще 3.4 вольта, другими словами останется 8.6-3.4=5.2 вольта. И для третьего светодиода также хватит. А по окончании третьего останется 5.2-3.4=1.8 вольта. И в случае если захотите поставить четвертый, то уже не хватит. Вот в случае если запитать не от 12В а от 15, то тогда хватит.

Но нужно учесть, что и резистор также нужно будет пересчитать. Ну вот фактически и пришли медлено к…

Несложный ограничитель тока — резистор. Их довольно часто ставят на те же ленты и модули. Но имеется минусы — чем ниже напряжение, тем меньше будет и ток на светодиоде. И напротив. Исходя из этого в случае если у вас в сети напряжение прыгает, что кони через преграды на соревнованиях по конкуру (а в машинах в большинстве случаев так и имеется), то сперва стабилизируем напряжение, а позже ограничиваем резистором ток до тех же 20мА. И все.

Читайте так же:
Схемы высоковольтных стабилизаторов тока

Нам уже плевать на скачки напряжения (стабилизатор напряжения трудится), а светодиод сыт и светит на эйфорию всем.
Другими словами — в случае если ставим резистор в автомобиле, то необходимо стабилизировать напряжение.

Возможно и не стабилизировать, если вы расчитаете резистор на максимально-вероятное напряжение в сети автомобиля, у вас обычная бортовая сеть (а не китайско-русский тазопром) и сделаете запас по току хотя бы в 10%.
Ну и к тому же резисторы возможно ставить лишь до определенной величины тока. По окончании некоего порога резисторы начинают адски греться и приходится их очень сильно увеличивать в размерах (резисторы 5Вт, 10Вт, 20Вт и тд). Медлено преобразовываемся в громадный утюг.

Имеется еще вариант — поставить в качестве ограничителя что-нибудь типа LM317 в режиме токового стабилизатора.

LM317. Снаружи как и LM7812. Корпус один, суть пара различный.

Но и они также греются, потому что это также линейный регулятор (не забывайте я писал про КРЕН в абзаце о стабилизаторах напряжения?). И тогда создали…

Импульсный стабилизатор тока (либо драйвер).

Вот таковой мелкий возможно драйвер.

Он в себе включает сходу все что нужно. И практически не греется (лишь в случае если дико перегрузить либо неправильно собрана схема). Исходя из этого в большинстве случаев и ставят их для светодиодов замечательнее 0.5Вт.

Самый греющийся элемент во всей схеме — это сам светодиод. Но ему на роду до тех пор пока написано — греться. Основное не перегреваться выше определенной температуры.

В противном случае в случае если перегреть, то дико начинает деградировать кристалл светодиода и он тускнеет, начинает поменять цвет и тупо умирает (здравствуй, китайские лампочки!).

Ну а в заключении — к тому, что всегда пытаюсь доказать в дискуссиях. И обосновываю. Вот лишь каждому раздельно растолковывать одно да и то же — язык отвалится.

Исходя из этого попытаюсь еще раз в данной статье.

Неизменно замечаю такую картину — задают ток драйвером для замечательных светодиодов (скажем — 350мА) и ставят пара веток светодиодов без ограничительных резисторов и другого. И так как люди, то помой-му и не самые ламеры, а совершают одну и ту же неточность раз за разом. Говорю, из-за чего это не хорошо и к чему может привести:

Из закона Ома для полной цепи:
Сила тока в неразветвленной цепи равна сумме сил тока на ее параллельных участках.
Многие так и вычисляют — «любая ветка по 20мА, у меня 20 веток. Драйвер отдает 350мА, значит на каждую ветку придется кроме того меньше — по 17.5мА. Бинго!»
А вот и не Бинго!, а Жопа! Из-за чего?

Сила тока в каждой ветке будет равна, в случае если у вас совершеннейшие светодиоды с полностью однообразными параметрами. Тогда и ток будет во всех ветках однообразен, и никаких ограничителей тока не нужно — забрали и поделили неспециализированный ток на количество однообразных веток. Но такое — лишь в сказках.

В случае если параметры чуть-чуть отличаются — взяли в одной ветке 19мА, в второй 17, в третьей 20… Общее число тока так и остается неизменным — 350мА, а вот в ветках творится безумная кака. На взгляд и не выяснишь, наподобие светят одинаково… И вот у вас одна ветка, самая прожорливая, начинает греться посильнее остальных. И кушать больше. И греться еще посильнее.

А позже раз — и потухла. И все эти ее миллиамперы разбежались по остальным веткам. И вот еще одна ветка, сравнительно не так давно наподобие нормально горевшая берет и тухнет следом. И уже в два раза больший ток уходит на другие ветки, поскольку неспециализированный ток жестко задан 350мА.

Процесс лавинообразный и вот уже пришел кирдык всей данной схеме, по причине того, что все 350мА усосались в оставшиеся светодиоды и никто-никто их не спас… А находились бы, как надеется, по отдельному стабилизатору (хотя бы очевидному резистору) на каждой ветка — трудилась бы и дальше.

Вот именно то, о чем я говорю. На картине обращение о 1Вт-светодиодах, но и с любыми вторыми картина та же.
Именно это мы и видим в китайских модулях и кукурузинах, каковые горят как спички спустя семь дней/месяц работы. По причине того, что светодиоды имеют адский разброс, а китайцы на драйверах экономят покруче, чем кто или еще. Из-за чего не горят лампы и фирменные модули Osram, Philips и тд? По причине того, что они делают достаточно замечательную отбраковку светодиодов и от всего дичайшего количества выпущенных светодиодов остается 10-15%, каковые по параметрам фактически аналогичны и из них возможно сделать таковой несложный вид, какой и пробуют сделать многие — один замечательный драйвер и большое количество однообразных цепочек светодиодов без драйверов. Но лишь вот в условиях «приобрел светодиоды на рынке и запаял сам» в большинстве случаев будет им плохо. По причине того, что кроме того у «некитая» будет разброс.

Может повезти и трудиться продолжительно, быть может и нет.

Да и токовый драйвер по-сравнению со копеечными резисторами и стабилизатором напряжения в большинстве случаев дороже. Ну нафига стрелять в мишень для мелкокалиберной винтовки из танка? Цель-то поразим, вопросов нет. Но вместе с ней еще и воронку покинем. =))

Запомните раз и окончательно! Я вас умоляю! =)
Да и просто — сделать верно и сделать «смотрите как я сэкономил, а остальные — дураки» — это пара различные вещи. Кроме того сильно различные. Учитесь делать не как пресловутые китайцы, учитесь делать красиво и верно.

Читайте так же:
Источник тока стабилизаторе напряжения

Это сообщено в далеком прошлом и не мной. Я только попытался в стотыщпятьсотый раз растолковать азбучные истины. Уж прощайте, в случае если криво растолковывал =)

Вот красивая иллюстрация. Разве вы думаете мне не хотелось сэкономить и уменьшить количество драйверов раза в 3-4? Но так — верно, соответственно будет трудиться продолжительно и счастливо.

Ну и напоследок тем, кому кроме того такое изложение было через чур заумным.
Запомните следующее и старайтесь направляться этому (тут «цепочка» — это один светодиод либо пара ПОСЛЕДОВАТЕЛЬНО-соединенных светодиодов):

1.—-КАЖДОЙ цепочке — собственный ограничитель тока (резистор либо драйвер…)
2. —Маломощная цепочка до 300мА? Ставим резистор и достаточно.
3. —Напряжение нестабильно? Cтавим СТАБИЛИЗАТОР НАПРЯЖЕНИЯ
4. —Ток больше 300мА? Ставим на КАЖДУЮ цепочку ДРАЙВЕР (стабилизатор тока) без стабилизатора напряжения.

Вот так будет верно и самое основное — будет трудиться продолжительно и светить ярко! Ну и надеюсь, что все вышенаписанное убережет многих от неточностей и окажет помощь сэкономить средства и нервы.

В обязательном порядке к прочтению:
  • Автомобильный видеорегистратор – критерии выбора
  • Светящаяся струя (подсветка) омывателя лобового стекла
  • Включение, выключение магнитолы от сигнализации.
  • Травление платы — рекомендации начинающим.
  • Светильник на светодиодах от прикуривателя собственными руками
  • Светодиоды в жизни автомобиля
  • Зарядное устройство (импульсное) 12в 10А — схема

Стабилизатор либо реле контроля напряжения

Статьи как раз той тематики,которой Вы интересуетесь:

Поведаю сейчас про две схемы режима стоп/габарит с которыми мне было нужно столкнуться. Первая схема, это стабилизатор напряжения для светодиодных модулей стоп/габарит. Принцип действия…

уход и Обслуживание за автомобилем При совершении маневров при резком старте либо экстренном торможении кузов автомобиля начинает крениться – поменять собственный положение довольно дорожного…

Мне было нужно совсем сравнительно не так давно самостоятельно соорудить зарядное устройство для автомобильного аккумулятора с током 3 – 4 ампер. Само собой разумеется мудрить, что то не жажды, не времени не было и в первую…

Если вы желаете осознать, стоит ли ставить светодиодные фары на свой автомобиль , то возвратитесь на миг назад и посмотрите, что в прошлом их ставили лишь для того, что бы автомобиль на выставках…

Выход из строя реле-регулятора – самая частая обстоятельство неисправности автомобильных генераторов. Как раз исходя из этого с проверки регулятора в большинстве случаев начинают контроль работоспособности узлов…

Импульсный стабилизатор напряжения — принцип работы стабилизатора

Линейные стабилизаторы имеют общий недостаток – это малый КПД и высокое выделение тепла. Мощные приборы, создающие нагрузочный ток в широких пределах имеют значительные габариты и вес. Чтобы компенсировать эти недостатки, разработаны и используются импульсные стабилизаторы.

Устройство, поддерживающее в постоянном виде напряжение на потребителе тока с помощью регулировки электронным элементом, действующим в режиме ключа. Импульсный стабилизатор напряжения, так же как и линейный существует последовательного и параллельного вида. Роль ключа в таких моделях исполняют транзисторы.

Так как действующая точка стабилизирующего устройства практически постоянно расположена в области отсечки или насыщения, проходя активную область, то в транзисторе выделяется немного тепла, следовательно, импульсный стабилизатор имеет высокий КПД.

Стабилизация осуществляется с помощью изменения продолжительности импульсов, а также управления их частотой. Вследствие этого различают частотно-импульсное, а другими словами широтное регулирование. Импульсные стабилизаторы функционируют в комбинированном импульсном режиме.

В устройствах стабилизации с регулированием широтно-импульсным частота импульсов имеет постоянную величину, а продолжительность действия импульсов является непостоянным значением. В приборах с регулированием частотно-импульсным продолжительность импульсов не изменяется, меняют только частоту.

На выходе устройства напряжение представлено в виде пульсаций, соответственно оно не годится для питания потребителя. Перед подачей питания на нагрузку потребителя, его нужно выровнять. Для этого на выходе импульсных стабилизаторов монтируют выравнивающие емкостные фильтры. Они бывают многозвенчатыми, Г-образными и другими.

Средняя величина напряжения, поданная на нагрузку, вычисляется по формуле:

  • Ти – продолжительность периода.
  • tи – продолжительность импульса.
  • Rн – значение сопротивления потребителя, Ом.
  • I(t) – значение тока, проходящего по нагрузке, ампер.

Ток может перестать протекать по фильтру к началу следующего импульса, в зависимости от индуктивности. В этом случае идет речь о режиме действия с переменным током. Ток также может дальше протекать, тогда имеют ввиду функционирование с постоянным током.

При повышенной чувствительности нагрузки к импульсам питания, выполняют режим постоянного тока, не смотря со значительными потерями в обмотке дросселя и проводах. Если размер импульсов на выходе прибора незначителен, то рекомендуется функционирование при переменном токе.

Принцип работы

В общем виде импульсный стабилизатор включает в себя импульсный преобразователь с устройством регулировки, генератор, выравнивающий фильтр, снижающий импульсы напряжения на выходе, сравнивающее устройство, подающее сигнал разности входного и выходного напряжения.

Схема основных частей стабилизатора напряжения показана на рисунке.

Напряжение на выходе прибора поступает на сравнивающее устройство с базовым напряжением. В результате получают пропорциональный сигнал. Его подают на генератор, предварительно усилив его.

При регулировании в генераторе разностный аналоговый сигнал модифицируют в пульсации с постоянной частотой и переменной продолжительностью. При регулировании частотно-импульсном продолжительность импульсов имеет постоянное значение. Она меняет частоту импульсов генератора в зависимости от свойств сигнала.

Образованные генератором управляющие импульсы проходят на элементы преобразователя. Транзистор регулировки действует в режиме ключа. Изменяя частоту или интервал импульсов генератора, есть возможность менять нагрузочное напряжение. Преобразователь модифицирует значение напряжения на выходе в зависимости от свойств управляющих импульсов. По теории в приборах с частотной и широтной регулировкой импульсы напряжения на потребителе могут отсутствовать.

При релейном принципе действия сигнал, который управляется стабилизатором, образуется с помощью триггера. При поступлении постоянного напряжения в прибор транзистор, работающий в качестве ключа, открыт, и повышает напряжение на выходе. сравнивающее устройство определяет сигнал разности, который достигнув некоторого верхнего предела, поменяет состояние триггера, и произойдет коммутация регулирующего транзистора на отсечку.

Читайте так же:
Стабилизатор тока для тиристора

Напряжение на выходе станет уменьшаться. При падении напряжения до нижнего предела сравнивающее устройство определяет сигнал разности, переключающий снова триггер, и транзистор опять войдет в насыщение. Разность потенциалов на нагрузке прибора станет повышаться. Следовательно, при релейном виде стабилизации напряжение на выходе повышается, тем самым выравнивается. Предел срабатывания триггера настраивают с помощью корректировки амплитуды значения напряжения на сравнивающем устройстве.

Стабилизаторы релейного типа имеют повышенную скорость реакции, в отличие от приборов с частотным и широтным регулированием. Это является их преимуществом. В теории при релейном виде стабилизации на выходе прибора всегда будут импульсы. Это является их недостатком.

Повышающий стабилизатор

Импульсные повышающие стабилизаторы применяют вместе с нагрузками, разность потенциалов которых выше, чем напряжение на входе приборов. В стабилизаторе нет гальванической изоляции сети питания и нагрузки. Импортные повышающие стабилизаторы называются boost converter. Основные части такого прибора:

Транзистор вступает в насыщение, и ток проходит по цепи от положительного полюса по накопительному дросселю, транзистору. При этом накапливается энергия в магнитном поле дросселя. Нагрузочный ток может создать только разряд емкости С1.

Отключим выключающее напряжение с транзистора. При этом он вступит в положение отсечки, а следовательно на дросселе появится ЭДС самоиндукции. Оно будет коммутировано последовательно с напряжением входа, и подключено по диоду к потребителю. Ток пойдет по цепи от положительного полюса к дросселю, по диоду и нагрузке.

В этот момент магнитное поле индуктивного дросселя выдает энергию, а емкость С1 резервирует энергию для поддержки напряжения на потребителе после вхождения транзистора в режим насыщения. Дроссель является для резерва энергии и не работает в фильтре питания. При повторной подаче напряжения на транзистор, он откроется, и весь процесс пойдет заново.

Стабилизаторы с триггером Шмитта

Такой вид импульсного устройства имеет свои особенности наименьшим набором компонентов. Основную роль в конструкции играет триггер. В его состав входит компаратор. Основной задачей компаратора является сравнивание величины выходной разности потенциалов с наибольшим допустимым.

Принцип действия аппарата с триггером Шмитта состоит в том, что при увеличении наибольшего напряжения осуществляется коммутация триггера в позицию ноля с размыканием электронного ключа. В одно время разряжается дроссель. Когда напряжение доходит до наименьшего значения, то выполняется коммутация на единицу. Это обеспечивает замыкание ключа и прохождение тока на интергратор.

Такие приборы имеют отличия своей упрощенной схемой, но использовать их можно в особых случаях, так как импульсные стабилизаторы бывают только повышающими и понижающими.

Понижающий стабилизатор

Стабилизаторы импульсного типа, функционирующие с понижением напряжения, являются компактными и мощными приборами питания электрическим током. При этом они имеют низкую чувствительность к наводкам потребителя постоянным напряжением одного значения. Гальваническая изоляция выхода и входа в понижающих устройствах отсутствует. Импортные приборы получили название chopper. Выходное питание в таких устройствах постоянно находится меньше входного напряжения. Схема импульсного стабилизатора понижающего типа изображена на рисунке.

Подключим напряжение для управления истоком и затвором транзистора, который войдет в положение насыщения. По нему будет проходить ток по цепи от положительного полюса по выравнивающему дросселю и нагрузке. В прямом направлении ток по диоду не протекает.

Отключим управляющее напряжение, которое выключает ключевой транзистор. После этого он будет находиться в положении отсечки. ЭДС индукции выравнивающего дросселя будет преграждать путь для изменения тока, который пойдет по цепи через нагрузку от дросселя, по общему проводнику, диод, и опять придет на дроссель. Емкость С1 будет разряжаться и будет удерживать напряжение на выходе.

При подаче отпирающей разницы потенциалов между истоком и затвором транзистора, он перейдет в режим насыщения и вся цепочка вновь повторится.

Инвертирующий стабилизатор

Импульсные стабилизаторы инвертирующего типа используют для подключения потребителей с постоянным напряжением, полюсность которого имеет противоположное направление полюсности разности потенциалов на выходе устройства. Его значение может быть выше сети питания, и ниже сети, в зависимости от настройки стабилизатора. Гальваническая изоляция сети питания и нагрузки отсутствует. Импортные приборы инвертирующего типа называются buck-boost converter. На выходе таких приборов напряжение всегда ниже.

Подключим управляющую разность потенциалов, которое откроет транзистор между истоком и затвором. Он откроется, и ток пойдет по цепи от плюса по транзистору, дросселю к минусу. При таком процессе дроссель резервирует энергию с помощью своего магнитного поля. Отключим разность потенциалов управления от ключа на транзисторе, он закроется. Ток пойдет от дросселя по нагрузке, диоду, и возвратится в первоначальное положение. Резервная энергия на конденсаторе и магнитном поле будет расходоваться для нагрузки. Снова подадим питание на транзистор к истоку и затвору. Транзистор опять станет насыщаться и процесс повторится.

Преимущества и недостатки

Как и все приборы, модульный импульсный стабилизатор не идеален. Поэтому ему присущи минусы и плюсы. Разберем основные из преимуществ:

  • Простое достижение выравнивания.
  • Плавное подключение.
  • Компактные размеры.
  • Устойчивость выходного напряжения.
  • Широкий интервал стабилизации.
  • Повышенный КПД.
  • Сложная конструкция.
  • Много специфических компонентов, снижающих надежность устройства.
  • Необходимость в использовании компенсирующих устройств мощности.
  • Сложность работ по ремонту.
  • Образование большого количества помех частоты.

Допустимая частота

Функционирование импульсного стабилизатора возможно при значительной частоте преобразования. Это является основной отличительной чертой от устройств, имеющих трансформатор сети. Увеличение этого параметра дает возможность получить наименьшие габариты.

Для большинства приборов интервал частот будет равен 20-80 килогерц. Но при выборе ШИМ и ключевых приборов необходимо учесть высокие гармоники токов. Верхняя граница параметра ограничена определенными требованиями, которые предъявляются к радиочастотным приборам.

СТАБИЛИЗАЦИЯ ТОКА И НАПРЯЖЕНИЯ

поддержание заданного значениянапряжения (или тока) при изменении сопротивления нагрузки, напряженияпитания и т. п. Для С. т. и н. обычно применяются электронные устройства.

Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .

  • СТАБИЛИЗАЦИЯ НЕУСТОЙЧИВОСТЕЙ ПЛАЗМЫ
  • СТАБИЛИЗАЦИЯ ЧАСТОТЫ
Читайте так же:
Lm317 стабилизатор тока даташит

Полезное

Смотреть что такое «СТАБИЛИЗАЦИЯ ТОКА И НАПРЯЖЕНИЯ» в других словарях:

Стабилизация тока контактной машины — 40. Стабилизация тока контактной машины Стабилизация тока Поддержание сварочного тока контактной машины в заданных пределах при колебании напряжения питающей сети Источник: ГОСТ 22990 78: Машины контактные. Термины и определения оригинал… … Словарь-справочник терминов нормативно-технической документации

стабилизация — 3.6.4 стабилизация (stabilisation): Состояние, при котором три отсчета показаний газоанализатора, взятые подряд с интервалом 2 мин при неизменном составе анализируемого газа отличаются между собой не более чем на ±1 % диапазона измерений.… … Словарь-справочник терминов нормативно-технической документации

ПРЕОБРАЗОВАТЕЛЬ НАПРЯЖЕНИЯ — устройство, вырабатывающее напряжение питания заданной величины из др. питающего напряжения (напр., для питания аппаратуры от аккумулятора). Одним из осн. требований, предъявляемых к П. н., является обеспечение максимального кпд. Преобразование… … Физическая энциклопедия

компенсационный стабилизатор напряжения — 8 компенсационный стабилизатор напряжения [тока] (источник а электропитания РЭА) : Стабилизатор напряжения [тока] источника электропитания радиоэлектронной аппаратуры, в котором стабилизация напряжения [тока] осуществляется за счет воздействия… … Словарь-справочник терминов нормативно-технической документации

Компенсационный стабилизатор напряжения (тока) вторичного электропитания РЭА — а электропитания РЭА) : Стабилизатор напряжения [тока] источника электропитания радиоэлектронной аппаратуры, в котором стабилизация напряжения [тока] осуществляется за счет воздействия изменения выходного напряжения [тока] на его регулирующее… … Словарь-справочник терминов нормативно-технической документации

параметрический стабилизатор напряжения — 7 параметрический стабилизатор напряжения [тока] (источника электропитания РЭА) : Стабилизатор напряжения [тока] источника электропитания радиоэлектронной аппаратуры, в котором отсутствует цепь обратной связи, и стабилизация напряжения [тока]… … Словарь-справочник терминов нормативно-технической документации

Высоковольтная линия постоянного тока — (HVDC) используется для передачи больших электрических мощностей по сравнению с системами переменного тока. При передаче электроэнергии на большие расстояния устройства системы HVDC менее дороги и имеют более низкие электрические потери. Даже при … Википедия

стабилизаторы напряжения и тока — устройства для автоматического поддержания постоянства электрического напряжения на входах приёмников электрической энергии (стабилизатор напряжения) или силы тока в их цепях (стабилизатор тока) независимо от колебаний напряжения в питающей сети… … Энциклопедия техники

Параметрический стабилизатор напряжения (тока) вторичного электропитания РЭА — 11. Параметрический стабилизатор напряжения (тока) вторичного электропитания РЭА Параметрический стабилизатор напряжения (тока) Стабилизатор напряжения (тока) вторичного электропитания РЭА, в котором отсутствует цепь обратной связи и стабилизация … Словарь-справочник терминов нормативно-технической документации

Стабилизатор напряжения — У этого термина существуют и другие значения, см. Стабилизатор. Стабилизатор напряжения преобразователь электрической энергии, позволяющий получить на выходе напряжение, находящееся в заданных пределах при значительно больших колебаниях входного… … Википедия

Стабилизатор напряжения 220в, инверторный стабилизатор штиль

Для стабилизации силы тока в электросети используется электронное устройство с тиристорными или симисторными ключами. Современные пользователи отдают предпочтение устройству двойного преобразования инверторного типа. Высокоэффективный электронный инвертор подает электроток стабильного напряжения и определенной частоты с допустимым отклонением на 0,5% от заданных параметров.

Конструкция стабилизатора инверторного

Бытовой стабилизатор своими руками собрать несложно, для этого достаточно иметь входные фильтры, выпрямитель и корректор коэффициента входной мощности, конденсаторы, преобразователи и микроконтроллеры. Содержащиеся в конструкции выпрямители и преобразователи построены по схеме биполярного транзистора IGBT с металлическим оксидным полупроводником. Тиристоры в составе выравнивателя напряжения накапливают электрическую энергию, при активации устройства потери тока достигают минимальных показателей.

Инверторный стабилизатор содержит набор компонентов, каждый из которых выполняет определенную функцию. В конструкцию прибора входит:

  1. Блок питания с конденсаторами C 2 и C 5, компаратором DA 1, тепловым электрическим диодом VD 1, трансформатором T 1.
  2. Узел для задержки нагрузки при включении. В его комплектации содержатся резисторы R1-R5, транзисторы VT1-VT3 и конденсатор С1.
  3. Выпрямитель для измерения амплитуды колебания силы тока. В конструкцию устройства входит конденсатор С2, диод VD2, стабилитрон VD2 и делитель R14, R13.
  4. Компаратор с резисторами R15-R39 и компараторами DA3 и DA2.
  5. Логический контроллер DD1.
  6. Усилитель с транзистором VT4 и токоограничивающим резистором R40.
  7. Светодиод индикаторный HL1-HL9.
  8. Оптронные ключи.
  9. Автоматический предохранитель QF1.
  10. Трансформатор T 2.

Характеристики стабилизатора тока

Бытовой выпрямитель электротока, своими руками который можно собрать в частной мастерской, выравнивает ток при условии подачи тока 130−270 V. Аппарат не реагирует на частоту колебания электричества, поступающего из центральной линии электропередачи. К приспособлению можно подключать электроприборы общей мощностью до 6 кВт.

Электронный выравниватель напряжения в автоматическом режиме переключает нагрузки в течение 10 мсек. Принцип работы устройства заключается в осуществлении двух процессов:

  1. Преобразование переменного сетевого тока в потребительский постоянный.
  2. Преобразование потребительского постоянного тока в сетевой переменный.

При выполнении первого процесса инверторные стабилизаторы напряжения для дома осуществляют выпрямление и коррекцию коэффициента напряжения. Процессы выравнивания осуществляются в момент входа переменного тока в частотный фильтр стабилизатора. На выходе потребитель получает постоянный ток синусоидальной формы. Положительным фактором выпрямителя является создание тока с высокими коэффициентами мощности и накопление его в конденсаторах.

Инверторный стабилизатор напряжения для дома в конечном результате выдают электрический ток напряжением 220 В с частотой колебания 50 гц. Отличительным свойством инвертора является наличие в конструкции кварцевого генератора, обеспечивающего высокую точность преобразования исходного материала с помощью микроконтроллера. Благодаря двум взаимозаменяемым процессам выравнивания электротока инвертор, или стабилизатор двойного преобразования, имеет более высокие показатели по сравнению с приборами релейного, электромеханического и симисторного типа.

Свойства электронного стабилизатора

Автоматический стабилизатор напряжения с двойным преобразованием обладает высоким потенциалом, эффективность процесса выравнивания тока заключается в отсутствии реле и других подвижных компонентов. Важным элементом конструкции является конденсатор, в задачу которого входит нивелирование перепадов силы входящего тока. Двойной преобразователь не позволяет изменяться выходному электропитанию от перепада в электрической сети.

В процессе сборки стабилизатора напряжения своими руками следует учесть рабочий процесс бытового устройства при входном возбуждении 130 V. Логическая величина фиксируется компенсаторами прибора, открытый транзистор VT 4 включает сигнальный светодиод, свидетельствующий о том, что стабилизатор не выполняет свою задачу из-за отсутствия нагрузки.

Читайте так же:
Стабилизатор тока для зарядки автомобильного аккумулятора своими руками

Когда сила тока колеблется в пределах 130−150 В, характеристики инверторного стабилизатора напряжения штиль падает, система открывает транзистор VT 5, включает второй сигнальный светодиод, оптосимистор U1.2 и симистор VS2. Рабочая нагрузка передается на обмотку верхнего вывода трансформатора T 2.

Собранный в домашних условиях инверторный стабилизатор штиль способен передавать напряжение 220 В и переключать соединение с обмоткой второго трансформатора при скачке напряжения в сети от 190 до 250 В. Основным элементом инверторного стабилизатора штиль является печатная плата 115×90 мм из стеклотекстолита с односторонним покрытием фольгой.

Достоинства бытового выпрямителя

По конструкции и принципу действия стабилизатор с двойным преобразованием имеет ряд положительных свойств. Бытовой инвертор обладает следующими качествами, влияющими на производительность прибора:

  1. Расширенный показатель входного напряжения в пределах 115−300.
  2. Стабилизация выходного напряжения до 220 V в случае резкого скачка ток.
  3. Низкий порог шума при работе прибора.
  4. Компактные габариты корпуса и небольшая масса.
  5. Фильтрация высокочастотных помех и выбросов.
  6. КПД > 90%.
  7. Низкая точность нормализации входного напряжения.
  8. Оперативное регулирование силы электротока.
  9. Неприхотливость к обслуживанию и условию эксплуатации.

Недостатки стабилизирующего устройства

Наряду с достоинствами, электронный инверторный стабилизатор напряжения штиль обладает существенными недостатками. Среди комплекса отрицательных свойств наиболее важными считается:

  1. Высокая стоимость.
  2. Снижение диапазона входного напряжения.
  3. Чувствительность к перепадам напряжения в сети.

Условия работы прибора

В процессе преобразования тока необходимо защитить прибор от влаги, пыли, перегрева и механических повреждений. Устройство нельзя включать в работу, если в корпусе возникло образование конденсата от перепада температуры окружающей среды, для защиты стабилизатора от короткого замыкания необходимо дождаться полного испарения влаги с внутренних элементов оборудования.

Сделанный выпрямитель тока, изготовленный своими руками в частной мастерской, может эксплуатироваться только в сухих помещениях, где отсутствуют грызуны, насекомые, взрывоопасные и горючие материалы. Для стабилизации частоты колебания тока прибор должен устанавливаться на открытом пространстве, на расстоянии не менее 50 мм от стены, использоваться нулевой или фазный кабель.

Значение слова «стабилизатор»

СТАБИЛИЗА́ТОР, -а, м. Спец.

1. Устройство или прибор для сообщения телу устойчивости при движении. Стабилизатор самолета. Стабилизатор автомобиля. Стабилизатор бомбы.

2. Устройство для поддержания постоянства какой-л. величины, характеристики. Стабилизатор частоты колебаний. Стабилизатор напряжения.

3. Вещество, задерживающее процесс изменения свойств какого-л. другого вещества. Стабилизатор взрывчатых веществ. Стабилизатор пластмасс.

[От лат. stabilis — устойчивый]

Источник (печатная версия): Словарь русского языка: В 4-х т. / РАН, Ин-т лингвистич. исследований; Под ред. А. П. Евгеньевой. — 4-е изд., стер. — М.: Рус. яз.; Полиграфресурсы, 1999; (электронная версия): Фундаментальная электронная библиотека

  • Стабилиза́тор — в общем случае предназначен для предотвращения изменения параметров под действием дестабилизирующих факторов:

В математике: стабилизатор множества по действию группы, см. действие группы.

В электротехнике: электрический стабилизатор:

В оптике: стабилизатор — система оптической стабилизации изображения.

Для стабилизации движения в жидкой или газообразной среде:

В судостроении стабилизатором называется одна из горизонтальных плоскостей, которая обеспечивает устойчивость судна при качке. Приводится в действие при помощи бортовых гироскопов.

В стрелах для стрельбы из лука: оперение стрелы.

В авиации стабилизатором называется одна из горизонтальных плоскостей, которая обеспечивает устойчивость самолёта.

Авиационные бомбы: стабилизатор бомбы.

В ракетостроении стабилизаторами называются плоскости или решётки, обеспечивающие устойчивость полёта ракет.

В автомобилях: Стабилизатор поперечной устойчивости — устройство в подвеске, обеспечивающее подавление боковых кренов в поворотах.

В вооружениях: Стабилизатор вооружения — система автоматического регулирования, обеспечивающая сохранение заданного направления вооружения и приборов наблюдения при колебаниях корпуса боевой машины во время движения.

В химии и в кулинарии: стабилизатор — это компонент (добавка), который уменьшает изменения физических или химических свойств веществ при хранении или применении.

В дорожном строительстве: стабилизатор грунта — вещество, добавляемое в компоненты основания дорожной одежды для улучшения их физико-механических характеристик.

Один из химических компонентов большинства составов порохов и других BB.

В клавиатурах: скоба в длинных клавишах (см. Технологии клавиатур)

СТАБИЛИЗА’ТОР, а, м. [от латин. stabilis — устойчивый, постоянный] (тех.). 1. Неподвижная горизонтальная плоскость в хвостовой части аэроплана или дирижабля, придающая продольную устойчивость аппарату в воздухе. 2. Аппарат для уменьшения качки судна, основанный на принципе гироскопа. 3. Устройство для сглаживания колебаний электрического тока в сварочных установках, в радиотехнике для стабилизации частоты колебаний и т. д.

Источник: «Толковый словарь русского языка» под редакцией Д. Н. Ушакова (1935-1940); (электронная версия): Фундаментальная электронная библиотека

стабилиза́тор

1. устройство, обеспечивающее устойчивость при движении, постоянное положение, постоянное состояние или постоянные параметры чего-либо во времени ◆ Помимо управления рулями и моторами, нужно было вручную сто пятьдесят раз повернуть штурвал стабилизатора, чтобы взлететь, и столько же раз, чтобы сесть. С. Вишенков, «Испытатели», 1947 г. (цитата из НКРЯ) ◆ Стабилизаторы напряжения тоже пригодятся в хозяйстве, ведь автоматика и насосы очень чувствительны к скачкам напряжения в электросети… В. Чугунов, «Дом без тепла — жизнь не мила» // «Homes & Gardens», 2002 г. (цитата из НКРЯ)

2. вещество, задерживающее процесс изменения свойств какого-либо другого вещества ◆ Стабилизаторы призваны сохранять заданную консистенцию: молекулы веществ, которые используются в качестве стабилизаторов, имеют разветвлённую структуру и хорошо связывают воду. Анна Петрухина, «Йогурт: добавка добавке рознь» // «Наука и жизнь», 2009 г. (цитата из НКРЯ)

3. перен. человек или абстрактная сущность, действия или присутствие которой делает какой-либо процесс устойчивым во времени, устраняет нежелательные отклонения ◆ Выражая сомнения в способности нашего общества породить средний класс — опору, стабилизатор современного западного общества, специалисты начинают с цифр. Ирина Прусс, «Ищите и обрящете. Непременно» // «Знание — Сила», 2009 г. (цитата из НКРЯ)

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector