Sfera-perm.ru

Сфера Пермь
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Стабилизатор постоянного тока что это

Стабилизатор напряжения. Виды и работа. Применение и как выбрать

В жизни современного человека есть много электроприборов, которыми он постоянно пользуется как в быту, так и на работе. Есть такие потребители, которые требуют поддержания напряжения в строгих пределах и чтобы этого добиться, необходимо использовать стабилизатор напряжения.

Виды
В зависимости от технического решения, стабилизаторы могут быть нескольких видов:
  • Релейные. Они обеспечивают ступенчатую регулировку и состоят из автотрансформатора и силового реле. Такие приборы не могут с высокой точностью регулировать выходное напряжение. Для улучшения качества стабилизации, усложняют конструкцию автотрансформатора, но это приводит к увеличению стоимости оборудования. Такие стабилизаторы используются с маломощными приборами.

  • Симисторные. Это электронные приборы, которые работают по принципу релейных, но обмотки в них переключаются симисторами (электронные ключи). Так как нет механического реле, то скорость переключения увеличивается, они более надежные, тише работают, но также не могут обеспечить высокую точность выходного напряжения.

  • Электромеханические или сервоприводные. Они работают по принципу реостата (электропривод передвигает контакты по обмотке автотрансформатора), поэтому могут плавно изменять выходное напряжение. Такое оборудование может использоваться в сетях, где нет резких скачков напряжения.

  • Феррорезонансные. Данное оборудование непрерывно регулирует выходное напряжение в заданном диапазоне. Такой вариант имеет ряд нерешенных проблем, поэтому его применение ограничено.

  • Инверторные. Это самые современные стабилизаторы, которые работают по принципу двойного преобразования напряжения: сначала оно преобразуется из переменного в постоянное, а потом снова из постоянного в переменное. В этом случае нет громоздкого трансформатора, поэтому такие приборы имеют небольшие размеры и вес. Данное оборудование имеет высокую точность, она в переделах 1%. Независимо от напряжения на входе, на выходе мы получаем практически идеальные 220 В.
Как устроен стабилизатор
Стабилизатор напряжения состоит из нескольких основных частей, которые есть в таком оборудовании, независимо от его вида:

  • Автотрансформатор. Он может иметь алюминиевую обмотку, используется в дешевых моделях, и медную – применяется в качественных приборах.
  • Электронная схема управления. У разных торговых марок она будет отличаться, поэтому стабилизатор напряжения одного вида, но разных изготовителей будет выполнять свои функции неодинаково. Отличие состоит в алгоритме замыкания ключей, поэтому идентичные по типу приборы имеют значительные отличия в работе.
  • Замыкающие ключи. Эти элементы стабилизатора определяют тип его коммуникации: электронные или электромеханические. Более предпочтительные электронные стабилизаторы, так как у них скорость срабатывания в пределах 10-20 мс, а у электромеханических она будет 40-50 мс.
  • Элементы защиты. К основным относится тепловой и магнитный расцепители, а к дополнительным — защита от молнии.
  • Байпас – устройство, которое обеспечивает непрерывность питания, подключает напрямую к сети.
Принцип действия

Принцип работы оборудования основан на отслеживании входящего напряжения и корректировки его на выходе, в зависимости от происходящих изменений.

Когда на входе происходит изменение напряжения, стабилизатор тратит некоторое время на проведение замера. В электронных моделях на это требуется до 20 мс, а у электромеханических до 50 мс. На следующем этапе работы происходит соответствующая реакция на возникшую ситуацию. Все изменения напряжения выравниваются до 220 В.

Когда на входе показатели снижаются, стабилизатор напряжения поднимает его показатели на входе, насколько хватает возможностей автотрансформатора. Когда значения на входе превышают заданный диапазон, то прибор автоматически отключает подачу напряжения. Стабилизатор напряжения не пропускает на подключенное оборудование импульсные скачки.

Напряжение регулируется за счет подключения добавочных обмоток трансформатора при помощи ключей, которые могут быть электронными или релейными. Процесс коммутации контролируется процессором, который не позволяет одновременного включения более одного ключа.

Область применения

Стабилизаторы напряжения нашли широкое применение как в промышленности, так и в быту. Нестабильное напряжение в сети делает использование такого оборудования очень актуальным.

У каждого в доме есть такое дорогостоящее оборудование как компьютер, стиральная машина, холодильник и другая аппаратура, для которого очень важно качественное электропитание. Оптимальным и недорогим решением, позволяющим надежно защищать бытовые приборы и различное промышленное оборудование, является стабилизатор напряжения.

Привести к выходу из строя или к нестабильной работе различной бытовой техники может пониженное или повышенное напряжение, а также его пиковые скачки. Наличие стабилизатора позволяет выравнивать возникающие перепады напряжения, на выходе он выдает номинальное напряжение, которое необходимо для корректной работы подключенного электрооборудования.

Как выбрать стабилизатор напряжения

Для совершения правильного выбора, специалисты рекомендуют обращать внимание на такие особенности:
  • Способ монтажа, стабилизатор может устанавливаться рядом с обслуживаемым устройством, стационарные устройства монтируются на стену в горизонтальном или вертикальном положении.
  • Если используется прибор на 220 В, то точность его работы должна составлять 1-3%.
  • Мощность, надо приобретать прибор, мощность которого будет на 30% больше мощности подключаемого оборудования.
  • Могут быть одно и трехфазные стабилизаторы.
  • Быстродействие прибора, измеряется этот показатель в миллисекундах.
  • Наличие защиты, эта функция защитит прибор от короткого замыкания, резких скачков напряжения и других негативных моментов.
  • Имеют значения и размеры оборудования, а также уровень шума, который он издает во время работы.
  • Стоимость, качественный прибор не может стоить дешево, лучше приобрести более дорогое, но качественное оборудование.
  • Гарантийный срок службы, у качественного стабилизатора он будет несколько лет, тогда как у дешевых моделей вообще может не быть никаких гарантий.

Если подключается оборудование с мощным электродвигателем, то надо учитывать реактивную составляющую мощности, так как при запуске мотора, ток сильно повышается и если такой параметр не учесть, то стабилизатор не справится с нагрузкой, возникающей при запуске электродвигателя.

Достоинства и недостатки
Преимущества и недостатки таких приборов будут зависеть от их вида:
  • Релейные. Главное достоинство релейного стабилизатора – высокая скорость регулирования напряжения. Недостатки таких приборов в том, что изменение напряжения происходит ступенчато, точность стабилизации низкая и искажается синусоида.
  • Симисторные. Достоинства в том, что во время работы они имеют низкий уровень шума, процесс коммутации быстрый, а изменение напряжения происходит плавно. Главный их недостаток в низкой точности регулирования напряжения.
  • Сервоприводные. Такие стабилизаторы плавно регулируют выходные параметры, не искажают синусоиду и обеспечивают высокую точность регулирования. Недостатки такого оборудования в невысокой скорости реакции и низкой скорости регулирования, а наличие механически передвигаемых деталей, снижает надежность таких приборов.
  • Феррорезонансные. Данное оборудование обеспечивает высокое быстродействие и точность стабилизации. Оно имеет большой срок службы и высокую надежность. Недостаток таких стабилизаторов в том, что происходит искажение синусоиды, они имеют небольшой диапазон регулировки, у них большой вес и КПД всего 70-80%. Кроме этого, не допускается работа такого оборудования при больших перегрузках и в режиме холостого хода.
  • Инверторные. Они обеспечивают высокую точность и скорость регулировки, могут работать как с очень низким, так и с высоким входным напряжением. Такие приборы могут работать без нагрузки, подавляют импульсы и помехи, создают правильную синусоиду. Основные их недостатки и в низком КПД, сложности ремонта и высокой стоимости.
Читайте так же:
Стабилизатор тока с ttl модуляцией это

Срок службы электроприборов и качество их работы будут зависеть от параметров подаваемой электроэнергии. Чтобы защитить технику от изменения напряжения в сети и обеспечить ее надежную и долгую работу, достаточно установить современный стабилизатор напряжения.

Электронный стабилизатор напряжения — выбор в пользу надежности. Видео.

Эта статья расскажет вам (ссылки кликабельны):

Каждый наш домашний электроприбор работает в условиях постоянного изменения напряжения. Если это изменение не превышает ±10 процентов от номинальных 220 вольт, то приборы демонстрируют стабильную и качественную работу.

Однако наша реальность такова, что это изменение может превышать эти 10 процентов. Такие ситуации всегда сказываются на «здоровье» каждого домашнего электроприбора.

Для того, чтобы это «здоровье» было крепче, каждому из нас следует использовать стабилизаторы напряжения. На сегодняшний день можно выделить много их видов. Однако в список наиболее эффективных и совершенных входит электронный стабилизатор.

Особенности электронного стабилизатора

Одним из важнейших признаков таких стабилизаторов является наличие блока электронных микросхем или микропроцессора, который занимается диагностикой входного напряжения, управлением силовыми ключами и другими элементами стабилизатора.

Схема электронного стабилизатора напряжения

Другими словами именно благодаря его работе осуществляется управление процесса стабилизации напряжения. Работает микроконтроллер или электронная схема в автоматическом режиме.

Однако, если посмотреть на строение любого современного автоматического стабилизатора напряжения для дома или квартиры, то можно отметить, что в составе каждого стабилизатора есть такой элемент управления и, учитывая вышеупомянутой признак, все стабилизаторы можно назвать электронными.

Собственно всеми процессами, которые происходят в них, управляют электронные схемы.

Для того, чтобы выделить электронный стабилизатор напряжения в отдельный вид, назовем еще одну уникальную особенность. Ею является отсутствие каких-либо механических элементов, которые могут двигаться или перемещаться.

Как известно, в электромагнитных стабилизаторах таким элементом является сервопривод, в релейных — реле.

Электронный стабилизатор напряжения, который может быть как однофазным, так и трехфазным, не имеет никаких подвижных элементов. В предыдущих двух типах стабилизаторов сервопривод и реле используются для подключения определенных обмоток трансформатора.

В электронном приборе стабилизации напряжения также происходит подключение определенных обмоток. Однако для этого используются полупроводниковые ключи. Эти ключи могут быть симисторными или тиристорными.

Устройство

Стоит отметить, что главный принцип работы электронного стабилизатора является таким же как, как релейного и чем-то похож на принцип работы электромеханического стабилизатора. Для того, чтобы понять, как работает главный герой нашей статьи, рассмотрим его строение.

Итак, схема стабилизатора напряжения, который мы называем электронным, состоит из:

  1. Автоматического трансформатора.
  2. Тиристорных или симисторных ключей.
  3. Электронной схемы управления.
  4. Фильтров частот.
  5. Датчиков, которые измеряют различные показатели деятельности стабилизатора.

Важнейший элемент — автоматический трансформатор. Именно благодаря ему происходит нормализация тока. Он состоит из двух обмоток. В первую входит ток с общей электросети, а из второй выходит ток с нормированным напряжением.

Каждая обмотка имеет определенное количество витков, которые условно разделены на группы и от каждой группы отходят выводы. Подключение определенного количества витков второй обмотки увеличивает напряжение на выходе, а отключение — уменьшает.

Собственно подключением и отключением этих витков занимаются тиристорные и симисторные ключи. Здесь хочется отметить на одном важном факте. При подключении или отключении определенного количества витков конечное количество вольт меняется на фиксированную величину.

Для электронных стабилизаторов напряжения, которые на выходе выдают 220 вольт, эта величина может колебаться от двух до десяти вольт. То есть, если напряжение на выходе было равно 235 вольтам и ключи отключили одну группу витков, то напряжение на выходе будет равняться 225-ти вольтам (за условия, если ступенька равняется 10 вольтам).

Такое выравнивание напряжения называется ступенчатым.

Аналогичным образом работают и такие стабилизаторы напряжения, как электронно-релейные (благодаря наличию электронных схем их в некоторой степени можно назвать электронными).

Если же говорить о принципе работы стабилизаторов напряжения, которые можно назвать электронно-механическими, то они также выравнивают напряжение благодаря переключению между обмотками. Однако это переключение происходит постепенно.

Щетка переключения движется по кругу и контактирует с каждой обмоткой.

Как уже было определено ранее, всей работой электронных стабилизаторов напряжения, которые могут использоваться на даче или в любом доме, управляет электронный блок или микропроцессор. По сути дела он является мозгом стабилизатора. Он осуществляет следующие процессы:

  • дает команды на оценку входного тока;
  • определяет количество вольт, которое нужно добавить или снять;
  • оценивает состояние ключа (включен или не включен) и определяет момент включения;
  • дает команду определенному тиристору или симистору на включение/выключение;
  • измеряет уровень нагрузки на стабилизатор;
  • отключает стабилизатор в случаях перегрузки и несоответствия напряжения предельному диапазону.

Технические характеристики

Благодаря таким составляющим стабилизатор напряжения электронный однофазный может выравнивать напряжение, если оно колеблется от 120-ти до 300 вольт. При этом максимальная точность стабилизации тока составляет ±3 процента.

Это означает, что напряжение на выходе будет колебаться в пределах 213-227 вольт. Конечно, есть модели, которые могут похвастаться большим уровнем точности.

Особенностью таких моделей является наличие большего количества ключей, то есть большего количества ступеней выравнивания. Чем больше этих ступеней, тем более точной является стабилизация.

Что касается мощности электронных стабилизаторов, то максимальный ее уровень может достигать 300 киловатт.

Также важной технической характеристикой является скорость нормализации тока. Этот тип стабилизатора может стабилизировать напряжение со скоростью, которая равняется 260-ти вольтам в секунду.

Зная технические возможности этих стабилизаторов можно определить их сильные и слабые стороны.

Преимущества

Итак, к плюсам бытовых стабилизаторов напряжения, которые принадлежат к электронному типу, можно отнести:

  1. Широкий рабочий диапазон входного напряжения.
  2. Осуществление стабилизации тока с высокой степенью точности.
  3. Высокая скорость реакции.
  4. Небольшие размеры. Это обусловлено отсутствием механических элементов.
  5. Симисторы и тиристоры функционируют очень долго и тем самым продлевают срок годности стабилизатора. Он может составлять 10-15 лет.
  6. Отсутствие механических элементов создало еще одно преимущество — бесшумную работу.
  7. Некоторые модели можно использовать при минусовой температуре, а именно и при -40 градусов Цельсия.
Читайте так же:
Зарядные устройства с стабилизатором тока для аккумулятора

Недостатки

Что касается слабых мест электронного стабилизатора напряжения, о которых отмечают в отзывах, то ими являются:

  1. ступенчатый способ выравнивания тока (при подключении-отключении обмоток видно некоторое мерцание лампочек)
  2. увеличение времени реакции в зависимости от количества ступеней. Чем их больше, тем дольше длится процесс стабилизации;
  3. большая чувствительность к помехам в электросети;
  4. небольшая перегрузочная способность (20-40 процентов в течение первых секунд);
  5. сложная конструкция;
  6. высокая цена;
  7. во время очень сильной перегрузки симисторные и тиристорные ключи горят.

Как выбрать нужный электронный нормализатор

Как видно, электронный стабилизатор имеет много преимуществ и небольшое количество недостатков. Благодаря большому количеству положительных сторон он является одним из наиболее предпочтительных инструментов защиты бытовой техники.

Собственно очень много людей и покупают такие стабилизационные приборы.

В дальнейшем отметим, на что следует обращать внимание при покупке не только электронного стабилизатора напряжения, но и электромеханического и любого другого типа.

Первым критерием выбора является рабочий диапазон входного напряжения. Иными словами тот уровень напряжения на входе, который стабилизатор может выровнять. Этот диапазон должен быть больше диапазона колебания напряжения в сети.

Полезный совет: стоит знать, что чем меньшее напряжение будет выравнивать электронный стабилизатор, тем меньшую мощность он будет иметь. Такая зависимость является присущей каждому виду стабилизатора. Мощность стабилизатора начинает уменьшаться после того, как напряжение становится меньше 190 вольт. Следует иметь в виду, что когда входной ток имеет 150 В, то мощность стабилизатора является равной 50-ти процентам от его номинальной мощности.

Вторым критерием является мощность стабилизатора. О ее зависимости от входного тока мы уже отметили. Хочется отметить еще одну особенность, которая часто запутывает. Она касается определения мощности в вольт-амперах. Нужно знать, что 10 вольт-ампер не являются равными 10 ваттам.

Если известно о количестве вольт-ампер, то умножив его на 0,6 можно узнать количество ватт.

Полезный совет: при расчете общей мощности подключаемых электроприборов, мощность приборов с наличием электродвигателей нужно перемножать на коэффициент 1,3-1,5.

При этом, когда известна общая мощность, нужно учесть еще 30-ти процентный запас. Тогда стабилизатор не будет отключаться из-за перегрузки.
При выборе стабилизатора следует обращать внимание на время реакции.

Важный показатель — точность стабилизации. Она определяет, насколько может отклоняться выходное напряжение 220 вольт. В случае электронного стабилизатора, который можно использовать для котла или для другой техники, она составляет три процента.

Если это релейный стабилизатор, то она может составлять 8 процентов.

После того, как мы совершили правильный выбор электронного выпрямителя, нужно позаботиться том, чтобы такой стабилизатор мог работать как можно больше времени. Другими словами нужно проводить регулярное техническое обслуживание.

Техническое обслуживание

В основном этот процесс предусматривает проведение чистки стабилизатора от пыли. Зачастую просто очищают вентиляционные отверстия. Для этого берут сухую щетку или ветошь.

Поскольку собственноручно разбирать стабилизатор нельзя, поэтому чистку внутренних элементов следует осуществлять в сервисных центрах. Также в них и проводится проверка правильности работы стабилизаторов.

Что касается ремонта электронного стабилизатора, то его лучше осуществлять в сервисных центрах. Причиной этого является то, что эти стабилизаторы имеют сложную конструкцию, много электронных элементов, в которых неспециалист разобраться не сможет.

Производители

Хочется также отметить и о том, какие компании выпускают электронные стабилизаторы и продают их на российском рынке. Как известно, на этом рынке можно приобрести не только качественный электронный стабилизатор напряжения, но и оптический стабилизатор.

Наиболее качественными стабилизаторами электронного типа, которые можно приобрести в России, являются стабилизаторы марок «Штиль», Progress и «Лидер». Также высоким качеством обладают электронные стабилизаторы Volter (они изготавливаются на территории Украины).

Также производством и продажей электронных стабилизаторов занимаются компании «Бастион» (Ростов-на-Дону), ССК, «Стабвольт» (Московская обл.). Достаточно надежными являются стабилизаторы марок «ДОНСТАБ» и «Укртехнология».

Если говорить о китайских и других иностранных производителей, то они занимаются выпуском релейных и электромеханических стабилизаторов.

Видео

Комментарии:

Релейный стабилизатор, как ни крути, сейчас наиболее востребован. Электронный стоит в 2-3 раза дороже, при этом выполняет свои функции ничем не лучше и не хуже. Переплачивать две-три цены не вижу смысла

Толик, это смотря для каких целей. Если для домашнего использования, например для телевизора/насоса/медиацентра — вполне хватит релейного, а вот в лаборатории какой-нибудь лучше устанавливать надежный электронный, т.к. скорость срабатывания у него выше и сама работа надежнее

Если рассматривать срок службы, то электронный стабилизатор не такой уж и дорогой. В нем нет подвижных частей, поэтому он практически не ломается, а значит не нуждается в обслуживании как электромеханический или релейный. Но цена да, цена кусается.

Оставить комментарий Отменить ответ

Кабельная продукция международного стандарта

Мегаватт Сервис – лаборатория электроизмерений

Назначение и область применения рым-болтов

Основные разновидности радиаторов отопления и их преимущества

В чем отличие домашнего роутера от геймерского

Выбираем электронный стабилизатор напряжения: принцип работы и характеристики

Электронный стабилизатор напряжения по популярности и уровню продаж занимает следующее место после релейного стабилизатора. Широкий ассортиментный ряд электронных стабилизаторов позволяет выбрать необходимое по мощности устройство. Стабилизатор надёжен, обладает хорошими характеристиками и может использоваться в большом диапазоне температур.

Конструкция электронного стабилизатора

Электронный стабилизатор предназначен для нормализации напряжения при отклонении его от номинала, и защиты потребителей от негативных факторов. К таким факторам относятся очень низкое или высокое напряжение, а так же короткие импульсы высокого напряжения, которые иногда возникают в бытовой сети.

В отличие от стабилизаторов других типов, где могут применяться механические и электромеханические компоненты схемы, в электронном стабилизаторе кроме электроники ничего нет.

Электронный стабилизатор состоит из следующих узлов:

  • Входной фильтр;
  • Трансформатор;
  • Плата измерения напряжения;
  • Плата управления;
  • Силовые ключи;
  • Схема защиты;
  • Блок индикации;
  • Байпас.

Роль фильтра заключается в подавлении сетевых помех. Это могут быть высокочастотные наводки или короткие импульсы. Трансформатор имеет обмотку, состоящую из отдельных секций, переключением которых и осуществляется изменение напряжения на выходе.

Плата измерения напряжения осуществляет контроль не только за напряжением сети, но и за нормализованным напряжением на выходе устройства. Плата управления собрана на транзисторах. На ней формируется сигнал, подаваемый на управляющие электроды силовых ключей.

Читайте так же:
Стабилизатор частоты вращения двигателя переменного тока

Силовые ключи переключают обмотки трансформатора для выравнивания напряжения. Схема защиты предохраняет нагрузку от возможных повреждений из-за слишком больших перепадов напряжения, а так же предохраняет стабилизатор от перегрузки. Электронный стабилизатор напряжения 220В оборудуется устройством индикации на светодиодных матрицах.

Важным элементом электронного стабилизатора напряжения является «Байпас» или «Транзит». Это устройство позволяет питать нагрузку непосредственно от сети в том случае, если напряжение на входе находится в допустимых пределах. В случае выхода напряжения из допуска, потребитель практически мгновенно подключается к стабилизатору.

«Байпас» входит в плату измерения напряжения и реализуется с помощью обычного реле. Так же режим «Транзит» может включаться вручную переключателем на корпусе стабилизатора.

Принцип работы электронного стабилизатора

Электронный стабилизатор работает по следующему принципу. Плата контроля напряжения сканирует напряжение сети. Как только его величина выйдет из допустимых стандартом 10%, подаётся сигнал на плату управления. Она состоит из транзисторных Усилителей Постоянного Тока. УПТ формируют потенциал, открывающий полупроводниковые вентили. Напряжение на выходе стабилизатора приближается к номиналу. Управление всеми электронными компонентами осуществляется с помощью микропроцессора.

Большим плюсом электронных стабилизаторов можно считать исключительно малое собственное энергопотребление, поскольку в них отсутствуют индуктивные элементы типа обмоток реле или серводвигателя.

Поскольку число секций ограничено, то изменение напряжения осуществляется ступенями, то есть дискретно. Чем большее количество электронных ключей входит в схему устройства, тем выше точность установки напряжения. В качестве силовых ключей применяются мощные полупроводниковые приборы – тиристоры и симисторы.

Тиристор проводит ток только в одном направлении, а симистор (симметричный тиристор), в обе, поэтому для коммутации цепи с переменным напряжением, требуется два тиристора во встречно-параллельном включении или один симистор.

Принцип действия стабилизаторов, собранных на разных полупроводниковых приборах, абсолютно одинаковый, но однофазный автоматический стабилизатор напряжения электронного типа, выполненный на симисторах, имеет существенный недостаток. Это слабая устойчивость при работе с индуктивной (реактивной) нагрузкой. Симисторы просто выходят из строя. Это сильно ограничивает сферу применения стабилизаторов такого типа. Вообще, электронные стабилизаторы, благодаря хорошим характеристикам и высокой надёжности, находят самое широкое применение в любых сферах.

Преимущества и недостатки

По сравнению с аналогичным по принципу работы релейным стабилизатором, электронное устройство обладает гораздо большими преимуществами:

  • Высокая скорость коммутации;
  • Большее количество ступеней регулирования;
  • Более высокая точность;
  • Отсутствие шума;
  • Большой разброс напряжения на входе;
  • Возможность работы при низких температурах;
  • Надёжность.

В отличие от электромеханических реле, время срабатывания которых может достигать 40-60 мс, тиристорные ключи выполняют коммутацию за гораздо более короткий срок, не превышающий 10-12 мс, а у некоторых моделей он может составлять 2-4 мс. Увеличение количества реле ведёт к увеличению энергопотребления самого стабилизатора и снижению времени нормализации напряжения. Электронные стабилизаторы позволяют без особого ущерба увеличить число дискретных ступеней, что положительно сказывается на точности установки.

Тиристорный стабилизатор бесшумен в работе, и может использоваться при низких температурах, что выгодно отличает его от стабилизаторов других моделей. Схемные решения допускают работу устройства при большом диапазоне напряжения сети. Надёжность электронного стабилизатора определяется в основном надёжностью тиристоров, а они допускают до 10 9 переключений. Недостатком можно считать только высокую цену электронного стабилизатора.

Критерии выбора

Выбрать электронный стабилизатор напряжения 220В для дома необходимо по следующим параметрам:

  • Мощность;
  • Диапазон входных напряжений;
  • Скорость выравнивания;
  • Точность регулирования;
  • Число дискретных ступеней;
  • Дополнительные параметры.

Мощность стабилизатора является главным фактором, определяющим выбор устройства. Если потребителями будет только активная нагрузка, то требуемая мощность вычисляется легко. Нужно суммировать мощность всех потребителей и прибавить 20-30%.

Если к стабилизатору будут подключены стиральная машина или холодильник (реактивная нагрузка с электромотором), то расчёт мощности выполняется по несложной формуле — просто делим мощность прибора на cos ϕ, который должен быть указан в паспорте, либо на коэффициент 0,7. Подробные расчеты мы приводили в статье по выбору стабилизатора для домашних нужд.

Если сеть в конкретном населённом пункте очень нестабильна, то следует выбирать стабилизатор, имеющий как можно больший диапазон напряжения на входе. Для электронных тиристорных стабилизаторов скорость выравнивания напряжения практически одинакова у всех моделей и если имеются небольшие отличия, то они не критичны. От количества ступеней зависит точность напряжения на выходе, но, естественно, от количества тиристоров зависит и стоимость изделия.

При выборе устройства нужно обязательно ознакомиться с уровнями срабатывания защиты. Электронный однофазный стабилизатор напряжения может иметь как настенное, так и напольное исполнение. Нижним пределом рабочей температуры обычно является -40°C, что вполне достаточно для работы в любых условиях.

Бытовой стабилизатор средней мощности

Стабилизаторы «Энергия» пользуются неизменно высоким спросом из-за отличных параметров и надёжности. Однофазный тиристорный стабилизатор «Энергия Classic 5000», представляет собой модель, предназначенную для непрерывной длительной эксплуатации.

Прибор работает при токе нагрузки до 27А. Уровни напряжения сети, при которых срабатывает защита, составляют 60 и 265В, а нормальный рабочий интервал от 125 до 254В. В приборе имеется функция «Байпас», фильтр подавления всех видов помех, и аварийное отключение при нагреве трансформатора до температуры 120 градусов. Стабилизатор имеет 36 месяцев гарантии.

В заключение можно отметить, что электронные стабилизаторы надёжны и неприхотливы, и при соблюдении указанных в документации правил эксплуатации, они проработают очень длительное время.

«Нельзя просто так взять и запараллелить источники напряжения»

Не раз и не два мне попадались предложения типа «давайте включим два стабилизатора напряжения параллельно, если не хватает выходного тока одного». В том числе и здесь:
Тут — в авторском тексте о ПК Специалист (Spectrum) habr.com/ru/post/247211 (в итоге — автор применил двухканальный импульсный источник питания).
Тут — в комментариях habr.com/ru/post/400617/#comment_18002157
И тут — в комментариях habr.com/ru/post/400381/#comment_17983821
Да тысячи их:
electronics.stackexchange.com/questions/261537/dc-dc-boost-converter-in-parallel
forum.allaboutcircuits.com/threads/paralleling-lm317ts.16198
forum.arduino.cc/index.php?topic=65327.0 (обсуждение довольно показательное с точки зрения пренебрежения схемотехникой и энергосбережением мобильного робота).

Вспомнив немного ТОЭ и воспользовавшись симулятором TINA-TI, покажем несбыточность малую обоснованность надежд на благоприятный исход этого чита.

О параллельном соединении источников напряжения с точки зрения закона Ома, правил Кирхгофа и примкнувших к ним ТОЭ.

Два источника напряжения (E1, E2) с внутренними сопротивлениями (Rвн1, Rвн2) работают на нагрузку (Rн). Составив и упростив 3 уравнения — получим:
Uн = Rн * (Rвн2*E1 + Rвн1*E2) / (Rвн1*Rвн2 + Rн*[Rвн1+Rвн2]);
I1 = (E1 — Uн) / Rвн1;
I2 = (E2 — Uн) / Rвн2.
Беря номинал 3.3 В с разбалансом ЭДС в ± 0.1% (3,303 и 3,297 В, соответственно), внутренние сопротивления 0,01 Ом и сопротивление нагрузки 3,3 Ом — получим токи 0,8 и 0,2 А соответственно (± 60% от ожидаемых 0.5 А) при напряжении на нагрузке 3,295 В. Обратите внимание на величину исходного разбаланса — если не брать сверхточные и сверхстабильные источники опорного напряжения (стоимостью как крыло от вертолёта), она мало достижима в «вульгарной» микроэлектронике. А чем качественнее наши источники напряжения (меньше их внутреннее сопротивление) и чем выше сопротивление нагрузки — тем больше будет разбаланс токов при прочих равных.
Вооружась этой простой теорией — посмотрим пристальнее на внутреннюю структуру стабилизаторов напряжения.

Читайте так же:
Для чего нужен стабилизатор напряжения тока

О параллельном соединении стабилизаторов напряжения с точки зрения наличия в них обратной связи.

Как известно, чуть более чем все современные стабилизаторы напряжения строятся как компенсационные — обратная связь отслеживает напряжение на выходе стабилизатора и поддерживает его постоянным либо меняя внутреннее сопротивление между входом и выходом, либо меняя соотношение замкнутого и разомкнутого состояний между входом и выходом. Из этого вытекает тот факт, что если подать на выход стабилизатора напряжение превышающее его выходное, то ОС должна будет отключить регулирующие элементы и данный стабилизатор выйдет из борьбы за жизнь нагрузки.
Не будем рассматривать здесь случаи линейного стабилизатора с push-pull выходом (используются как источники питания терминаторов DDR-памяти) и импульсных стабилизаторов с синхронным выпрямлением. Первые — должны, а вторые, теоретически, — могут пытаться снижать напряжение на своём выходе.
В случае применения импульсных стабилизаторов — можно рассмотреть и такие гипотетические вещи, как биение частот преобразования или их самосинхронизация… Но это выходит за рамки моих текущих интересов. Для закрытия теоретической части добавлю, что если кто-то предложит использовать внешнее тактирование импульсных стабилизаторов со сдвигом фаз, то Вы опоздали. Микропроцессоры Intel и AMD уже многие годы питаются от многофазных конвертеров, а если есть готовый двух- и более фазный контроллер, то городить внешнюю синхронизацию для отдельных стабилизаторов — бессмысленно.
А теперь — перейдём к симуляции реальности.

О параллельном соединении стабилизаторов напряжения в симуляторе.

Первый пример — вариация простенького линейного стабилизатора из app. note на регулируемый источник опорного напряжения типа 431.
Он применялся, например, в некоторых ранних блоках питания ATX для стабилизации напряжения 3.3 В. На сток регулирующего транзистора подавалось 5 В, а резистор в цепи затвора питался от 12 В.
Поскольку в симуляции нас не волнует КПД, то для простоты на входе один единственный источник питания. Также — с ходу я не нашёл средства внести погрешность в опорное напряжение TL431, кроме как добавить генератор напряжения G1 в цепь управляющего электрода. Вот результат расчёта (меню «Анализ постоянного тока», раздел «Переходные характеристики»):

Как видим — достаточно разбаланса опорных напряжений в 3 мВ, чтобы один из стабилизаторов превратился в тыкву. А это всего 0,12% от номинального, да ещё отнюдь не каждая 431 имеет точность лучше 0.5%.
Предложение «поставим в цепь обратной связи триммер и подгоним правильное деление тока нагрузки» я отметаю на том основании, что типичные подстроечные резисторы (Bourns и muRata, керметные, одно и многооборотные) — имеют вибростойкость до 1% (изменение зафиксированного отношения напряжений или сопротивлений после воздействия вибрации с ускорением 20..30 G).
Упомянутые в ссылках на зарубежные ресурсы пляски с последовательными резисторами на выходах стабилизаторов — я даже рассматривать не буду. Просто потому, что этим убивается то, для чего собственно и ставится стабилизатор напряжения — постоянство напряжения на нагрузке при изменении её тока потребления.
Потом я вспомнил, что на выходе обычно есть конденсаторы… Добавление на выходы конденсаторов по 1000 мкФ с ESR 100 мОм не внесло кардинальных отличий в результаты симуляции параллельной работы этих стабилизаторов (меню «Анализ переходных процессов»).

Возможно, кто-то скажет: «Сработает ограничение по току у первого стабилизатора и второй тоже подключится». Но очевидно, что даже если это произойдёт, то первый всё равно продолжит работать с перегрузкой, что не прибавит надёжности нашей системе. Вот пример работы пары LP2951 (максимальный ток нагрузки — 100 мА, ограничение тока в модели — около 160 мА) с общим током нагрузки около 180 мА.
Почему такое старье? Потому, что они есть у меня в удобном для втыкания в «бредовую борду» DIP’е и, если кто-то из читателей пожелает пойти путём Фомы, то я смогу измерить всё IRL.
Результаты симуляции (меню «Анализ переходных процессов»):

Как видите — второй и не думает деятельно участвовать в спасении нагрузки от голода. А благодаря бóльшему коэффициенту усиления — выход из игры происходит при меньшем разбалансе.

На этом — всё. Питайтесь правильно!

Вывод.

Если максимальный выходной ток стабилизатора напряжения не обеспечивает потребности питаемой схемы, то есть только два выхода — заменить стабилизатор на модель с бóльшим выходным током или использовать схемотехническую балансировку выходных токов нескольких стабилизаторов.

P.S. «Всякое лыко — в строку». Во время подготовки статьи на глаза попалась широко растиражированная в документации на стабилизатор типа 1117 схема переключателя «батарея — сеть» с параллельным включением их выходов. К ней есть вопросы о практической применимости, но тему статьи она подтверждает чуть более, чем полностью. Привожу фрагмент из документации фирмы «ON semiconductor», который снабжён текстовыми пояснениями:

The 50 Ohm resistor that is in series with the ground pin of the upper regulator level shifts its output 300 mV higher than the lower regulator. This keeps the lower regulator off until the input source is removed.

P.P.S. Дописал вывод. Точнее — скопировал его из синопсиса.

Synopsis: You can’t boost output current of weak voltage regulators by simple parallel connection. You must use tougest one or special schematic for properly current sharing.

Узнаем, чем отличается ибп от стабилизатора напряжения

Скачки, внезапные исчезновения напряжения в сети — всем знакомые и, увы, не редкие явления. Проблемы с общей изношенностью сетей, перегруженность линии или просто пришёл электрик и, никого не предупреждая, принялся производить какие-либо работы в общем щитке дома — все это для пользователя заканчивается одинаково — внезапным отключением всех электроприборов. Для защиты техники, данных в компьютере используют стабилизатор напряжения или источник бесперебойного питания, что не одно и то же. Они выполняют близкие, но совсем не одинаковые функции. Рассмотрим их сходства и отличия внимательнее.

Читайте так же:
Стабилизатор напряжения с ограничением по току схема

Чем отличается ИБП от стабилизатора напряжения?

ИБП и стабилизатор напряжения отличаются друг от друга тем, что имеют разный режим работы и выполняют каждый свои функции. Источник бесперебойного питания нужен только при внезапном исчезновении или резком падении напряжения в сети. Он обеспечивает в течение нескольких минут нормальное электропитание, чтобы пользователь успел сохранить данные на компьютере и штатным образом выключил его, отключил бытовую технику и т. п. Стабилизатор напряжения работает постоянно и выравнивает напряжение до стандартного значения: при падении он его повышает, при превышении номинала — понижает

Если в сети напряжение пропадает, стабилизатор ничем помочь не сможет, то есть он является только регулятором имеющегося напряжения, тогда как бесперебойник обеспечивает технику питанием в отсутствие электротока в сети.

В чем схожесть устройств?

Единственное, что объединяет ИБП и стабилизаторы — это промежуточное расположение между сетью и потребляющими электроэнергию приборами. Оба они, по сути, преобразователи электроэнергии, только способ и цель этого преобразования отличаются.

Во всяком случае, путать их между собой не следует, заменить друг друга при необходимости они не смогут. Многие пользователи, плохо разбирающиеся в устройстве этих приборов, считают их схожими между собой из-за того, что они оба присоединены к сети, а бытовая техника подключается к ним. Внешне их функции выглядят одинаковыми, что и послужило причиной их ошибочного объединения в одну группу. Кроме того, ИБП на выходе выдаёт калиброванное значение электротока, не связанное с сетевым напряжением, каким бы оно на тот момент ни было. Некоторые пользователи на основании этого считают, что наилучшим решением при нестабильном состоянии сети будут ИБП, так как они могут выдавать качественное питание на приборы потребления.

Эта точка зрения ошибочна, так как бесперебойник достаточно быстро разрядит свои батареи и перестанет обеспечивать технику энергией до повторной зарядки, которая требует некоторого времени.

Для чего нужен ИБП?

ИБП — вторичный источник питания, дающий пользователю несколько минут времени для штатного отключения техники. Пока напряжение в сети имеет номинальное значение, ИБП не используется и производит зарядку аккумуляторов. При исчезновении или падении напряжения до определённого минимума срабатывает реле, переключающее потребителей на электроснабжение бесперебойником.

Существуют модели, позволяющие снабжать энергией отдельные приборы (компьютерный ИБП) или целые частные дома. Принцип действия прибора основан на аккумулировании энергии и, при необходимости, быстром ее преобразовании в электрический ток со стандартными параметрами для питания потребителей. Бесперебойники, особенно способные снабжать технику энергией в течение длительного времени, имеют высокую стоимость и используются только при самой насущной необходимости.

Большинство пользователей — владельцы частных домов или усадеб, расположенных в районах с перегруженными и изношенными электрическими сетями.

Для чего нужен стабилизатор?

Функции стабилизатора напряжения сводятся к поддержанию номинала электротока в допустимых пределах. Он незаменим в случаях, когда неподалёку расположено производство или мастерские, использующие сварку или периодически производящие запуск мощных электродвигателей.

Напряжение в эти моменты сильно просаживается, резко падает и совершает колебания, что болезненно воспринимается бытовой и особенно компьютерной техникой. Стабилизатор на ходу выравнивает эти колебания, обеспечивая на выходе ровное напряжение с постоянными параметрами, что позволяет защитить технику и информацию в компьютере. Существуют разные типы конструкции стабилизаторов:

  • Релейные (ступенчатые). Распространённая конструкция, недорогая и надёжная. Используется трансформатор с несколькими обмотками, которые подключаются при помощи реле. Недостатком считается отсутствие плавной регулировки, но, по отзывам пользователей, работа устройства вполне удовлетворительна.
  • Электромеханические. Устройство регулирует напряжение путём перемещения угольного контакта по обмоткам автотрансформатора. Движение осуществляет электропривод, обеспечивающий плавную регулировку. К недостаткам принято относить шум и относительно большое время реакции на изменения напряжения в сети.
  • Электронные. Бесшумные устройства с высоким быстродействием и качеством работы. Недостаток один — высокая стоимость.
  • Феррорезонансные. Старый тип, использовавшийся ещё во времена СССР. В настоящее время практически не используется, хотя сама по себе конструкция вполне работоспособна и кое-где ещё присутствует.
  • Инверторные. Они преобразуют полученное напряжение в постоянный ток, из которого обратным преобразованием выдают устойчивое и стандартное напряжение без искажений или колебаний. Отличаются широким диапазоном входного напряжения, позволяющим работать со значениями от 115 до 290 В. Недостаток — высокая цена.

Выбирая стабилизатор напряжения или ИБП, следует учитывать, что стоимость качественного устройства составит довольно большую сумму.

Универсальные решения

Стабилизатор напряжения по отношению к ИБП является полностью отдельным, самостоятельным устройством, хотя в продаже имеются универсальные образцы, объединяющие в одном корпусе оба прибора. ИБП со встроенным стабилизатором напряжения является наиболее предпочтительным вариантом, позволяющим защитить пользователя от всех возможных проблем с электроснабжением. Можно выделить следующие образцы ИБП, совмещённые со стабилизаторами:

  • Энергия ИБП 600 (800, 1200 и т. п.). Обеспечивает 20-минутное питание потребителей при исчезновении напряжения, в остальное время работает как стабилизатор. Цифры обозначают мощность прибора.
  • RUCELF UPI-600-12-EL (UPI-800-12-EL, UPI-1000-24-EL и т. д.). Линейные бесперебойники низкой мощности (600-1400 ВА). Работают с 1 внешней АКБ, оснащены ЖК-дисплеем.
  • Eaton Powerware 9155-10GE. Мощный однофазный прибор, рассчитанный на специализированные потребители. Выдаёт ток до 40 А. Стоимость — 120000 руб., что доступно далеко не всем.
  • Voltguard HT1101L (S, LD). Инвертор со встроенными АКБ, выдающий мощность до 1 кВА. При 100%-ной загрузке обеспечивает 5 минут автономной работы. Цены — от 18 до 65 тыс. руб., в зависимости от конкретной модели.

Изложенный перечень не является исчерпывающим, на рынке имеется множество приборов производства Юго-Восточной Азии, более дешёвых, но менее устойчивых и надёжных в работе.

Выбирая средства защиты бытовой техники от нестабильного сетевого напряжения, надо иметь точное представление о задачах и характере работы ИБП и стабилизаторов. При этом, использование универсальных устройств обеспечит наиболее полную и надёжную защиту техники и данных, позволит сохранить текущую работу на компьютере, избавит от других ненужных проблем.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector