Стабилизатор постоянного тока вду
Однопостовые сварочные выпрямители
Трехфазная мостовая схема выпрямления применена для однопостовых выпрямителей с падающей характеристикой ВД-201, ВД-306, ВД-401 на токи 200, 315 и 400 А. Они изготовляются с механическим трансформаторным регулированием и благодаря простоте конструкции, надежности и легкости обслуживания широко применяются на стройках. Изменение диапазонов в этих выпрямителях обеспечивается переключением первичных, а также вторичных обмоток трансформаторов с «треугольника» на «звезду». Плавное регулирование в пределах диапазона осуществляется путем перемещения катушек вторичной обмотки ходовым винтом.
Выпрямительный мост состоит из шести кремниевых вентилей В200. Вентиляция для охлаждения вентилей — воздушная, принудительная. Нормальная работа вентиляции контролируется ветровым реле. Выпрямители ВД-306 и ВД-401 имеют защиту при аварийных ситуациях путем отключения аппарата от сети. Структурная схема и внешние характеристики выпрямителей типа ВД даны на рис. 6.5.
Рис. 6.5. Структурная схема выпрямителя ВД-306 (а), внешние характеристики выпрямителя (б)
С — сеть; Г — трансформатор; V — выпрямительный блок; Д — дуга; I — диапазон больших токов; 2 — диапазон малых токов
Выпрямитель с дроссельным регулятором тока ВД-502-2, имеющий крутопадающую вольтамперную характеристику, предназначен для питания сварочным током до 500 А одного поста ручной дуговой сварки, а также автоматической сварки под флюсом. Крутопадающая внешняя характеристика и плавное регулирование током производятся дросселем насыщения, включенным во вторичную цепь между трансформатором и выпрямительным блоком.
Дроссель насыщения представляет собой замкнутый магнитопровод броневого или стержневого типа. На крайних стержнях магнитопровода броневого типа (рис. 6.6, а) расположены две силовые обмотки переменного тока, соединенные последовательно, а на среднем стержне — обмотка управления постоянного тока, питаемая от тиристорного регулятора. При маг-нитопроводе стержневого типа силовые обмотки и обмотка управления расположены на обоих стержнях (рис. 6.6,б). При этом обмотка управления расположена навстречу силовым обмоткам. Для плавного регулирования величины сварочного тока изменяют ток обмотки управления, вследствие чего изменяется магнитное насыщение сердечников и индуктивное сопротивление дросселя, что меняет ток в силовых обмотках и, следовательно, сварочный ток.
Рис. 6.6 Схемы однофазною дросселя насыщения
броневого (а) и стержневого типа (б)
Выпрямительный блок построен по трехфазной мостовой схеме с использованием вентилей В200. Выпрямитель имеет ступенчатое регулирование путем переключения диапазонов. Плавное регулирование может быть дистанционным. Выпрямитель ВД-502-2 снабжен стабилизатором напряжения, который обеспечивает постоянство выходного напряжения при колебании напряжения сети от 5 до 10 % U ном» ОХЛЯЖД6НИ6 ВЫГфЯ-мителя — воздушное принудительное. Имеется блок защиты от аварийных ситуаций, аналогичный блоку защиты выпрямителей ВД-306 и ВД-401.
Тиристорные универсальные выпрямители применяют для ручной дуговой сварки, автоматизированной и механизированной сварки под флюсом и в защитных газах. Их внешние характеристики универсальны, так как могут быть крутопадающими, пологопадающими и жесткими. К ним относится выпрямитель ВДУ-1201 на токи от 300 до 1200 А, выполненный в виде однокорпусной стационарной установки. Внешняя характеристика его показана на рис. 6.7,а. Выпрямление сетевого напряжения осуществляется по кольцевой схеме с использованием тиристоров Т-500. Блок фазового управления тиристорами формирует импульсы заданной длительности и углы сдвига фаз и передает их на управляемые электроды тиристорного выпрямительного блока. Имеющийся в установке сварочный дроссель сглаживает пульсацию выпрямленного напряжения, что уменьшает разбрызгивание при сварке. Первичная обмотка силового трансформатора может включаться «звездой» или «треугольником».
Рис. 6.7. Внешние характеристики выпрямителей ВДУ-1201 (а), ВДУ-500 (б)
Выпрямитель ВДУ-506 на токи 50—500 А выполнен в виде однокорпусной передвижной установки и предназначен для однопостовой ручной дуговой сварки, сварки под флюсом, сварки в защитном газе. Внешние характеристики его падающие и жесткие (рис. 6.7,б), по электросхеме он аналогичен,, выпрямителю ВДУ-1201, но имеет дополнительные электрические блоки, улучшающие его сварочные характеристики.
К тиристорным универсальным выпрямителям относятся также стационарный выпрямитель ВДУ-505 и передвижные на колесах ВДУ-504-1, ВДУ-305 и др.
Сварочный выпрямитель И-115 на токи 80—630 А предназначен для дуговой автоматизированной и механизированной сварки в защитном газе (СОг). Он может работать на падающих и жестких внешних характеристиках. По структурной схеме он аналогичен выпрямителю ВДУ-506. Переход с одной характеристики на другую осуществляется с помощью ручек управления. Выпрямитель является дальнейшим усовершенствованием установок универсального типа.
Стабилизатор постоянного тока вду
Универсальные выпрямители применяют при ручной сварке, автоматической сварке под флюсом и в защитных газах. Такой широкий диапазон применения рассматриваемых выпрямителей обеспечивается их внешними характеристиками, которые могут быть как крутопадающие, так и пологопадающие и жесткие. Отечественная промышленность серийно выпускает выпрямители ВДУ-506, ВДУ-1201 и И-115.
Рассматриваемые выпрямители обеспечивают плавное дистанционное регулирование сварочного тока, выходного напряжения и его стабилизацию при колебаниях напряжения сети при всех способах сварки. Выпрямители имеют современную аварийную защиту как от кратковременных коротких замыканий, так и от различных перегрузок, возникающих в процессе работы, а также снабжены емкостным фильтром для снижения уровня радиопомех, создаваемых при работе.
Выпрямитель ВДУ-506 выполнен в виде однокорпусной передвижной установки и предназначен для однопостовой ручной дуговой сварки, автоматической сварки под флюсом и механизированной сварки в среде защитного газа (СОг) в различных пространственных положениях. Этот выпрямитель входит в комплект сварочных полуавтоматов. Внешние характеристики выпрямителя ВДУ-506 показаны на рис. 64, а (ПВХ — падающая внешняя характеристика и ЖВХ — жесткая внешняя характеристика).
Выпрямитель ВДУ-1201 выполнен в виде однокорпусной стационарной конструкции и предназначен для всех способов дуговой сварки. Внешние характеристики выпрямителя ВДУ-1201 показаны на рисунке питания и выпрямителя БТП и В блок фазового управления БФУ; блок обратных связей по току и напряжению БОСТ и Я и сварочный дроссель L. Вторичная обмотка трансформатора питания имеет две секции (а; Ь[ сi и аг; й||, каждая из которых соединена в звезду, а их нейтральные провода образуют положительный и отрицательный полюсы выходного напряжения (рис. 66). Блок управляемых диодов В1 включен по шестифазной кольцевой схеме, причем к анодам диодов подсоединены начала обмоток одной секции, а к катодам — начала обмоток другой секции.
Блок фазового управления БФУ тиристорами VI ИИ! является стандартным (на рис. 66 не показан) и состоит из входного устройства, фазосдвигающего устройства и усилителя сигналов управления Принцип действия и устройство каждого блока описаны в гл. 4.
Блок обратной связи по току и напряжению БОСТ и Я состоит из трех однофазных трансформаторов ТА1, ТА2, ТАЗ, которые служат датчиками сварочного тока, маломощного выпрямителя В2 и резистора R1 — формирователя обратной связи по току. Обратная связь по напряжению снимается с клемм МЫ. При работе с падающими характеристиками используется обратная связь по току, а при работе с жесткими характеристиками — обратная связь по напряжению. Структурная схема выпрямителя ВДУ-506 (рис. 67) в отличие от рассмотренной структурной схемы выпрямителя ВДУ-1201 (см. рис. 65) Имеет дополнительные блоки: сумматор формирователь управляющего напряжения БФУН и блок задания режима БЗР.
Вторичные обмотки понижающего трансформатора питания 77 соединены с выпрямительным блоком В1 по шестифазной схеме выпрямления с уравнительным дросселем L1 (рис. 68). Отрицательная шина выпрямителя через сварочный дроссель L2 соединена со средней точкой уравнительного дросселя LV. Катоды управляемых диодов VI — V6 подсоединены к положительной шине выпрямителя. В качестве датчика тока в Рис. 65. Структурная схема выпрями- выпрямителе ВДУ-506 применен теля ВДУ-1201 магнитный усилитель Л, обмоткой
Электрическая схема выпрямителя ВДУ-1201
управления которого служит положительная шина. Питание магнитного усилителя подается от дополнительного трансформатора Т2. В остальном блок обратной связи по току и напряжению аналогичен блоку выпрямителя ВДУ-1201. Блок фазового управления выпрямителя ВДУ-506 является стандартным.
Сумматор — устройство сравнения — вырабатывает сигнал управления, пропорциональный изменению напряжения сети и сигналу обратной связи по току и напряжению, в зависимости от технологических требований (на рис. 68 не показан).
Блок задания режима предназначен для установки необходимого технологического режима при самостоятельной работе выпрямителя либо в комплекте со сварочным автоматом или полуавтоматом. При этом сигнал на блок задания режима поступает от соответствующих блоков управления (на рис. 68 не показан).
Сигналы с выхода сумматора и блока задания режима поступают на входы блока формирования управляющего напряжения, который формирует сигнал для блока фазового управления в зависимости от принятых условий работы, способа сварки и изменения напряжения сети, а также сигналов обратной связи по сварочному току и напряжению (на рис. 68 не показан).
Структурная схема выпрямителя ВДУ-506
Сварочный дроссель как в выпрямителе ВДУ-1201, так и в выпрямителе ВДУ-506 предназначен для сглаживания пульсаций выпрямленного напряжения и уменьшения разбрызгивания металла при сварке. Полную индуктивность дросселя используют при работе на падающей внешней характеристике, меньшую индуктивность — на второй ступени регулирования жесткой внешней характеристики.
Первичные обмотки трансформаторов питания у рассмотренных выпрямителей включают как по схеме «звезда», так и по схеме «треугольник». На рис. 66 и 68 первичные обмотки включены по схеме «звезда».
Рассмотренные выпрямители обеспечивают точность стабилизации выходного напряжения при работе на жесткой внешней характеристике и сварочного тока на падающий внешней характеристике до 2,5 % при колебании напряжения сети в диапазоне.
Технические характеристики выпрямителей ВДУ-506 и ВДУ-1201 приведены в табл. 10.
Сварочный выпрямитель И-115 предназначен для дуговой автоматической и механизированной сварки в защитных газах (СОг) и является дальнейшим совершенствованием источников питания постоянного тока.
Схема включения секций сварочного дросселя выпрямителя ВДУ-506
При снятии защитного кожуха 2 обеспечивается доступ к блокам источника питания при обслуживании и ремонте. Переход с одной внёшней характеристики на другую и ее оптимизация осуществляется с помощью ручек управления и контрольных приборов, расположенных на панели управления 1. Рым-болты, установленные на верхней крышке шкафа, предназначены для перемещения источника питания И-115 с помощью подъемно-транспортного механизма. Техническая характеристика источника питания И-115 приведена в табл. 10.
Принципы работы стабилизаторов напряжения
Стабилизаторы переменного напряжения появились в нашей стране более 80 лет назад. C того момента они претерпели множество изменений и усовершенствований, включая саму технологию, использующуюся для регулировки сетевого напряжения.
В нашей статье мы расскажем о том, когда и как появились первые приборы для коррекции напряжения в бытовых электросетях, а также о том, как менялись технологии, лежащие в основе их работы.
Содержание
- Технология стабилизации напряжения, основанная на эффекте феррорезонанса
- Первые стабилизаторы напряжения в СССР
- Стабилизация напряжения с помощью сервопривода
- Релейная технология стабилизации напряжения
- Стабилизация напряжения на основе тиристоров и симисторов
- Технология двойного преобразования энергии
Технология стабилизации напряжения, основанная на эффекте феррорезонанса
В 1938 году был изобретен и запатентован феррорезонансный трансформатор (автор Джозеф Сола). Именно это устройство, изначально названное «трансформатор постоянного напряжения», стали впервые использовать для стабилизации параметров электрической энергии, так как оно за счет электромагнитного явления, называемого феррорезонансом, при колебаниях входного напряжения сохраняло неизменным значение выходного.
Отметим, что феррорезонансный эффект не регулирует напряжение напрямую, однако при правильном применении позволяет минимизировать влияние первичного (входного) напряжения на вторичное (выходное).
Феррорезонансный трансформатор включает в себя две магнитные цепи (обмотки) со слабой связью друг с другом. Магнитопроводы цепей имеют различную магнитную проницаемость, поэтому во время работы выходная цепь находится в режиме постоянного насыщения, а входная, наоборот, не достигает насыщенности. Благодаря этому даже значительные отклонения напряжения на входе не приводят к существенным колебаниям на выходе. Разница между величиной фактически снимаемого с трансформатора напряжения и его номинальным значением обычно не превышает пяти процентов (при соблюдении определённых условий).
Феррорезонансные трансформаторы выпускаются по сей день, правда, современные модели из-за высокой цены и некоторых особенностей эксплуатации, практически не используются в качестве стабилизаторов напряжения.
Первые стабилизаторы напряжения в СССР
В нашей стране разработки приборов, обеспечивающих коррекцию переменного напряжения, начались в конце 1950-х годов. Именно тогда возникла потребность в качественном электропитании бытовой техники, начавшей массово появляться в советских квартирах и домах.
За основу для первых серийных стабилизаторов отечественные инженеры взяли описанную выше технологию феррорезонанса – она не требовала сложной схемы и, самое главное, полностью удовлетворяла существующие на тот момент требования к качеству электропитания.
В широкий обиход советские феррорезонансные стабилизаторы вошли уже в 1960-х годах. Их конструкция включала в себя автотрансформатор, входной и фильтрующий дроссель, а также конденсатор.
Данные изделия не отличались большой мощностью и в основном были рассчитаны на 200-300 Вт. Но этого вполне хватало для питания типичных нагрузок того времени: цветных и чёрно-белых телевизоров, радиоаппаратуры, магнитофонов и измерительных приборов (более мощные трехфазные стабилизаторы использовались для защиты ответственного электрооборудования на промышленных предприятиях).
В течение 1960-1970-х годов наибольшее распространение в бытовом секторе получили модели ТСН-170, ФСН-200, СНБ-200, СН-200, УСН-200, ТСН-200 СН-250, СН-315 и СНП-400 (цифра в названии означает выходную мощность устройства). Перечисленные устройства выпускались как в пластиковых, так и металлических корпусах и предназначались для настенного или напольного размещения. Для сети предусматривался выведенный шнур со штепсельной вилкой, для нагрузки – розеточное гнездо.
Использовались советские феррорезонансные стабилизаторы в первую очередь для защиты телевизоров от сильно завышенного или заниженного сетевого напряжения: они обеспечивали возможность нормального приема телевизионных передач, сохранность и увеличение срока службы кинескопа, ламп и других элементов телевизионного приёмника.
Что касается технических характеристик, то данные изделия в основном были рассчитаны на работу от сети переменного тока с частотой 50 Гц и номинальным напряжением 127 или 220 В. При этом рабочий диапазон входных напряжений составлял 85-140 В (для сети 127 В) и 155-250 В (для сети 220 В). Приборы имели коэффициент полезного действия не менее 80%, не боялись перегрузок и коротких замыканий. Кроме того, феррорезонансные стабилизаторы благодаря отсутствию электромеханических частей имели длительный срок службы. У некоторых пользователей сделанные во времена СССР устройства до сих пор исправно работают!
Были у этих стабилизаторов и свои недостатки: постоянный гул при работе (доходил до 32 дБА), существенные искажения формы выходного напряжения, большая зависимость от входной частоты и величины подключённой нагрузки, а также сильное электромагнитное поле, которое при близком расположении к телевизору создавало помехи в его работе.
Отметим, что разработки в области стабилизации сетевого напряжения велись в СССР непрерывно, поэтому параллельно с феррорезонансными стабилизаторами с конвейеров профильных заводов выходили и приборы иных типов. В частности, автотрансформаторные регуляторы моделей АРН-250, АРБ-400 и АТ-2, которые предполагали ручное поддержание выходного напряжения в установленных пределах. Однако ни одна разновидность изделий не получила в советский период такого распространения, как стабилизаторы на базе феррорезонанса.
Лишь с начала 90-х годов, когда в нашей стране появляется большое количество требовательной к качеству электропитания зарубежной бытовой техники и электроники, российские производители начинают выпуск стабилизаторов напряжения, в основу которых положены рассмотренные далее технологии.
Стабилизация напряжения с помощью сервопривода
В 1960-х стали активно распространяться сервоприводы – специальные электромоторы, механизм которых мог поворачиваться под разным углом и удерживать необходимое положение.
В тех же годах сервопривод начал использоваться и в стабилизаторах напряжения. Так, в 1961 году был запатентован электромеханический стабилизатор, силовая честь которого состояла из регулируемого автотрансформатора, подвижного токосъемного контакта с приводом от двигателя постоянного тока и источника напряжения собственных нужд. Прибор позволял автоматически стабилизировать сетевое напряжение, не искажая при этом форму его кривой.
Сегодня электромеханические стабилизаторы по-прежнему выпускаются и несмотря на разнообразие моделей имеют схожий принцип работы – плата управления сравнивает значение напряжения на входе изделия с установленным образцовым. В случае различия этих двух параметров сервопривод с графитовым ползунком, роликом или щеткой (в зависимости от конкретной модели стабилизатора) перемещается по обмотке автотрансформатора и подключает к цепи количество витков, достаточное для получения выходного напряжения максимально приближенного к эталонной величине.
Такой принцип работы сопряжен с существенными недостатками. Речь, в первую очередь, о невысокой скорости срабатывания – сервоприводу при возникновении сетевого отклонения требуется определенное время, чтобы передвинуть токосниматель в необходимое положение. Кроме того, быстрый механический износ подвижных деталей обуславливает необходимость их периодической замены.
Шум при передвижении щеток сервопривода, возможное искрение во время работы и громоздкая конструкция создают дополнительные сложности при бытовой эксплуатации данных устройств.
Подробнее об электромеханических стабилизаторах можно узнать в статье «Электромеханические стабилизаторы напряжения».
Релейная технология стабилизации напряжения
Появившееся еще в 19 веке электромеханическое реле – это, наверное, самый распространённый в автоматике элемент. В нашей стране оно сначала применялось в промышленности для управления технологическими процессами, а затем вошло и в состав различной бытовой техники. Разработка в СССР стабилизаторов напряжения, действующих на основе релейного элемента и получивших соответствующее название «релейные», приходится на 1970-е годы.
Основные элементы типичного релейного стабилизатора – это автотрансформатор, электронная плата управления и блок силовых реле, каждое из которых по сути представляют собой автоматический выключатель, соединяющий или разъединяющий электрическую цепь под внешним воздействием либо при достижении определенных параметров.
Во время работы релейного стабилизатора управляющая плата постоянно контролирует входное напряжение и в случае его отклонения от номинальных показателей подает сигнал на релейный блок. Последующее замыкание (размыкание) определённого реле коммутирует обмотки трансформатора и обеспечивает необходимый для нейтрализации входного искажения коэффициент трансформации.
Устройства данного типа имеют повышенную скорость срабатывания, но регулировка сетевого напряжения выполняется ступенчато (не плавно), что сказывается на форме подаваемого на нагрузку сигнала. Кроме того, срабатывание реле всегда сопровождается щелчками, создающими определенный шум во время работы устройства.
Подробнее о данном типе стабилизаторов можно узнать в статье «Релейные стабилизаторы напряжения».
Стабилизация напряжения на основе тиристоров и симисторов
Активное проникновение в электротехнику полупроводниковых компонентов нашло своё отражение и в вопросе стабилизации электрической энергии. В конце 1970-х начались разработки стабилизаторов напряжения, работающих на основе тиристоров – полупроводниковых приборов, имеющих два состояния «закрытое» с низкой проводимостью и «открытое» с высокой.
Обычно тиристоры используются как силовые ключи в различных электронных устройствах, например, в переключателях скорости электродвигателей, таймерах, диммерах и т.д. Отметим, что тиристоры в зависимости от конструкции могут проводить ток как в одном направлении, так и в двух (приборы второго типа получили название – симисторы).
Тиристорные и симисторные стабилизаторы напряжения по принципу своей работы схожи с релейными и отличаются лишь тем, что коммутация обмоток автотрансформатора выполняется не релейными блоками, а электронными, состоящими из тиристоров или симисторов. Применение таких блоков позволяет регулировать напряжение гораздо быстрее, чем с помощью классических электромеханических реле. Другие преимущества данной технологии: абсолютная бесшумность работы и отсутствие требующих технического обслуживания деталей.
Сегодня симисторные и тиристорные стабилизаторы являются одними из самых распространённых и популярных, что, однако, не отменяет их главного недостатка – ступенчатого регулирования напряжения (аналогично релейным моделям).
Более подробно о тиристорных и симисторных стабилизаторах рассказано в статье «Электронные стабилизаторы напряжения».
Технология двойного преобразования энергии
Инверторы и выпрямители – статические преобразователи напряжения, совместное использование которых в 1980-х породило технологию двойного бестрансформаторного преобразования энергии. Данная технология в течение нескольких десятилетий успешно применялась в онлайн ИБП, а в 2015 году была использована и при создании стабилизаторов напряжения нового поколения. Полученные устройства, названые инверторными стабилизаторами, обеспечили непревзойдённые технические характеристики и стали настоящим прорывом в своей отрасли.
Инверторные стабилизаторы избавлены от громоздкого автотрансформатора и каких-либо электромеханических частей, силовая часть приборов состоит исключительно из электронных модулей: выпрямителя, накопительной емкости и инвертора.
Работа такого стабилизатора заключается в двукратном преобразовании поступающего на вход напряжения. Сначала оно с помощью выпрямителя преобразуется в постоянное, затем проходит через промежуточную (накопительную) емкость и попадает на инвертор, где снова становится переменным. В итоге на выход устройства подаётся снятое с инвертора напряжение, которое обладает точным значением и синусоидальной формой.
В настоящее время инверторные стабилизаторы удовлетворяют даже самые жесткие требования к качеству электропитания и входят в число наиболее популярных устройств в соответствующем им сегменте рынка.
Подробнее об инверторных стабилизаторах читайте в статье «Инверторные стабилизаторы: строение и принцип работы».
Принцип работы схемы управления тиристорами выпрямительного блока ВДУ-504
Упрощенная схема выпрямителя представлена на рис.3. Напряжение на выходе выпрямителя определяется углом открытия тиристоров выпрямительного блока, который обеспечивается схемой управления тиристорами (СУ), подающей отпирающие импульсы на управляющие электроды тиристоров выпрямительного блока (В1…В6).
Падающие внешние характеристики выпрямителя ВДУ-504 формируются за счет отрицательной обратной связи по сварочному току Uост,. В цепи обратной связи предусмотрено устройство для измерения сварочного тока, которое на схеме (рис. 3) условно обозначено Дост – датчик сигнала обратной связи по току. Этот сигнал представляет собой напряжение Uост, измеряемое в милливольтах. Оно прямо пропорционально силе сварочного тока. В блоке БС оно сравнивается со стабилизированным напряжением Uэ.т. — установки по току. В результате сравнения формируется разностный сигнал ?U = Uэ.т. — Uост который подается на усилитель постоянного тока, а затем — на шестифазную схему управления тиристорами выпрямительного блока (СУ ). Поскольку напряжение обратной связи Uост пропорционально силе сварочного тока, то с увеличением тока разностный сигнал ?U = Uэ.т. — Uост будет уменьшаться. В блоке СУ этот сигнал преобразуется в сигнал открытия тиристора, при этом с уменьшением ?U угол задержки открытия тиристора увеличивается, а выходное напряжение выпрямителя с увеличением сварочного тока будет уменьшаться и наоборот. Таким образом, обеспечивается падающая внешняя характеристика.
Рис. 3. Упрощенная схема выпрямителя ВДУ-504
При холостом ходе Uост = 0 (МУ — закрыт) и на вход СУ действует только напряжение установки по току Uз.т., поэтому угол открытия тиристоров – максимальный, и напряжение холостого хода выпрямителя определяется напряжением холостого хода трансформатора. При определенной величине сварочного тока угол отпирания тиристоров станет равным нулю и напряжение на выходе выпрямителя тоже станет равным нулю, что соответствует режиму короткого замыкания. Наклон внешней характеристики выпрямителя регулируют плавно – путем изменения коэффициента усилия транзисторного усилителя с помощью регулируемого резистора Rp.
Для получения жестких стабилизированных характеристик выпрямителя ВДУ-504 в нем используется отрицательная обратная связь по напряжению дуги. Напряжение обратной связи Uосн, пропорциональное напряжению дуги, снимается с делителя R1-R2 и подается в блок сравнения БС, где сравнивается с установкой требуемого напряжения дуги. Разностный сигнал ?U=(Uзн-Uосн) поступает на усилитель с регулируемым коэффициентом усиления. Регулирование напряжения дуги в цепи обратной связи плавное, аналогичное регулирование тока с помощью резистора.
Кроме плавной регулировки тока и напряжения выпрямителя имеется два диапазона ступенчатой регулировки путем переключения соединения витков первичной обмотки трансформатора звездой или треугольником.
Соединение первичных обмоток треугольником соответствует падающим внешним характеристикам и первому диапазону жестких внешних характеристик. Соединение первичных обмоток звездой соответствует второму диапазону регулирования жестких характеристик. Переключение выпрямителя для работы на падающих характеристиках или жестких осуществляется тумблером S1.
Для работы на падающих характеристиках контакты этого тумблера S1.1 замыкаются, включая в работу цепь сигнал Uосн, а контакты S1.2 размыкаются, отключая цепь напряжения обратной связи Uосн и наоборот, для работы на жестких характеристиках флажок тумблера переводиться в противоположное положение. При этом его контакты S1.1 размыкаются, а контакты S1.2 замыкаются.
4. РАБОЧЕЕ ЗАДАНИЕ
4.1. Составить функциональную блок-схему выпрямителя и дать краткое описание функциональных блоков.
4.2. Построить семейство внешних характеристик выпрямителя при различных положениях регулятора в соответствии с заданным вариантом.
4.3. Построить регулировочную характеристику-зависимость основного регулируемого параметра от положения регулятора n:
Uхх=?(n)– только для жесткой характеристики, где n – количество делений на шкале регулятора.
I2k=f(n)– только для падающей характеристики
ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ
5.1. Снять верхнюю крышку и боковые стенки выпрямителя.
5.2. Изучить конструкцию выпрямителя и схему электрических соединений, используя заводской паспорт на выпрямитель и методические указания.
5.3. Собрать электрическую схему для экспериментального исследования выпрямителя (рис.4).
Рис. 4. Электрическая схема для экспериментального исследования работы выпрямителя
5.4. Установить начальное положение регулятора в соответствии с заданным вариантом работы.
5.5. Представить преподавателю электрическую схему для проверки.
5.6. Установить на место верхнюю крышку и боковую стенку выпрямителя.
5.7. Для снятия внешней характеристики необходимо включить выпрямитель в сеть и записать показания приборов на холостом ходу (опыт холостого хода) – все секции балластного реостата выключены.
Затем изменением положения ножей балластного реостата, начиная со второго, последовательно увеличивать нагрузку вплоть до короткого замыкания для выпрямителей ТОЛЬКО С ПАДАЮЩЕЙ ВНЕШНЕЙ ХАРАКТЕРИСТИКОЙ, либо – до максимального допустимого тока – для выпрямителей с жесткой характеристикой. Результаты измерений записать в таблицу 2.
Таблица 2
Результаты исследования внешней характеристики выпрямителя
5.7.2. Для снятия регулировочной характеристики необходимо, изменяя положение регулятора от минимума до максимума в 4-х точках, измерить и записать в таблицу 3 значения тока короткого замыкания для выпрямителя ВДУ-504 в режиме работы на падающей внешней характеристике. При работе в режиме жесткой характеристики выпрямителя ВДУ-504 измеряется напряжение холостого хода выпрямителя в 4-х положениях регулятора, начиная от минимального до максимального значения.
По результатам измерений необходимо построить регулировочные характеристики и описать их в соответствии с рабочим заданием.
Таблица 3
Результаты исследования регулировочной характеристики выпрямителя
n дел. | 3 | 5 | 6 | 7 |
Iк.з., А |
СОДЕРЖАНИЕ ОТЧЕТА
6.1. Наименование работы.
6.2. Цель работы.
6.3. Функциональная блок-схема выпрямителя с необходимым пояснительным текстом.
6.4. Электрическая схема для снятия внешних и регулировочных характеристик.
6.5. Таблицы экспериментальных данных.
6.6. Графики внешних и регулировочных характеристик выпрямителей и их описание.
6.7. Выводы по работе.
7. ПРАВИЛА ТЕХНИКИ БЕЗОПАСНОСТИ ПРИ ВЫПОЛНЕНИИ РАБОТ ПО КУРСУ «ИСТОЧНИКИ ПИТАНИЯ СВАРОЧНОЙ ДУГИ»
При работе в лаборатории источников питания сварочной дуги студентам приходится иметь дело с действующими электрическими установками и приборами, поэтому необходимо соблюдать меры предосторожности от возможного поражения электрическим током. Наиболее часто поражение током происходит либо при прикосновении к неизолированным частям электрооборудования, находящимся под напряжением, либо в результате отсутствия заземляющих устройств.
Все студенты должны обязательно соблюдать следующие правила техники безопасности:
7.1. Перед началом работы проверить надежность заземления корпусов источников питания.
7.2. Приступать к сборке электросхемы можно только при выключенном напряжении питающей сети. При этом защитные кожухи на борновых досках напряжения сети должны быть подняты, а рычаг кожуха должен нажимать на кнопку «стоп» магнитного пускателя. Об отсутствии напряжения можно судить по электролампе, установленной над магнитным пускателем. При выключенном пускателе лампа не горит.
7.3. Включение магнитного пускателя допускается только после проверки схемы руководителем и получения его разрешения.
7.4. При включенном оборудовании не прикасаться к его корпусу и клеммам, а также к клеммам измерительных приборов. Естественно никаких переключений производить нельзя.
7.5. Переключение регулирующих устройств трансформаторов можно производить только при отключенной питающей сети. Изменение положения регулировочных реостатов у сварочных генераторов, производится при работающих приводных электродвигателях, но обязательно на холостом ходу.
7.6. Не допускается включение и выключение оборудования под нагрузкой.
7.7. Разбирать электрическую схему необходимо при выключенном магнитном пускателе, но только после разрешения руководителя работ.
Дата добавления: 2020-11-23 ; просмотров: 153 ; Мы поможем в написании вашей работы!