Sfera-perm.ru

Сфера Пермь
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Стабилизатор для усиления тока

Простые выпрямители, фильтры, стабилизаторы

Источники питания были и остаются важнейшей и незаменимой составляющей любой радиоэлектронной схемы. Для обеспечения схем необходимыми напряжениями используют либо автономные источники питания — батареи, аккумуляторы, либо, при питании радиоаппаратуры от сети переменного тока, — сетевые источники. Для того, чтобы понизить напряжение сети с 220 В до приемлемых для питания транзисторных схем значений и обеспечить надежную защиту пользователя от поражения электрическим током, используют понижающий трансформатор (рис. 35.1, 35.16). В исключительно редких случаях используют бестрансформаторные питающие устройства, однако в этом случае все управляющие элементы устройства (ручки, выключатели и пр.) и корпус должны быть надежно изолированы от сети. При пользовании такими устройствами необходимо строжайшее соблюдение правил техники безопасности!

Ниже будут рассмотрены основные варианты схем питания радиоэлектронной аппаратуры.

Простейший выпрямитель — преобразователь переменного тока в постоянный — показан на рис. 35.1, 35.6. К вторичной (понижающей) обмотке трансформатора подключен один полупроводниковый диод VD1. Этот диод пропускает только одну полуволну переменного напряжения (однополупериодное выпрямление), поэтому для сглаживания пульсаций тока на выходе выпрямителя необходимо включать электролитический конденсатор С1 большой емкости. Параллельно ему подключается сопротивление нагрузки. Недостатки такого выпрямителя очевидны: повышенные пульсации выпрямленного напряжения, невысокий КПД. Величина пульсаций будет тем выше, чем меньше емкость сглаживающего пульсации напряжения конденсатора С1 и чем меньше величина сопротивления нагрузки. Величина выходного напряжения такого выпрямителя при работе без нагрузки составляет 1 ,41xUab.

На рис. 35.2 показана схема простейшего выпрямителя — формирователя двуполярного выходного напряжения. Коэффициент полезного действия такого выпрямителя выше, а все приводимые ранее рассуждения полностью распространяются и на эту схему.

Мостовая схема выпрямителя содержит четыре диода и представлена на рис. 35.3. Такая схема подключается к источнику переменного тока, например, к точкам А и В разделительного трансформатора (рис. 35.1). Выпрямитель имеет более высокий КПД, токи в ветвях моста распределяются равномерно. Недостатком схемы являются удвоенные потери на последовательно включенных диодах выпрямителя (за счет «прямого» напряжения). Выходное напряжение мостовой схемы выпрямителя при работе без нагрузки также составляет 1,41 xUAB.

Для выпрямления и умножения выходного напряжения применяют схемы, показанные на рис. 35.4 и 35.5. Часто подобные схемы используют в преобразователях напряжения, в том числе бестрансформаторных, а также в схемах получения высокого напряжения (до десятков киловольт) в телевизионных приемниках, озонаторах, уловителях пыли.

В большинстве случаев выпрямленное напряжение надлежит тщательным образом отфильтровать от пульсаций сети переменного тока. При плохой фильтрации в динамиках будет слышна не радующая душу музыка или речь, а низкочастотный гул или рокот, так называемый «фон» переменного тока. Чем выше качество питающего напряжения, тем лучше будет работать радиоаппаратура. Нефильтрованное питание допустимо использовать лишь для электродвигателей постоянного тока, осветительных и нагревательных приборов.

Для сглаживания выходного напряжения выпрямителей предназначены LC- и RC-фильтры. Простейший из них (L=0, R=0) — емкостный — показан на рис. 35.1 и 35.6. Схема эта, действительно, крайне проста. Однако увеличивать до бесконечности емкость фильтрующего конденсатора невозможно: растут габариты и стоимость конденсатора, снижается надежность устройства в целом. Существует опасность того, что в момент включения устройства в сеть произойдет повреждение диода VD1 либо обмотки трансформатора: ведь незаряженный конденсатор представляет в момент включения короткозамкнутыи элемент. Через обмотку трансформатора и диод в этот момент протекает ток короткого замыкания, многократно превышающий допустимые значения и вызывающий их повреждение.

Для уменьшения переменной составляющей на выходе выпрямителя используют индуктивные (дроссельные) и резистив-но-емкостные Г- и П-образные фильтры (рис. 35.7 — 35.9), а также их последовательное соединение. Напомним, если активное сопротивление (резистор) представляет собой одинаковое сопротивление как для постоянного, так и для переменного тока, то конденсатор для постоянного тока является разрывом цепи, а для переменного тока, в идеале, служит коротким замыканием (см. также главу 3). В свою очередь, индуктивность (дроссель), также в идеале, представляет собой бесконечно малое сопротивление постоянному току и бесконечно большое сопротивление переменному току. Следовательно, использование в качестве элемента фильтра дросселей вместо резисторов предпочтительнее. Однако дроссели имеют значительные габариты, массу и цену, являются более дефицитными и менее надежными элементами по сравнению с обычными резисторами.

В радиоаппаратуре используют и транзисторные фильтры (рис. 35.10). Радиолюбителю предлагается самостоятельно испытать и сравнить различные виды выпрямителей и фильтров при разных параметрах входящих в них элементов. Для контроля «качества» выходного напряжения может быть использован УНЧ или осциллограф, на вход которых через разделительный конденсатор подается выпрямленное напряжение. Питание усилитель должен получать от батарей (аккумулятора) либо от иного источника питания с хорошей фильтрацией выходного напряжения. В качестве простейшего тестера качества фильтрации можно использовать и телефонный капсюль, также подключаемый к выходу выпрямителя или фильтра через разделительный конденсатор.

Далее будут рассмотрены простые стабилизаторы тока (рис. 35.11 — 35.15) и напряжения (рис. 35.16 — 35.20). Схемы стабилизации тока зачастую используют в генераторах импульсов для заряда постоянным током времязадающих конденсаторов, а также в измерительной технике, например, при измерении сопротивлений. На рис. 35.11 и 35.12 показаны схемы стабилизаторов тока [МК 5/86-XVI], При увеличении напряжения на таком двухполюснике (рис. 35.11) происходит самоограничение тока через него. Величину резисторов R1 и R2 можно определить как:

На рис. 35.12 и 35.13 представлены другие схемы ограничения и стабилизации тока. При возрастании тока через датчик тока R2 (рис. 35.12) или R1 и включенный ему параллельно потенциометр R3 (рис. 35.13) [F 1/76-21] уменьшается смещение на базе транзистора VT2 (рис. 35.12) или VT1 (рис. 35.13), соответственно. Транзисторы плавно, пропорционально протекающему через резисторы току, запираются, и ток стабилизируется. В определенных пределах ток ограничения (рис. 35.13) плавно регулируется потенциометром R3.

Читайте так же:
Схема стабилизатора ток 3 а при напряжении

На рис. 35.14 показана схема стабилизатора тока на основе полевого транзистора. При увеличении тока через резистор R1 меняется смещение на управляющем (3 — И) переходе транзистора, он плавно запирается, ограничивая ток нагрузки.

Стабилизатор тока на основе микросхемы, в состав которой входит несколько десятков элементов (рис. 35.15), может обеспечить широкий диапазон токов нагрузки [Дж. Уитсон]. Популярная микросхема стабилизатора напряжения может стабилизировать еще и ток. Величина стабилизируемого тока в нагрузке рассчиты вается следующим образом: lH=(UBb|X/R1)+10 мА, где lH — в мА 11вых — в В; R1 — в кОм.

На рис. 35.16 представлена схема несложного стабилизированного источника питания. Он содержит понижающий трансформатор, мостовой выпрямитель, конденсаторный фильтр и полупроводниковый стабилизатор напряжения. Схема стабилизатора напряжения позволяет плавно регулировать выходное напряжение в пределах от 0 до 12 В и защищена от коротких замыканий на выходе. Для питания низковольтного паяльника, а также для экспериментов с переменным электрическим током предусмотрена дополнительная обмотка трансформатора. Имеется индикация постоянного напряжения (светодиод HL2) и переменного (светодиод HL1). Для включения всего устройства используется тумблер SA1, а паяльника — SA2. Нагрузку отключает SA3. Для защиты цепей переменного тока от перегрузок предусмотрены предохранители FU1 и FU2. На ручке регулятора выходного напряжения (потенциометр R4) нанесены значения выходных напряжений.

На рис. 35.17 показан фрагмент схемы модифицированного стабилизатора (рис. 35.16) с индикацией короткого замыкания в нагрузке. В нормальном режиме светится зеленый светодиод, при замыкании нагрузки — красный.

Очень простой и высококачественный стабилизатор на специализированной микросхеме серии К142ЕН изображен на рис. 35.18. Транзисторные стабилизаторы показаны на рис. 35.19 и 35.20 [Р 4/81-61]. При значительных токах нагрузки транзистор VT4 (рис. 35.20) следует закрепить на теплоотводящей пластине из цветного металла.

Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год

Как выбрать трёхфазный стабилизатор напряжения

Трёхфазный стабилизатор напряжения предназначен для защиты от аномалий входных параметров тока 3-фазных потребителей электроэнергии, подключаемых к 1- или 3-фазным сетям питания.

Основные особенности

Стабилизатор трехфазного типа в большинстве случаев состоит из трех однофазных стабилизаторов. Основной элемент схемы однофазного стабилизатора напряжения – автотрансформатор. Он включает пару намотанных на сердечник катушек, изолированных друг от друга. К первой катушке подключается источник электроэнергии, а ко вторичной, где вследствие электромагнитной индукции напряжение будет иметь отличные от входных характеристики – выходная нагрузка.

Кроме автотрансформатора с гальваническим соединением обмоток принципиальная схема стабилизатора включает:

  • Контроллер (измеряет входные параметры тока и рассчитывает разницу с выходными);
  • Управляющее устройство (получает команды от контроллера на активацию или отключение определённого числа витков первичной и вторичной обмоток в соответствии с необходимым коэффициентом трансформации);
  • Систему защиты от перегрузок и короткого замыкания (магнитный и тепловой расщепители), а также кратковременных избыточных импульсов или проседаний входного напряжения (грозозащита).

Во многих современных моделях стабилизирующих устройств реализована функция байпас. Это дополнительный элемент схемы, который обеспечивает непрерывность питания подключённых к сети потребителей в случае его обрывов при переключении нагрузки на трансформаторе. Наличие байпаса востребовано при защите чувствительного к непрерывности питающего тока электрооборудования.

Принцип работы и сфера использования

Принципиальная схема трёхфазных устройств стабилизации напряжения включает 3 однофазных устройства, объединённые в едином корпусе. Такое оборудование оснащается системой контроля и синхронизации среднефазовых параметров тока.

Каждый из модулей контролирует параметры тока на своей ветке, обеспечивая стабильную работу потребителей при перебоях питания на других фазах.

Стабилизаторы с 3-фазной схемой питания применяются как в быту, так и на производстве.

Главными критериями выбора трёхфазной модели являются:

  • 3-фазная схема сетевого питания или наличие 3-фазных потребителей электроэнергии;
  • Высокая суммарная потребляемая мощность (от 5-7 кВт);
  • Значительные пусковые перегрузки (характерны для мощных электродвигателей и оборудования, оснащённого трансформаторами);

Виды трехфазных стабилизаторов

Наиболее широко в быту и промышленности используются следующие виды стабилизаторов:

Электромеханические (сервоприводные). Осуществляют плавный и непрерывный контроль выходного напряжения, не внося никаких искажений в его форму. Точность стабилизации находится в рамках 1-3%, но медленная реакция не позволяет подключать электромеханические стабилизаторы к сетям с частыми скачками или проседаниями напряжения.

Релейные. Выполняют ступенчатое регулирование выходного напряжения посредством переподключения необходимого количества витков первичной и вторичной обмоток посредством коммутационных реле. Точность стабилизации составляет около 10%. Релейные стабилизаторы имеют широкий диапазон входного напряжения (145-285 В для 1-фазного или 320-420 В для 3-фазного питания) и выдают чистую синусоиду выходного параметра.

Электронные. Одно- или трёхфазный электронный стабилизатор напряжения работает по принципу, схожему на реализованный в релейных моделях. Принципиальное отличие заключается в способе коммутации трансформаторных обмоток — она осуществляется силовыми ключами (симисторами или тиристорами) в соответствии с командами микропроцессора.

Инверторные (онлайн) и ШИМ-стабилизаторы. В нормализаторах этого класса реализован принцип двойного преобразования входного напряжения посредством встроенных в систему выпрямителя и инвертора. Инверторные системы имеют высокую стоимость, но характеризуются широким диапазоном входных параметров тока, высоким качеством синусоиды напряжения на выходе, точностью стабилизации до 0,5% и КПД от 96%. ШИМ-стабилизаторы функционируют по схожему с инверторными принципу, обеспечивая высокую точность стабилизации (погрешность не выше 1%) и почти мгновенную реакцию на изменения входных токовых характеристик.

Читайте так же:
Стабилизатор тока для мотоцикла

Плюсы и минусы трёхфазных стабилизаторов

Главными недостатками трёхфазных стабилизаторов напряжения являются:

  1. Большие габариты и вес, а также напольная (шкафная) конструкция усложняют выбор места установки и монтаж оборудования;
  2. Шум при работе (для релейных и сервоприводных устройств);
  3. Инерционность (синхронизация параметров однофазных модулей требует дополнительного времени, что влияет на качество и стабильность работы чувствительного оборудования);
  4. Ограничения по температурному режиму эксплуатации (только электронные стабилизаторы способны нормально функционировать при минусовых температурах в помещении);
  5. Ограничения по использованию во влажных или запылённых помещениях (зависят от варианта исполнения корпуса и класса электрозащиты основных узлов нормализатора);
  6. Высокая стоимость.

В список достоинств трёхфазных устройств стабилизации следует включить:

  1. Широкий диапазон входных параметров тока;
  2. Высокая перегрузочная способность;
  3. Простота в обслуживании;
  4. Высокая точность и скорость стабилизации;
  5. Надёжная защита от критических токовых аномалий (включая короткое замыкание и воздействие грозовых эффектов);
  6. Расширенные функции управления.

Критерии выбора стабилизатора на 3 фазы

Для защиты от аномалий входных параметров тока электрооборудования бытового и промышленного назначения стабилизатор напряжения рекомендуется выбирать в соответствии со следующими критериями:

Количество фаз питания. Трёхфазные стабилизаторы напряжения для дома, офиса или производственных предприятий выбираются в том случае, если от электросети объекта питается хотя бы один потребитель с 3-фазной схемой питания. В ситуациях, когда суммарная потребляемая мощность подключаемой однофазной техники превышает 7 кВт, сеть целесообразно переоборудовать на 3-фазы с подключением к каждой из них отдельного однофазного стабилизатора с соответствующим фазовой нагрузке значением мощности.

Точность и инерционность стабилизации. Приводятся в инструкции по эксплуатации или паспорте электроприбора. К примеру, бытовое оборудование и оргтехника нуждаются в стабилизации сетевого напряжения с погрешностью до 5%, тогда как лабораторная, вычислительная, телевизионная и т.д. техника не терпит погрешностей стабилизации выше 1%. Инерционность стабилизатора – время реакции на изменения входных параметров сетевого тока – выбирается в соответствии с характеристиками потребителей.

Диапазон напряжения на входе. Заявленная производителем точность стабилизации касается рабочего диапазона входного напряжения. При выходе последнего за установленные (предельные) рамки стабилизатор отключает потребителей от питания, либо отключается сам.

Перегрузочная способность. Характеризуется временем, на протяжении которого стабилизатор способен выдавать мощность, превышающую номинальную на 5% и выше. По истечению заданного периода перегрузки или при коротком замыкании система защиты отключает устройство с целью предотвращения его выхода из строя. Трёхфазный промышленный стабилизатор напряжения должен иметь высокую устойчивость к перегрузкам, поскольку к электросетям производственного назначения часто подключаются потребители со значительными скачками параметров тока при запуске (электродвигатели, насосы и т.п.).

Наличие интеллектуальных опций контроля и управления, в том числе удалённого, работой системы. Нормализаторы напряжения могут оснащаться дополнительными опциями, повышающими удобство контроля и управления параметрами сетевого тока, к примеру, фильтрами импульсных помех, ручной регулировкой выходного напряжения, байпасом, дистанционным управлением и т.д.

Схема и особенности подключения

В зависимости от особенностей потребителей электроэнергии, нуждающихся в защите от аномалий входного тока, трёхфазный стабилизатор напряжения может подключаться по одной из следующих схем:

  1. Сразу после электросчётчика или распределительного щитка;
  2. Непосредственно перед потребителем, нуждающимся в стабилизации напряжения.

Стабилизатор с 3-фазным питанием имеет 4 входных и 4 выходных клеммы. Одна из них предназначена для подключения нуля или нейтрали, остальные – для подключения фазных линий. Эта схема соблюдается независимо от того, где подключен нормализатор – после счётчика или сразу перед защищаемым оборудованием.

Чтобы выбрать трёхфазный стабилизатор напряжения, следует внимательно изучить свойства сети электропитания, а также характеристик подключаемого к ней оборудования. Грамотный подбор устройства стабилизации позволяет обеспечить стабильную и непрерывную работу потребителей и способствует увеличению срока их службы.

Нужен стабилизатор тока? Используйте стабилизатор напряжения!

В данной статье показано, как линейные стабилизаторы напряжения могут быть полезны и в приложениях стабилизации тока.

Линейные стабилизаторы напряжения, также (несколько неточно) называемые LDO, являются одними из наиболее распространенных электронных компонентов. Например, LM7805 приобрел почти легендарный статус и непременно был бы включен в зал славы интегральных микросхем, если бы такой зал существовал. В примечании к применению от Texas Instruments хорошо сказано: микросхемы линейных стабилизаторов «настолько просты в использовании», что они настолько «надежны» и «недороги», что обычно являются одними из самых дешевых компонентов в проекте.

Действительно, линейные стабилизаторы удобны, эффективны и универсальны. И на самом деле они могут быть даже более универсальными, чем вы думаете. Схемы линейных стабилизаторов построены на использовании отрицательной обратной связи, как показано на следующей диаграмме, взятой из того же примечания к применению:

Рисунок 1 – Схема линейного стабилизатора напряжения

Отрицательная обратная связь – очень полезная вещь, особенно в сочетании с источником фиксированного тока, как в случае со стабилизатором напряжения LT3085 от Linear Tech. На следующей диаграмме показана внутренняя структура этого устройства.

Рисунок 2 – Схема взята из технического описания LT3085

В предыдущей статье (исследование преобразователя напряжения в ток) мы исследовали использование отрицательной обратной связи в преобразователях напряжения в ток, которые могут точно контролировать яркость светодиода. Если вы знакомы с этими методами, для вас не будет сюрпризом, что для получения стабилизированного тока мы можем использовать стабилизатор напряжения, такой как LT3085.

В данной статье мы рассмотрим простой светодиодный драйвер на базе LT3085.

Линейный стабилизатор против операционного усилителя

Прежде чем мы проанализируем саму схему, мы должны обсудить преимущества подхода с линейным стабилизатором для получения стабилизированного тока. Методы с операционным усилителем, представленные в предыдущих статьях, несомненно, эффективны, так зачем возиться с новым методом?

Читайте так же:
Защита стабилизатора от обратного тока

Вот некоторые моменты, которые следует учитывать:

  • Большинство операционных усилителей не рассчитано на высокий выходной ток, поэтому схема на основе линейного стабилизатора позволяет избежать ограничений по выходному току типовых операционных усилителей.
  • Микросхема стабилизатора имеют защиту от перегрева.
  • Линейные стабилизаторы обеспечивают бо́льшую устойчивость к большим входным напряжениям и высокой рассеиваемой мощности.
  • Возможно, вы сможете найти один компонент, который подойдет практически для всех ваших требований по стабилизации напряжения и получения тока. Моим наименее любимым аспектом проектирования схем/печатных плат является создание запасов новых компонентов, поэтому я стараюсь использовать детали, которые могут пригодиться для будущих проектов.

LT3085 как стабилизатор напряжения

Давайте вкратце рассмотрим работу стабилизации напряжения LT3085. Эта информация поможет нам понять реализацию источника тока.

Ниже типовая конфигурация стабилизатора напряжения:

Рисунок 3 – Схема взята из технического описания LT3085

Источник тока (10 мкА) создает напряжение на Rнастр. Это напряжение появляется на неинвертирующем входе усилителя. Действие отрицательной обратной связи гарантирует, что напряжение на инвертирующем входе равно напряжению на неинвертирующем входе; другими словами, выходное напряжение равно напряжению на Rнастр. Выходной конденсатор необходим для обеспечения стабильности, а транзистор, подключенный к выходу усилителя, будет выглядеть очень знакомым, если вы читали мою статью «Как буферизовать выход операционного усилителя для получения более высокого тока».

От напряжения к току

Назначение стабилизатора напряжения – обеспечить неизменное выходное напряжение независимо от сопротивления нагрузки. Другими словами, идеальный стабилизатор будет выдавать напряжение, которое (например) равно 3,3 В при подключении к нагрузке 100 кОм и ровно 3,3 В при подключении к нагрузке 5 Ом. Что, конечно, меняется, так это ток нагрузки, который полностью определяется сопротивлением нагрузки (потому что напряжение на нагрузке не изменяется).

Что же произойдет, если мы дадим идеальному стабилизатору напряжения фиксированное сопротивление нагрузки? Если напряжение нагрузки не меняется и сопротивление нагрузки не меняется, и если закон Ома всё еще действует, то ток тоже не изменится.

Вуаля: источник тока.

На следующей диаграмме показано, как использовать LT3085 для решения задач, связанных с управлением светодиодами.

Рисунок 4 – Схема взята из технического описания LT3085

Вот как это работает:

  • Внутренний источник тока посылает 10 мкА через R1, генерируя напряжение, которое будет равно выходному напряжению (т.е. напряжению на R2).
  • Это выходное напряжение постоянно (потому что сопротивление R1 и значение силы тока внутреннего источника тока постоянны).
  • Это постоянное выходное напряжение будет создавать неизменный ток через R2, потому что сопротивление R2 постоянно.
  • Инвертирующий вход усилителя не выдает ток, поэтому почти весь ток R2 идет от положительного источника питания через транзистор, подключенный к выходу усилителя. (Я говорю «почти», потому что ток эмиттера биполярного транзистора представляет собой сумму тока базы и тока коллектора, но ток базы намного меньше тока коллектора.)
  • Светодиод включен последовательно с коллектором биполярного транзистора, и поэтому ток через светодиод фиксирован и (почти) равен току, протекающему через R2.

Ток через светодиод можно изменить, изменив значение R1 или R2; как показано в следующем уравнении, ток через светодиод – это просто значение силы тока внутреннего источника тока, умноженное на отношение R1 к R2.

Я бы назвал это довольно удобной схемой: процесс проектирования чрезвычайно прост, и требуется лишь несколько компонентов. Если вы замените один из резисторов потенциометром, результатом станет высокоточный светодиодный драйвер с регулируемым током с широким диапазоном входных напряжений и защитой от перегрева, который может обеспечивать ток до 500 мА.

И, конечно, эта схема не ограничивается светодиодами; вы могли бы так же легко использовать ее, скажем, с резистивным нагревательным элементом. Это позволит вам, несмотря на колебания напряжения питания, генерировать постоянное тепло (потому что P = I 2 R).

Заключение

Мы обсудили простой, но высокопроизводительный источник тока на базе микросхемы стабилизатора напряжения от Linear Tech. Я предполагаю, что аналогичные схемы на стабилизаторах доступны и у других производителей.

Мне нравится всегда включать моделирование SPICE в статьи, но в данном случае это казалось действительно ненужным. Однако прежде чем я написал статью, я проверил, что в LTspice действительно есть компонент LT3085 (в папке » [PowerProducts] «). Поэтому, если вы захотите исследовать эту схему дальше, то сможете легко это сделать.

Стабилизатор для компрессора

К сожалению в гараже мой компрессор ABAC 1.5KW, не работает из за очень низкого напряжения. Пожскажите какой стабизатор и с каким напряжением стоит подбирать? Если у кого есть опыт работы со стабилизатором, то прошу поделиться.

а нужен ли стабилизатор? до какого напряжения проседает? намотайте автотрансформатор — по мощности потянет железо от старого лампового цветного телика — рублей 100 на барахолке, его мощности хватит чтоб приподнять 1,5 квт аж на 40 вольт

В гараже напряжение проседает до 180В, а бывает еще и ниже. Поэтомуи нужны альтернативные источники электроэнергии. Есть два варианта либо стабилизатор, либо генератор. И вот хочу купить, но не знаю, какая мощность должна быть?

у нас тоже в гараже слабо напряжение.
вопрос каким сечением и сколько витков? выдайте расчёты а я опробую.

а чего тут считать — все уже посчитано до нас что такое автотрансформатр надеюсь представляете? у транса есть первичка. колво витков можно определить смотав ее (но это геморно. проще намотать обмотку витков 20 и померить сколько получится на них, включив первичку в сеть, обычно это получается даже без разборки трансформатора, в щель) итого колво витков на вольт будет известно. диаметр провода подбирается в зависимости от тока нагрузки — 1500/220 = 6,8 а. плотность тока принимаем 3,5 а/мм2 (лучше меньше) выходит провод нужен около 2 мм2.

Читайте так же:
Стабилизатор напряжения переменного тока lider

дальше число витков на вольт умножаем на 220 — получим ту часть что включается в сеть (считать на 180 не рекомендую, напряжение ведь иногда бывает нормальным), делаем отвод, дальше число витков на вольт умножаем на 10 и продолжаем мотать, делая отвод каждые эти 10в еще раз 5 — получится возможность подбирать с шагом около 10 в

а просто попробовать — можно у когонить ЛАТР попросить на время

впринципе это одна из схем стабилизатора, только отводы переключает электроника тиристорами в зависимости от напряжения. для экономии денежек можно сделать как я описал выше, и поставить защиту от перенапряжения, если вдруг придет 220 из сети

. а ещё подумайте, как восстановить напряжение в вашем гараже до нормального, далеко ли подстанция, какими проводами сделан ввод в гараж, какие там скрутки/сопли/предохранители/пакетники, попробуйте фазу поменять на входе в гараж.

При пуске компрессор жрет огромный ток, а при работе не такой и большой. Поэтому идея с повышающим трансформатором меня нерадует. Напряжение то вы конечно поднимете, а пусковой ток? Как бы хуже не сделать. И мощность трансформатора какую вы хотите взять? Больше мощности компрессора? Это сколько он будет весить? Как хороший добрый сварочник? Больше чем компрессор?

. а ещё подумайте, как восстановить напряжение в вашем гараже до нормального, далеко ли подстанция, какими проводами сделан ввод в гараж, какие там скрутки/сопли/предохранители/пакетники, попробуйте фазу поменять на входе в гараж.

При пуске компрессор жрет огромный ток, а при работе не такой и большой. Поэтому идея с повышающим трансформатором меня нерадует. Напряжение то вы конечно поднимете, а пусковой ток? Как бы хуже не сделать. И мощность трансформатора какую вы хотите взять? Больше мощности компрессора? Это сколько он будет весить? Как хороший добрый сварочник? Больше чем компрессор?

Народ поймите правильно — это коллективная автостоянка и менять проводку очень дорого и геморно. Касательно изготовления трансформатора самому, то для этого нужно время и минимум знаний, к сожалению этим не обладаю .
Поэтому прошу помочь в выборе стабилизатора или генератора. Какой запас мощности должен быть у этих приборов? Какими тех характеристиками они должны обладать?

Стабилизатор для усиления тока

Владельцы автомобилей со штатным галогенным светом часто жалуются на недостаточную освещенность дороги. Проблема недостаточной яркости ближнего света фар часто обсуждается на тематических форумах в интернете. Недостаточная освещенность дороги способствует повышенной утомляемости водителя и часто является причиной аварий.

Полировка фар, и установка ламп большей яркости решает проблему лишь от части. Самой распространенной причиной недостаточной яркости света является падение напряжения на лампе. Следует отметить — напряжение всегда падает под нагрузкой. Любой источник питания обладает своим внутренним сопротивлением. Из-за этого напряжение непосредственно на контактах лампы будет немного меньше напряжения бортовой сети, измеренной на клеммах аккумулятора или генератора.

Как получить МАКСИМУМ ЯРКОСТИ от галогенных фар и не получить штраф?

Дополнительные потери напряжения со временем появляются за-за увеличения сопротивления цепи. Связано это с износом контактов, потерей емкости аккумуляторной батареи и прочего. Для уменьшения дополнительных потерь напряжения можно установить реле и проводку напрямую от аккумулятора или генератора. Дополнительное реле управляется выключателем ближнего света фар, провода большого сечения сокращают потери в напряжении, но полностью не решают проблему падения напряжения на лампе. Продаются готовые комплекты проводов с разгрузочными реле, но мы пойде немного другим путем.

Максимальная яркость фары будет зависеть от конструкции самой фары и применяемой лампы. Яркость фары (на фото) заметно меняется даже при изменении напряжения на 1 вольт. При 12,5 вольт прибор показал 4720 люкс, а при 13,5 вольтах уже 5930 люкс, что ярче примерно на 25%. Можно подать на спираль большее напряжение, и тогда получим большую яркость и немного большую цветовую температуру.

Установку ксеноновых и светодиодных ламп вместо галогена здесь мы рассматривать не будем, так как конструкция таких ламп (модулей) отличается от конструкции галогенных ламп для которых фары были спроектированы изначально и их использование часто нарушает свето-теневую границу фары. Это вызывает ослепление встречных водителей. Тем более не станем обсуждать «законность» такой модернизации.

Установка ламп большей мощности провоцирует еще большее падение напряжения. Из-за нехватки напряжения яркость таких ламп снижается. Если напряжения достаточно, то увеличивается теловая нагрузка на элементы конструкции фары за счет инфракрасного излучения лампы.

Отдельно стоит упомянуть полную переделку фары и установку внутри неё светоизлучающих модулей [Xenon, Bi-Xenon, Led, Bi-Led] с подключением к системе коррекции фар. При яркости выше 2000 Lm — обязательно устанавливается омыватель фар. Все это дорогая и технически сложная процедура, которая может позволить получить существенное увеличение яркости, но нам пока не известны случаи узаконивания такой процедуры в России.

Если позволяют финансы — оптимальным и разрешенным законом способом улучшения света является установка штатных фар от более дорогих комплектаций вашего автомобиля. Любые другие измения конструкции будут считаться недопустимым изменением, не предусмотренным производителем.

Читайте так же:
Для чего служит стабилизатор напряжения тока

Решение — установка конвертера напряжения DC-DC

Цель — получить максимальную яркость от штатного галогенного головного света с минимальными вмешательствами в штатную проводку автомобиля и без существенного снижения ресурса ламп.

Увеличение яркости головного света можно получить за счет стабилизации напряжения непосредственно на контактах лампы. В качестве испытуемого был выбран авто Mitsubishi Outlander III. За ближний свет тут отвечает линза с лампой H7. Напряжение слева/справа 13,1/12,9 Вольт при заведенном двигателе. Подключаем конвертер — напряжение стабилизируется на уровне 13,75 Вольт.

Технические характеристики
НаименованиеКонвертер/стабилизатор напряжения галогенной лампы
МодельULTRA-A DC/DC1375-H7-5A
Выходное напряжение13,75 В
Максимальный ток нагрузки5 А (67 Ватт)
Входное напряжение8,0 — 14,5 В
Цоколь лампыH7
КПД (Uвх=12В)> 90 %
Ток потребления (без нагрузки)70 мА
Отклонение Uвых13,2 Вольт +/- 5% . Питание конвертера при этом от 9 до 14.5 Вольт.

Речь не идет о каком-либо существенном увеличении мощности головного освещения, способного раславить отражатели и повредить стекла (монолитный поликарбонат) фар. Часто достаточно устранить саму причину низкой яркости галогенной лампы — нехватку напряжения. Применение конвертера напряжения позволяет стабилизировать питание галогенных ламп, устраняет просадки напряжения и обеспечивает максимальную яркость света, предусмотренную конструкцией фары и применяемой лампой. Конвертер напряжения позволяет получить стабильный, независящий от колебаний напряжения бортовой сети свет фар.

Стабилизатор подходит для любых ламп с цоколем H7, мощностью 55 Ватт, напряжением 12В. Разъем подходит для установки в большинство фар KIA и Mitsubishi (разъемы совместимые с другими производителями фар возможно появятся в ближайшее время).

Модель конвертера в новом корпусе для установки внутри фары:

Конвертер имеет защиту от короткого замыкания, отключается при падении входного напряжения ниже 8,0 Вольт, обеспечивает защиту ламп от перегорания в момент включения, обладает высоким КПД и обеспечивает стабильное напряжение и ток, необходимые для оптимального режима работы галогенной лампы мощностью 55 Вт. Установка конвертера ULTRA-A DC_DC1375-H7-5A не требует специальных навыков и не затрагивает конструкцию фары, что позволяет получить легальную прибавку в яркости без проблем с прохождением технического осмотра.

Это новая продукция. Мы пока не проводили тестирование совместимости со всеми производителями и моделями автомобилей. Данные о совместимости конвертера с системой контроля ламп различных производителей появится в ближайшее время.

Производится органиченными партиями.

Конвертер напряжения для галогенных фар

Частые вопросы по конвертеру: ULTRA-A DC_DC1375-H7-5A

1. Сократится ли срок службы лампы с конвертером?
Увеличение напряжения неизбежно приводит к увеличению интенсивности сублимации (испарению) нити накаливания лампы и сокращает ресурс работы лампы. Защита от скачков тока при включении ламп – увеличивает ресурс лампы. В настоящее время у нас нет подтвержденных экспериментами данных о снижении или увеличении ресурса лам. Субъективно, лампы при напряжении 13,75 Вольт перегорают не чаще обычного.
2. За счет чего конвертер повышает напряжение?
Увеличение напряжения происходит за счет увеличения потребления электрического тока. Закон Ома связывает Мощность (P), Напряжение (U) и Силу тока (I) выражением: P = U * I;
3. Какую мощность потребляет/расходует сам конвертер?
Конвертер потребляет около 4-6 Вт (зависит от разницы входного и выходного напряжений). Алюминиевый корпус конвертера рассеивает тепло и может нагреваться при длительной работе на 20-30 градусов выше температуры окружающей среды.
4. Требуется вносить изменения в штатную проводку?
Если штатная проводка не повреждена, ее контакты и соединения не окислены внесение изменений не потребуется. Конвертер подключается вместо лампы, с соблюдением полярности. Лампа подключается к конвертеру.
5. Какой номинал предохранителя установить на лампу?
Для ламп мощностью 55 Вт используют предохранитель номиналом 10А. Он же остается и при подключении лампы через конвертер напряжения.
6. Могу я заказать конвертер с напряжением 14,0 — 15,0 Вольт на выходе?
Для ламп ближнего света H7 мощностью 55 Вт использовать напряжение выше 14,0 Вольт считаем не целесообразным. Да, Вы можете заказать конвертер с таким напряжением, указав это в заказе.
7. В моем автомобиле электроусилитель из-за этого фары притухают при повороте руля. Конвертер решит эту проблему?
Да. Конвертер стабилизирует питание ламп и убирает провалы напряжения, вызванные включением мощных электропотребителей, таких как вентилятор радиатора охлаждения двигателя, ЭУР, робот КПП и прочих. Лампы с установленным конвертером светя с постоянной яркостью.
8. В мою фару не помещается конвертер такого размера, что делать?
Данный конвертер имеет герметичный корпус и может устанавливаться не только внутри фары, но и в подкапотном пространстве. Пока мы собираем статистику обращений по моделям авто и будем решать задачу упрощения устанвки по мере формирования статистики по самым востребованным моделям автомобилей.
9. Где можно приобрести конвертер с доставкой или офлайн?
Мы работаем над организацией интернет-магазина. Пока предлагаем отправить заказ почтой/транспортной компанией или Вы можете забрать его с нашего склада в Москве. Если что-то не подойдет или не понравится Вы можете вернуть конвертер в течение 30 дней.

По вопросам приобретения конвертера пишите — email: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.

Где Вы бы хотели нас видеть?

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector