Sfera-perm.ru

Сфера Пермь
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Схемы защиты стабилизаторов напряжения по току

Каталог радиолюбительских схем

СТАБИЛИЗАТОР НАПРЯЖЕНИЯ С ЗАЩИТОЙ ОТ КОРОТКОГО ЗАМЫКАНИЯ И ПЕРЕГРУЗКИ ПО ТОКУ

В. КОЗЛОВ, г. Муром Владимирской обл.

Автор анализирует наиболее характерные особенности и недостатки стабилизаторов напряжения, знакомых радиолюбителям по публикациям в нашем журнале, дает практические советы, подчас нетрадиционные, по улучшению их основных параметров, В качестве примера он рассказывает о разработанном им стабилизаторе, предназначаемым для мощных блоков питания аппаратуры, которая работает круглосуточно. В статье описывается технология изготовления теплоотвода мощного транзистора- Редакция ждет откликов читателей на эту публикацию.

Сетевые блоки питания в которых для стабилизации выпрямленного напряжения радиолюбители используют микросхемные стабилизаторы, не всегда радуют их создателей. Причина тому — характерные присущие этим конструкциям недостатки.

У традиционных транзисторных стабилизаторов нередко ненадежна защита от перегрузки. Безынерционные системы защиты ложно срабатывают даже от кратковременных перегрузок при подключении емкостной нагрузки. Инерционные же средства защиты не успевают сработать при сильном импульсе тока, например, при коротком замыкании приводящем к пробою транзисторов [1], Устройства с ограничителем выходного тока — безынерционны в них отсутствует триггерный эффект, но при коротком замыкании на регулирующем транзисторе рассеивается большая мощности что требует применения соответствующего теплоотвода [2].

Единственный выход при такой ситуации — одновременное применение средств ограничения выходного тока и инерционной защиты регулирующего транзистора от перегрузку что обеспечит ему в два-три раза меньшую мощность и габариты теплоотвода. Но это приводит к увеличению числа элементов, габаритов конструкции и усложняет повторяемость устройства в любительских условиях.

Принципиальная схема стабилизатора, число элементов в котором минимально, приведена на рис. 1. Источником образцового напряжения служит термостабилизированный стабилитрон VD1.

Для исключения влияния входного напряжения стабилизатора на режим стабилитрона его ток задается генератором стабильного тока (ГСТ), построенным на полевом транзисторе VT1. Термостабилизация и стабилизация тока стабилитрона повышают коэффициент стабилизации выходного напряжения.

Образцовое напряжение поступает на левый (по схеме) вход дифференциального усилителя на транзисторах VT2.2 и VT2.3 микросборки К125НТ1 и резисторе R7, где сравнивается с напряжением обратной связи, снимаемым с делителя выходного напряжения R8R9. Разность напряжений на входах дифференциального усилителя изменяет баланс коллекторных токов его транзисторов.

Регулирующий транзистор VT4, управляемый коллекторным током транзистора VT2.2, обладает большим коэффициентом передачи тока базы. Это увеличивает глубину ООС и повышает коэффициент стабилизации устройства, а также уменьшает мощность, рассеиваемую транзисторами дифференциального усилителя.

Рассмотрим работу устройства более подробно.

Допустим, что в установившемся режиме при увеличении тока нагрузки выходное напряжение несколько уменьшится, что вызовет и уменьшение напряжения на эмиттерном переходе транзистора VT3.2. При этом ток коллектора также уменьшится. Это приведет к увеличению тока транзистора VT2.2, поскольку сумма выходных токов транзисторов дифференциального усилителя равна току, текущему через резистор R7, и практически не зависит от режима работы его транзисторов.

В свою очередь, растущий ток транзистора VT2.2 вызывает увеличение тока коллектора регулирующего транзистора VT4, пропорциональное его коэффициенту передачи тока базы, повышая выходное напряжение до первоначального уровня и позволяет поддерживать его неизменным независимо от тока нагрузки.

Для кратковременной защиты устройства с возвратом его в исходное состояние введен ограничитель тока коллектора регулирующего транзистора, выполненный на транзисторе VT3 и резисторах R1, R2.

РезисторП1 выполняет функцию датчика тока, протекающего через регулирующий транзистор VT4. В случае превышения тока этого транзистора максимального значения (около 0,5 А) падение напряжения на резисторе R1 достигнет 0,6 В, т е. порогового напряжения открывания транзистора VT3, Открываясь, он шунтирует эмиттерный переход регулирующего транзистора, тем самым ограничивая его ток примерно до 0,5 А.

Таким образом, при кратковременных превышениях током нагрузки максимального значения транзисторы VT3 и VT4 работают в режиме ГСТ, что вызывает падение выходного напряжения без срабатывания защиты от перегрузки по току. Через некоторое время, пропорциональное постоянной времени цепи R5C1, это приводит к открыванию транзистора VT2.1 и дальнейшему открыванию транзистора VT3, закрывающего транзистор VT4. Такое состояние транзисторов устойчивое, поэтому после устранения короткого замыкания или обесточивания нагрузки необходимо Отключить устройство от сети и вновь включить после разрядки конденсатора С1.

Ток короткого замыкания устройства равен нулю, а значит, исключает перегрев регулирующего транзистора при срабатывании защиты. Резистор R3 необходим для надежной работы транзистора VT4 при малых токах и повышенной температуре. Конденсатор С2, шунтирующий выход стабилизатора, предотвращает самовозбуждение устройства, причиной которого может стать глубокая ООС по напряжению.

Резистор R6 в коллекторной цепи транзистора VT2,1 ограничивает ток во время переходных процессов при включении защиты, а светодиод HL1 выполняет функцию индикатора перегрузки.

Основные параметры стабилизатора

Входное напряжение, В . 14. 20

Выходное напряжение, В. 12

Ток нагрузки, А . 0. 0,5

напряжения при токе

нагрузки от 0 до 0,5 А, В.

Компенсационный стабилизатор напряжения. Расчёт стабилизатора напряжения

Компенсационный стабилизатор

Различают компенсационные стабилизаторы напряжения непрерывного и импульсного действия. Стабилизаторы напряжения непрерывного действия представляют собой систему автоматического регулирования, в которой фактическое значение выходного напряжения сравнивается с заданным значением эталонного (опорного) напряжения. Возникающий при этом сигнал рассогласования усиливается и должен воздействовать на регулирующий элемент стабилизатора таким образом, чтобы выходное напряжение стремилось вернуться к заданному уровню. В качестве источника опорного напряжения обычно используют параметрический стабилизатор, работающий с малыми токами нагрузки, представляющий собой цепочку, состоящую из резистора и стабилитрона. В зависимости от способа включения регулирующего элемента различают компенсационные стабилизаторы последовательного и параллельного типов.
Структурная схема компенсационного стабилизатора последовательного типа представлена на рис. В этой схеме регулирующий элемент РЭ включен последовательно с нагрузкой и играет роль управляемого балластного сопротивления. Схему, состоящую из регулирующего элемента и сопротивления нагрузки можно представить как делитель напряжения, в котором определённая часть входного напряжения «падает» на сопротивлении нагрузки, а всё остальное напряжение – на регулирующем элементе. При этом, и все изменения входного напряжения отражаются не на нагрузке, а на регулирующем элементе.
Опорное стабилизированное напряжение формируется источником опорного напряжения ИОН. Схема сравнения СС сравнивает выходное напряжение с опорным напряжением Uоп. Разностный сигнал рассогласования Uн — Uоп, формируемый схемой сравнения СС, поступает на вход усилителя постоянного тока У, усиливается и воздействует на регулирующий элемент РЭ.
Если в нагрузке оказывается напряжение большее, чем опорное Uоп – имеет место положительный сигнал рассогласования (Uн — Uоп) > 0, тогда внутреннее сопротивление РЭ возрастает и падение напряжения Uрэ на нем увеличивается. Так как регулирующий элемент и нагрузка включены последовательно, то при увеличении Uрэ выходное напряжение уменьшается.
При уменьшении выходного напряжения , отрицательном сигнале рассогласования (Uн — Uоп) Расчёт стабилизатора постоянного напряжения компенсационного типа и практические советы конструкторам

Читайте так же:
L7812cv стабилизатор тока схема

Как и ранее, я не пишу сложные формулы радиолюбительских расчётов, которые отбивают желание вообще становиться радиолюбителями. Они мной применяются только тогда, когда их использование действительно необходимо. Кроме того, если Вы научитесь понимать их физический смысл, то Вы самостоятельно сможете применять их на практике для расчётов цепей.

Расчёт стабилизированного блока питания мы будем проводить с использованием конкретной схемы, которую мы сначала изобразим, соблюдая правила построения схем, а потом рассчитаем на основе предъявляемых к ней требований.
1. Прежде всего, обратите внимание, на то, что большинство блоков питания имеет минус на массе, поэтому мы так же выполняя условие – «минус на массе» изменим полярности диодов и конденсаторов, а кроме того — тип проводимости транзисторов с p-n-p на n-p-n.
>2. Для повышения коэффициента стабилизации компенсационного стабилизатора в качестве регулирующего элемента мы будем использовать составной транзистор. Использование составного транзистора увеличивает коэффициент стабилизации на величину коэффициента усиления по току дополнительного транзистора, и на порядок увеличивает нагрузочную способность стабилизатора напряжения. Поэтому (см. схему) к ранее изученному стабилизатору, мы добавим этот транзистор VT3. Считаем, что каждый добавленный таким образом транзистор увеличивает нагрузочную способность в 10…20 раз, но не забываем, что основная часть мощности на него и «приложится». Поэтому чем мощнее транзистор, тем лучше.
3. Ток через делитель Iдел состоящий из R1,R2,R3 выбирают обычно на порядок меньше (в 10 раз), чем ток, протекающий по цепи Rб, VD1. Увеличение или уменьшение тока делителя за счет снижения, или повышения сопротивлений R1,R2,R3 нецелесообразно, так как приводит к существенному уменьшению КПД, или чувствительности схемы к изменению выходного напряжения и его пульсациям.
4. Резистор R2 предназначен для регулировки стабилизированного напряжения в небольших пределах. Пределы регулировок выходного напряжения такого стабилизатора ограничены параметрами стабилитрона – минимальным и максимальным током стабилизации. Как это выглядит практически, я затрону в процессе расчётов.
5. Напряжение стабилизации дополнительного источника опорного напряжения, используемого для смещения транзистора регулирующего элемента должно не менее, чем в 1,5 раза превышать значение выходного напряжения стабилизатора. Иначе силовыми транзисторами VT2 и VT3 «нечем будет управлять» — напряжение на эмиттерах будет превышать базовое, и ни о какой стабилизации речи не будет.
6. Предыдущее условие накладывает ограничения на нагрузочные способности стабилизатора потому, что разница входного и выходного напряжения стабилизатора помноженная на выходной ток, будет «падать» в виде рассеиваемой мощности на силовых транзисторах. Поэтому необходимо выбирать транзисторы способные выдерживать такую мощность – повторяется правило — чем мощнее транзистор, тем лучше. Но чем мощнее транзистор, тем меньше у него коэффициент передачи.

Исходные данные (допустим, к разрабатываемому ИП предъявлены такие требования):
— среднее выходное напряжение стабилизатора – 12 вольт;
— максимальный ток нагрузки стабилизатора – 2 ампера;
— используется трансформатор достаточной мощности, с выходным напряжением 25 вольт.

При расчётах сложных схем, обычно идут «с конца к началу», поэтому, предлагаю начать с расчёта схем опорного напряжения и сравнения.

1. Выберем стабилитрон измерительного моста Стабилитрон VD1 выбирается со значением напряжения стабилизации, равном половине выходного напряжения стабилизатора: 12в / 2 = 6 вольт .
При этом условии обеспечивается наилучшая стабилизация. Но стабилитрон на такое напряжение в рознице отсутствует, поэтому выбираем стабилитрон, максимально близкий по напряжению стабилизации – КС156А, у которого Uст = 5,6 вольт, Iст = 10 мА.

2. Найдём резистор :
На резисторе падает напряжение: URб = Uвых – Uст = 12в – 5,6в = 6,4в
Зная падение напряжения и ток стабилизации, по закону Ома определяем сопротивление резистора: Rб = URб / = 6,4в/0,01А = 640 Ом
Ближайшее значение сопротивления резистора по номинальному ряду — 620 Ом.
Мощность резистора находим из условия РRб = URб * Iст * 2 = 6,4в * 0,01А * 2 = 0,128 Вт
Если кто не знает, что в формуле обозначает цифра 2, поясню, это коэффициент запаса по мощности (чтобы резистор не грелся). Ближайшее наибольшее значение мощности резистора по номинальному ряду – 0,125 Вт.
Таким образом, параметры Rб – 620 Ом на 0,125 Вт.

3. Определим возможные значения выходного напряжения стабилизатора, при которых стабилизация происходит.
Они ограничены предельными токами стабилитрона, стоящего в мостовой измерительной цепи.
а) Определим минимальное (регулируемое) напряжение стабилизации: По справочнику минимальный ток стабилизации КС156А = 3 мА, при этом токе значение выходного напряжения стабилизатора составит: Uвых.min = Uст + (Iст.min * Rб) = 5,6 в + (0,003 * 620) = 7,46 вольт
б) Определим максимальное (регулируемое) напряжение стабилизации:
По справочнику максимальный предельный ток стабилизации КС156А = 55 мА. Это большой ток, при котором стабилитрон будет греться и нужны дополнительные меры защиты, поэтому ограничимся значением, в 2 раза превышающем номинальное — 20 мА. При этом токе значение выходного напряжения стабилизатора составит:

Читайте так же:
Какие бывают стабилизаторы тока

Uвых.max = Uст + (Iст.max * Rб) = 5,6 в + (0,02 * 620) = 18 вольт
Поскольку мощность прикладываемая к резистору возросла, для того, чтобы резистор не сгорел от большой прикладываемой мощности, его мощность следует увеличить до значения:

РRб = URб * Iст * 2 = 12,4 в * 0,02 А * 2 = 0,5 Вт
Если Вы хотите, чтобы Ваш стабилизатор выдавал 18 вольт, то мощность резистора необходимо увеличить, но если Вы делаете стабилизатор на фиксированное напряжение (в данном случае 12 вольт), то этого можно не делать, удовлетворившись расчётом, приведённым в пункте 2.

4. Рассчитаем делитель R1,R2,R3:
Нам известно, что на стабилитроне КС156А падает – 5,6 вольта. А ещё мы знаем, что в режиме стабилизации, транзистор VT1 находится в «рабочей точке», это означает, что на его переходе база-эмиттер «падает» напряжение 0,65 вольта. А это в свою очередь означает, что на базе должно быть всегда 5,6 + 0,65 = 6,25 вольта относительно корпуса стабилизатора. База соединена с «ползунком» среднего регулировочного резистора, значит, это напряжение 6,25 вольта всегда присутствует на его «ползунке».
Исходя из этого, можно составить, систему уравнений с тремя неизвестными, но это Вас только запутает, поэтому мы пойдем по более простому, но практичному пути.
При максимальном напряжении стабилизации Uвых.max = 18 вольт, ползунок находится в нижнем по схеме положении, ток стабилизации Iст.max = 0,02 A, а ток делителя R1,R2,R3 в 10 раз меньше: Iцепи = 0,002 А , следовательно: R3 = 6,25 / Iцепи = 6,25 / 0,002 = 3,125 кОм;
R1 + R2 = (Uвых.max — UR3) / Iцепи = 11,75 / 0,002 = 5,875 кОм.
Суммарное сопротивление R1 + R2 + R3 = 5 875 + 3 125 = 9 кОм
При минимальном напряжении стабилизации Uвых.min = 7,46 вольта, ток делителя будет:

Iцепи = Uвых.min / (R1 + R2 + R3) = 7,46 / 9000 = 0,00083 А
найдем значение R1 = (Uвых.min – 6,25) / Iцепи = (7,46 – 6,25) / 0,00083 = 1,46 кОм,
отсюда значение R2 = 5,88 – 1,46 = 4,42 Ом,
округлим значения резисторов до значений номинального ряда: R1 = 1,5 кОм, R2 = 4,3 кОм (переменный), R3 = 3 кОм

5. Рассчитаем второй источник опорного напряжения и смещения VT2.
В качестве стабилитрона выбираем Д816А, у которого Uст = 22 вольта, Iст = 10 мА.
Найдём Rсм.
Выходное напряжение трансформатора после выпрямления и сглаживания фильтром = 25 вольт, тогда Rсм = (Uтр. — Uст) / Iст = 25 – 22 / 0,01А = 300 Ом.
Мощность резистора РRсм = URсм / Iст = 3 *0,01 = 0,03 Вт, ближайшая из номинального ряда — 0,125 Вт
Для стабильной работы цепи опорного напряжения Rсм VD2, необходимо, чтобы не оказывал на эту цепь шунтирующего действия. Поэтому ток должен быть не менее, чем в 2 раза меньше тока стабилитрона. Кроме того, на нём падает разность между входным и выходным напряжением: URк = Uтр. — Uвых. = 25 – 12 = 13 вольт,

отсюда: Rк = URк / (Iст/2) = 13 / 0,005 = 2,7 кОм.

Мощность РRк = URк * Iст / 2 = 13 *0,005 = 0,0325 Вт, ближайший 0,125 Вт.

6. Наконец дело дошло до транзисторов.
В качестве VT1 подойдёт транзистор КТ315Г. Он удовлетворяет требованиям:
— достаточно высокий коэффициент усиления (передачи) h21Э = 50…350;
— допустимое напряжение коллектор-эмиттер – 35 вольт.
В качестве VT2 подойдёт транзистор КТ815 с любым буквенным индексом. Коэффициент передачи h21Э = 40 – 70 , обеспечивает усиление тока резистора с 5 мА до 250 мА;
В качестве VT3 попробуем взять не то, что надо искать, а то, что есть — например КТ809А. Коэффициент передачи h21Э = 15…100 , что обеспечивает усиление тока с 250 мА до 3,7 А, но максимальный ток коллектора – 3 А это по справочнику – предел, нет «запаса прочности», поэтому ставим два транзистора в параллель. При выходном напряжении = 12 вольт и токе 2 ампера, на них должно падать 13 вольт, таким образом, общая мощность рассеивания транзисторов: РVT3 = UVT3 * I VT3 = 2 * 13 = 26 Вт.
Это вполне приемлемое значение. Для выравнивания мощностей на транзисторах придётся использовать два резистора в эмитерных цепях выходных транзисторов. 0,05…1 Ом с мощностью по 2 Вт.

7. Остался один резистор . Rэ = 0,65 / 2 * 50 = 16 Ом,
где 0,65 – падение на переходе база-эмиттер, 2 – номинальный ток нагрузки = 2 ампер), 50 — усреднённое значение коэффициента передачи транзистора.

Итак, рисуем схему нашего стабилизатора

Дополнения к статье
1. При выборе стабилитронов возможно последовательное их соединение, например два КС156А (по 5,6 вольта) можно соединить последовательно для получения стабилитрона на напряжение стабилизации 11,2 вольта;
2. Для возможности регулировки выходного напряжения в более широких пределах цепочку источника опорного напряжения R3, VD6 (см. схему) подключают не к выходу, а на вход стабилизатора с применением цепей сглаживания (по аналогии с R1, VD5 и С2). Естественно, необходимо пересчитать резистор R3. В результате этого, входное напряжение ИОН не зависит от выходного напряжения, поэтому ток стабилизации номинальный и постоянен. Другой вариант расширения диапазона стабилизируемых напряжений — использование в качестве одного резистора Rб – галентного переключателя с несколькими резисторами;
3. Для повышения нагрузочных свойств стабилизатора, и как следствие повышения надёжности рекомендую вместо двух КТ809А поставить один составной КТ827А без резисторов R4 – R6.
4. Никогда не брезгуйте рассчитать мощность резисторов, иначе это может Вам выйти кучей сгоревших дорогих элементов;
5. В приведённой схеме стабилизатора имеется защита по первичной обмотке трансформатора, а во вторичных цепях защита отсутствует. В простейшем случае поставьте на выходе стабилизатора двух-трехватный предохранитель, но лучше сделать более интеллектуальную схему защиты

Читайте так же:
Что такое стабилизатор тока с ттл модуляцией

Стабилизатор с двойной защитой от КЗ в нагрузке

Схема такого стабилизатора напряжения приведена на рис. С-11. Он рассчитан на значительно больший ток нагрузки (до 3. 5 А) по сравнению с предыдущими конструкциями и содержит две цепи защиты от короткого замыкания в нагрузке — электронную и электромагнитную.

Электронная защита выполнена на транзисторе VT1 и тринисторе VS1. При достижении максимально допустимого тока нагрузки увеличивается падение напряжения на резисторе R3, транзистор VT1 открывается, и положительный импульс напряжения через диод VD1 открывает тринистор. Он шунтирует источник опорного напряжения и закрывает транзисторы VT3—VT5. После устранения перегрузки и установки регулятора выходного напряжения (переменный резистор R4) в нижнее по схеме положение устройство возвращается в исходное состояние кратковременным нажатием кнопки SB1.

Применение дополнительной электромагнитной защиты необходимо по следующим соображениям. В определенной ситуации перегрузка *или короткое замыкание в цепи нагрузки может наступить тогда, когда стабилизатор уже работал продолжительное время при токе, близком к максимальному.

В этом случае транзистор VT5 разогрет и при срабатывании электронной защиты не закрывается полностью. Через транзистор продолжает протекать большой ток, способный перегреть транзистор и вывести его из строя.
Вот здесь и пригодится электромагнитная защита, выполненная на транзисторе VT2 и реле К1. При открывании тринистора VS1 база транзистора VT2 подключается через резистор R5 к плюсовому проводу стабилизатора. Транзистор открывается, срабатывает реле К1 и подключает контактами К1.1 базу транзистора VT5 к плюсовому проводу.

Выходное напряжение стабилизатора устанавливают переменным резистором R4 от 0,2 до 15 В, а максимальный ток нагрузки, при котором срабатывает защита,— под-строечным резистором R2. Использование для транзистора VT5 радиатора 1201-Б из наборов «Старт» позволяет при выходном напряжении 15 В пропускать через транзистор ток 1 А в длительном режиме или 2. 3 А в течение 30. 40 мин (в зависимости от условий конвекции воздуха у радиатора и температуры транзистора).

Для увеличения тока нагрузки до 5 А потребуется радиатор с большей площадью поверхности или принудительное охлаждение транзистора (небольшим вентилятором).

Указанный на схеме транзистор КТ315В можно заменить транзисторами КТ3157, КТ342А, КТ373АГ КТ375А; КТ361Е — транзисторами КТ361Г, КТ361К, КТ203Б, КТ104Г; П215 — П213—П217 с любым буквенным индексом, КТ814Б, КТ816Б; П210Б—П210В, ГТ701А. Вместо тринистора КУ101Б подойдут КУ101Г, КУ101Е, КУ101И, КУ201В, КУ201Г (мощность двух последних тринисто-ров намного выше требуемой для данной конструкции). Вместо диодов Д223 подойдут Д219А, Д220, КД509А, КД522Б, а вместо стабилитронов Д814А—Д808. Подстроеч-ный резистор R2— проволочный, типа ППЗ; постоянный резистор R3— тоже проволочный, изготовленный из отрезка провода ПЭВ-1 0,59 длиной 156 см, намотанного на фарфоровом каркасе диаметром 17 и высотой 40 мм (подойдет корпус резистора ПЭВ-10); переменный резистор R4 — любого типа с линейной функциональной характеристикой (А); остальные резисторы — МЛТ указанной на схеме или большей мощности. Лампа HL1—КМ 24-35 (на напряжение 24 В и ток 35 мА), реле — РЭС9, паспорт РС4.524.200 (обе группы контактов соединены параллельно).

Большая часть указанных деталей смонтирована на печатной плате (рис. С-1 2) из фольгированного стеклотекстолита. Вместе с остальными деталями и выпрямителем плату размещают в корпусе, на передней стенке которого устанавливают ручки управления и выходные зажимы для подключения нагрузки.

Налаживание устройства начинают с электронной защиты. Левый по схеме вывод резистора R5 отключают от деталей, а движок резистора R2 устанавливают в верхнее положение. Подключают к выходу стабилизатора нагрузку, потребляющую ток 3,5. 4 А при напряжении 6. 10 В. Если электронная защита сразу же срабатывает, перемещают движок резистора R2 вниз по схеме. Более точным подбором сопротивления резистора R3 (отматыванием или доматыванием провода) добиваются, чтобы электронная защита срабатывала примерно при среднем положении движка резистора R2.

Далее впаивают резистор R5 и подбором резистора R6 добиваются четкого срабатывания реле при замыкании выходных зажимов стабилизатора (при выходном напряжении не менее 2,5 В).

Вы наверняка обратили внимание на одно неудобство при эксплуатации стабилизатора — после устранения КЗ или перегрузки приходится устанавливать движок регулятора выходного напряжения R4 в нулевое положение, после чего нажимать кнопку SB1 и вновь ставить выходное напряжение переменным резистором R4.

Избавиться от этого неудобства нетрудно, если применить вместо одинарной кнопки SB1 сдвоенную, но с контактами на размыкание. Одну группу контактов следует включить в разрыв цепи коллектора транзистора VT1, а другую — в разрыв верхнего по схеме вывода лампы HL1. Причем при нажатии кнопки первая группа должна срабатывать несколько позже второй. Если используется кнопочный выключатель типа КМ2-1, в нем для указанных целей изгибают пинцетом пружинящую пластину вверх примерно на 20° над выключателем первой группы контактов.

Компенсационные стабилизаторы

Компенсационные стабилизаторы напряжения позволяют получить постоянное напряжение с минимальным значением пульсаций и шума, поэтому эти стабилизаторы применяются в узлах радиоаппаратуры, наиболее чувствительных к помехам. Более того! Если раньше в радиоэлектронном устройстве применялся один источник стабильного напряжения, а потребители разделялись пассивными RC фильтрами, то теперь экономически выгоднее вместо фильтрующих RC-цепочек поставить интегральные стабилизаторы напряжения.

Читайте так же:
Полевой транзистор как стабилизатор тока

Следует отметить, что при написании этой статьи я решал непростую дилемму. С одной стороны в настоящее время на рынке предлагается огромное количество готовых микросхем стабилизаторов напряжения. С другой стороны для правильного выбора и применения этих микросхем нужно понимать как они работают. Именно поэтому сначала познакомимся с принципами работы компенсационного стабилизатора, а только потом рассмотрим особенности применения готовых микросхем. Структурная схема компенсационного стабилизатора приведена на рисунке 1.


Рисунок 1. Структурная схема компенсационного стабилизатора напряжения

Стабилизация выходного напряжения в компенсационном стабилизаторе происходит при помощи отрицательной обратной связи. Выходное напряжение может измениться под влиянием входного напряжения или изменения тока нагрузки. Оно сравнивается с опорным высокостабильным напряжением и при несовпадении осуществляется его подстройка под заданное значение.

В процессе работы компенсационного стабилизатора транзистор, который применяется в качестве регулировочного элемента, изменяет свое внутреннее сопротивление. На этом сопротивлении по закону Ома осуществляется падение напряжения ΔUРЭ. При этом напряжение падает ровно настолько, чтобы на выходе получилось требуемое напряжение питания. Это означает, что при применении компенсационного стабилизатора входное напряжение всегда должно быть больше выходного.

В схеме, приведенной на рисунке 1, коэффициент передачи элемента регулирования Kр определяет зависимость выходного напряжения от входного. Для хорошего стабилизатора чем меньше будет этот коэффициент, тем лучше. Пульсации входного напряжения не смогут пройти на выход стабилизатора. Поэтому в элементе регулировки обычно входное напряжение подается на коллектор биполярного транзистора или сток полевого транзистора. Эталонное напряжение Uэт обычно не совпадает с выходным напряжением стабилизатора, поэтому между его выходом и схемой сравнения ставится делитель напряжения с коэффициентом деления Kд. Для получения необходимого коэффициента стабилизации между устройством сравнения и регулирующим транзистором ставится усилитель постоянного тока, который усиливает сигнал ошибки ΔUE. Общий коэффициент петлевого усиления в данной схеме можно определить следующим образом:

(1)

Принцип работы компенсационного стабилизатора лучше пояснить по принципиальной схеме. Подобная схема, выполненная на двух транзисторах, приведена на рисунке 2.


Рисунок 2. Принципиальная схема простейшего компенсационного стабилизатора напряжения

В этой схеме в качестве регулирующего элемента использован транзистор VT1, включенный по схеме с общим коллектором. Схема сравнения реализована на транзисторе VT2. Ток этого транзистора зависит от разности напряжений между базой и эмиттером. В качестве эталонного источника напряжения применен параметрический стабилизатор на резисторе R1 и стабилитроне VD1. Выходное напряжение поступает на базу транзистора VT2 через делитель напряжения R3, R4.

Если напряжение на выходе стабилизатора по каким либо причинам возросло, то транзистор VT2 приоткрывается и напряжение на его коллекторе уменьшается. К коллектору VT2 подключена база транзистора VT1, следовательно, уменьшится и напряжение на выходе стабилизатора (вернется к заданному значению). Аналогичным образом схема отрицательной обратной связи отработает и при уменьшении напряжения на выходе.

Следует заметить, что от транзистора VT1 требуется обеспечивать большой коэффициент усиления по току, поэтому в современных стабилизаторах, таких как иностранные микросхемы 7805 или КР142ЕН5 отечественного производства, в качестве этого транзистора применяется составной транзистор по схеме Дарлингтона.


Рисунок 3. Схема Дарлингтона

Коэффициент усиления усилителя, собранного на транзисторе VT2, сильно зависит от сопротивления R2. Чем больше будет это сопротивление, тем больше Kу, и, следовательно, коэффициент стабилизации. Кроме того, через это сопротивление на базу транзистора VT1 поступают пульсации входного напряжения Uвх. С этой точки зрения тоже следует увеличивать сопротивление резистора R2. Однако в результате может не хватить тока для работы транзисторов VT1 и VT2. Поэтому в современных стабилизаторах вместо обычного резистора применяются генераторы тока. Чаще всего токовое зеркало.


Рисунок 4. Принципиальная схема токового зеркала

В результате получается схема, подобная схеме стабилизатора с фиксированным выходным напряжением 7805. Конечно, существуют микросхемы стабилизаторов с регулируемым выходным напряжением, однако подобная функция приводит к усложнению схемы и снижению параметров стабилизатора, поэтому выгоднее подобрать готовый стабилизатор на необходимое напряжение.


Рисунок 5. Принципиальная схема компенсационного стабилизатора 7805

Несмотря на достаточно сложную внутреннюю схему, применять такой стабилизатор чрезвычайно просто. Его схема включения приведена на рисунке 6


Рисунок 6. Принципиальная схема стабилизатора, реализованного на микросхеме 7805

Микросхемы, выполненные по этой схеме выпускаются большинством ведущих фирм мира. В качестве примера можно назвать LM7805 фирм Texas Instruments, STMicroelectronics, Fairchild Semiconductor, способную выдавать выходной ток более 1,5 А. Имеется отечественный аналог — стабилизаторы КР142ЕН5В. В названии приведенной микросхемы стабилизатора цифры 78 означают, что это стабилизатор, а цифры 05 означают, что он формирует на выходе напряжение 5 В. Соответственно стабилизаторы 7803 будут формировать напряжение 3.3 В, микросхема 7809 сформирует на выходе напряжение 9В, микросхема 7812 обеспечит напряжение 12В.

Так как через силовой транзистор (элемент регулировки) протекает весь ток нагрузки, то на нем выделяется тепловая энергия, которую необходимо рассеять в окружающем пространстве. Поэтому обычно этот стабилизатор размещается на радиаторе. Для удобства крепления микросхема выполняется в специально разработанном корпусе TO-220, который даже без радиатора способен рассеять до 1 Вт тепла.


Рисунок 7. Примеры компенсационных стабилизаторов, выполненных на микросхеме 7805

В ряде случаев такой большой ток не требуется, поэтому были разработаны микросхемы маломощных стабилизаторов напряжения. Наиболее распространены микросхемы LM78L05. Эти микросхемы выпускаются в малогабаритных корпусах, таких как SOIC, SOT-89, DSBGA или TO-92. Отечественные малогабаритные стабилизаторы — КР1157. Их схема включения не отличается от схемы, приведенной на рисунке 6, но конструкция совершенно другая.

Читайте так же:
Регулируемый стабилизатор тока для зарядного устройства 1


Рисунок 8. Примеры компенсационных стабилизаторов, выполненных на микросхеме 78L05

Как видно из приведенных примеров, компенсационные стабилизаторы нашли широкое применение в современных компьютерах, сотовых телефонах и рациях.

Дата последнего обновления файла 21.05.2019

Понравился материал? Поделись с друзьями!

  1. Сажнёв А.М., Рогулина Л.Г., Абрамов С.С. “Электропитание устройств и систем связи”: Учебное пособие/ ГОУ ВПО СибГУТИ. Новосибирск, 2008г. – 112 с.
  2. Алиев И.И. Электротехнический справочник. – 4-е изд. испр. – М.: ИП Радио Софт, 2006. – 384с.
  3. Гейтенко Е.Н. Источники вторичного электропитания. Схемотехника и расчёт. Учебное пособие. – М., 2008. – 448 с.
  4. Электропитание устройств и систем телекоммуникаций: Учебное пособие для вузов / В.М.Бушуев, В.А. Деминский, Л.Ф. Захаров и др. – М.,2009. – 384 с.
  5. Компенсационный стабилизатор напряжения. Расчёт стабилизатора напряжения (meanders.ru)
  6. LDO-преобразователи с низким током собственного потребления и малым падением напряжения (compel.ru)
  7. Одноканальные LDO-стабилизаторы малой мощности компании Texas Instruments (rlocman.ru)
  8. 3 Pin 1.5A Fixed 5V Positive Voltage Regulator (ti.com)
  9. 1A LOW DROPOUT POSITIVE FIXED 2.5V REGULATOR (gaw.ru)

Вместе со статьей «Компенсационные стабилизаторы» читают:

Схемы защиты стабилизаторов напряжения по току

Принципиальная схема стабилизатора приведена на рисунке. Источником образцового напряжения служит
термостабилизированный стабилитрон VD1. Для исключения влияния входного напряжения стабилизатора на режим стабилитрона его ток задается генератором стабильного тока (ГСТ), построенным на полевом транзисторе VT1. Термостабилизация и стабилизация тока стабилитрона повышают коэффициент стабилизации выходного напряжения. Образцовое напряжение поступает на левый (по схеме) вход дифференциального усилителя на транзисторах VT2.2 и VT2.3 микросборки К125НТ1 и резисторе R7, где сравнивается с напряжением обратной связи, снимаемым с делителя выходного напряжения R8R9. Разность напряжений на входах дифференциального усилителя изменяет баланс коллекторных токов его транзисторов. Регулирующий транзистор VT4, управляемый коллекторным током транзистора VT2.2, обладает большим коэффициентом передачи тока базы. Это увеличивает глубину ООС и повышает коэффициент стабилизации устройства, а также уменьшает мощность, рассеиваемую транзисторами дифференциального усилителя. Рассмотрим работу устройства более подробно. Допустим, что в установившемся режиме при увеличении тока нагрузки выходное напряжение несколько уменьшится, что вызовет и уменьшение напряжения на эмиттермом переходе транзистора VT3.2. При этом ток коллектора также уменьшится. Это приведет к увеличению тока транзистора VT2.2. поскольку сумма выходных токов транзисторов дифференциального усилителя равна току, текущему через резистор R7. и практически не зависит от режима работы его транзисторов. В свою очередь, растущий ток транзистора VT2.2 вызывает увеличение тока коллектора регулирующего транзистора VT4, пропорциональное его коэффициенту передачи тока базы, повышая выходное напряжение до первоначального уровня и позволяет поддерживать его неизменным независимо оттока нагрузки. Для кратковременной защиты устройства с возвратом его в исходное состояние введен ограничитель тока коллектора регулирующего транзистора, выполненный на транзисторе VT3 и резисторах R1, R2. Резистор R1 выполняет функцию датчика тока, протекающего через регулирующий транзистор VT4. В случае превышения тока этого транзистора максимального значения (около 0,5 А) падение напряжения на резисторе R1 достигнет 0,6 В, т. е. порогового напряжения открывания транзистора VT3. Открываясь, он шунтирует эмиттерный переход регулирующего транзистора, тем самым ограничивая его ток примерно до 0,5А, что вызывает падение выходного напряжения без срабатывания защиты от перегрузки по току. Через некоторое время, пропорциональное постоянной времени цепи R5C1, это приводит к открыванию транзистора VT2.1 и дальнейшему открыванию транзистора VT3, закрывающего транзистор VT4. Такое состояние транзисторов устойчивое, поэтому после устранения короткого замыкания или обесточивания нагрузки необходимо отключить устройство от сети и вновь включить после разрядки конденсатора С 1. Ток короткого замыкания устройства равен нулю, а значит, исключает перегрев регулирующего транзистора при срабатывании защиты. Резистор R3 необходим для надежной работы транзистора VT4 при малых токах и повышенной температуре. Конденсатор С2, шунтирующий выход стабилизатора, предотвращает самовозбуждение устройства, причиной которого может стать глубокая ООС по напряжению. Резистор R6 в коллекторной цепи транзистора VT2.1 ограничивает ток во время переходных процессов при вклю­чении защиты, а светодиод HL1 выполняет функцию индикатора перегрузки.


Основные параметры стабилизатора
Входное напряжение, В. 14. 20
Выходное напряжение, В. 12
Ток нагрузки, А. 0. 0,5
Изменение выходного напряжения при токе нагрузки до 0,5 А, В
.
Ток покоя, мА. 15
Ток короткого замыкания, мА.


Стабилизатор некритичен к разводке печатной платы и размещению деталей на ней. Поэтому монтаж его зависит главным образом от опыта самого конструктора и габаритов предварительно подобранных деталей. Полевой транзистор VT1 следует подобрать таким, чтобы ток стабилизации, измеренный по схеме рис. 2,а или 2,6 был в пределах 5. 15мА. Статический коэффициент передачи тока базы транзистора VT3 должен быть не менее 20, а транзистора VT4 — не менее 400. На регулирующем транзисторе VT4, допустимый ток коллектора которого должен быть не менее 1 А, выделяется значительная мощность, поэтому его следует установить на теплоотвод мощностью около 5 Вт. Резисторы и конденсаторы — любых типов на номиналы, указанные на схеме. Приступая к испытанию и налаживанию стабилизатора, резистор R5 вре­менно удаляют, чтобы система защиты не срабатывала, и подбором резистора R8 устанавливают выходное напряжение, равное 12 В. После этого включают резистор R5 и подбором резистора R1 добиваются необходимого значения тока сра­батывания защиты устройства по току.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector