Sfera-perm.ru

Сфера Пермь
4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Схемы стабилизаторов напряжения с регулятором тока

Электронные схемы — регуляторы

Следующим и последним этапом перед нагрузкой в ​​системе электропитания является часть регулятора. Давайте теперь попробуем понять, что такое регулятор и что он делает.

Часть электроники, которая занимается управлением и преобразованием электроэнергии, может быть названа силовой электроникой . Регулятор является важным устройством, когда речь идет о силовой электронике, поскольку он контролирует выходную мощность.

Нужен регулятор

Для источника питания, обеспечивающего постоянное выходное напряжение, независимо от изменений входного напряжения или изменений тока нагрузки, необходим регулятор напряжения.

Регулятор напряжения — это такое устройство, которое поддерживает постоянное выходное напряжение вместо любых колебаний входного напряжения или любых изменений тока, потребляемых нагрузкой. Следующее изображение дает представление о том, как выглядит практический регулятор.

Типы регуляторов

Регуляторы могут быть классифицированы на различные категории, в зависимости от их работы и типа подключения.

В зависимости от типа регулирования регуляторы в основном делятся на два типа, а именно линейные и нагрузочные регуляторы.

Линейный регулятор — Регулятор, который регулирует выходное напряжение, чтобы быть постоянным, несмотря на изменения входной линии, он называется Линейным регулятором .

Регулятор нагрузки — Регулятор, который регулирует выходное напряжение, чтобы быть постоянным, несмотря на изменения нагрузки на выходе, он называется регулятором нагрузки .

Линейный регулятор — Регулятор, который регулирует выходное напряжение, чтобы быть постоянным, несмотря на изменения входной линии, он называется Линейным регулятором .

Регулятор нагрузки — Регулятор, который регулирует выходное напряжение, чтобы быть постоянным, несмотря на изменения нагрузки на выходе, он называется регулятором нагрузки .

В зависимости от типа подключения , существует два типа регуляторов напряжения. Они есть

  • Серийный регулятор напряжения
  • Шунтирующий регулятор напряжения

Расположение их в цепи будет таким же, как на следующих рисунках.

Давайте посмотрим на другие важные типы регуляторов.

Стабилизатор напряжения стабилитрона

Регулятор напряжения Зенера — это регулятор, который использует стабилитрон для регулирования выходного напряжения. Мы уже обсуждали детали, касающиеся стабилитрона, в руководстве по базовой электронике.

Когда стабилитрон работает в области пробоя или стабилитрона , напряжение на нем по существу постоянное для большого изменения тока через него. Эта характеристика делает стабилитрон хорошим стабилизатором напряжения .

На следующем рисунке показано изображение простого регулятора Зенера.

Приложенное входное напряжение V i , когда оно превышает значение напряжения стабилитрона V z , затем диод стабилитрона работает в области пробоя и поддерживает постоянное напряжение на нагрузке. Последовательный ограничивающий резистор R s ограничивает входной ток.

Работа стабилизатора напряжения Зенера

Стабилитрон поддерживает постоянное напряжение на нем, несмотря на колебания нагрузки и колебания входного напряжения. Следовательно, мы можем рассмотреть 4 случая, чтобы понять работу стабилизатора напряжения Зенера.

Случай 1 — Если ток нагрузки I L увеличивается, то ток через стабилитрон I Z уменьшается, чтобы поддерживать ток через постоянный резистор R S постоянным. Выходное напряжение Vo зависит от входного напряжения Vi и напряжения на последовательном резисторе R S .

Это можно записать как

V o = V в − I R S

Где I постоянен. Следовательно, V o также остается постоянным.

Случай 2 — Если ток нагрузки I L уменьшается, то ток через стабилитрон I Z увеличивается, так как ток через резистор серии RS I_S $ через резистор RS остается постоянным. Хотя ток I Z через стабилитрон увеличивается, он поддерживает постоянное выходное напряжение V Z , которое поддерживает постоянное напряжение нагрузки.

Случай 3 — Если входное напряжение V i увеличивается, то ток I S через последовательный резистор RS увеличивается. Это увеличивает падение напряжения на резисторе, то есть увеличивается V S . Хотя ток через стабилитрон I Z увеличивается с этим, напряжение на стабилитроне V Z остается постоянным, сохраняя постоянное напряжение на выходе нагрузки.

Случай 4. Если входное напряжение уменьшается, ток через последовательный резистор уменьшается, что приводит к уменьшению тока через стабилитрон I Z . Но стабилитрон поддерживает постоянное выходное напряжение благодаря своему свойству.

Ограничения стабилитрона напряжения

Есть несколько ограничений для стабилизатора напряжения Зенера. Они —

  • Он менее эффективен для токов большой нагрузки.
  • Импеданс Зенера немного влияет на выходное напряжение.

Следовательно, стабилизатор напряжения Зенера считается эффективным для применений с низким напряжением. Теперь давайте рассмотрим другие типы регуляторов напряжения, которые сделаны с использованием транзисторов.

Регулятор напряжения серии транзистор

Этот регулятор имеет транзистор, последовательно соединенный с регулятором Зенера и оба параллельно нагрузке. Транзистор работает как переменный резистор, регулирующий напряжение эмиттера на коллекторе, чтобы поддерживать постоянное выходное напряжение. На рисунке ниже показан транзисторный последовательный регулятор напряжения.

Читайте так же:
Схема источник тока с стабилизатором

При входных рабочих условиях ток через базу транзистора изменяется. Это влияет на напряжение на соединении базового эмиттера транзистора V B E . Выходное напряжение поддерживается постоянным напряжением стабилитрона V Z . Поскольку оба они поддерживаются равными, любое изменение входного питания указывается изменением базового напряжения эмиттера V B E .

Следовательно, выходное напряжение Vo можно понимать как

V O = V Z + V B E

Работа транзисторного стабилизатора напряжения серии

Работу последовательного стабилизатора напряжения следует учитывать при изменении входного напряжения и нагрузки. Если входное напряжение увеличивается, выходное напряжение также увеличивается. Но это, в свою очередь, приводит к уменьшению напряжения на базовом переходе коллектора V B E , так как напряжение Зенера V Z остается постоянным. Проводимость уменьшается по мере увеличения сопротивления в области коллектора эмиттера. Это дополнительно увеличивает напряжение на соединении эмиттера коллектора VCE, тем самым уменьшая выходное напряжение V O . Это будет похоже на уменьшение входного напряжения.

Когда происходят изменения нагрузки, что означает, что если сопротивление нагрузки уменьшается, увеличивая ток нагрузки I L , выходное напряжение V O уменьшается, увеличивая базовое напряжение эмиттера V B E .

С увеличением базового напряжения эмиттера V B E проводимость увеличивается, уменьшая сопротивление коллектора эмиттера. Это, в свою очередь, увеличивает входной ток, который компенсирует снижение сопротивления нагрузки. Это будет похоже на увеличение тока нагрузки.

Ограничения транзисторного стабилизатора напряжения серии

Регуляторы напряжения серии транзисторов имеют следующие ограничения —

  • На напряжения V B E и V Z влияет повышение температуры.
  • Хорошее регулирование для больших токов невозможно.
  • Рассеиваемая мощность высокая.
  • Рассеиваемая мощность высокая.
  • Менее эффективны.

Чтобы минимизировать эти ограничения, используется транзисторный шунтирующий регулятор.

Транзисторный Шунт Регулятор Напряжения

Транзисторная схема шунтирующего регулятора формируется путем последовательного подключения резистора к входу и транзистора, база и коллектор которого соединены стабилитроном, который регулирует оба параллельно нагрузке. На рисунке ниже показана принципиальная схема транзисторного шунтирующего регулятора.

Работа транзисторного шунтирующего стабилизатора напряжения

Если входное напряжение увеличивается, V B E и V O также увеличиваются. Но это происходит изначально. На самом деле, когда V i n увеличивается, текущий I i n также увеличивается. Этот ток, когда протекает через RS, вызывает падение напряжения V S на последовательном резисторе, которое также увеличивается с V i n . Но это заставляет V o уменьшаться. Теперь это уменьшение V o компенсирует начальное увеличение, поддерживая его постоянным. Следовательно, V o поддерживается постоянным. Если вместо этого уменьшается выходное напряжение, происходит обратное.

Если сопротивление нагрузки уменьшается, должно быть уменьшение выходного напряжения V o . Ток через нагрузку увеличивается. Это приводит к уменьшению тока базы и тока коллектора транзистора. Напряжение на последовательном резисторе становится низким, так как ток течет интенсивно. Входной ток будет постоянным.

Появится выходное напряжение, которое будет представлять собой разницу между приложенным напряжением V i и падением последовательного напряжения V s . Следовательно, выходное напряжение будет увеличено для компенсации начального снижения и, следовательно, будет поддерживаться постоянным. Обратное происходит, если сопротивление нагрузки увеличивается.

IC Регуляторы

Регуляторы напряжения в настоящее время доступны в виде интегральных микросхем (ИС). Они вкратце называются регуляторами IC.

Наряду с функциями, подобными обычному регулятору, регулятор IC имеет такие свойства, как термокомпенсация, защита от короткого замыкания и защита от перенапряжения, которые встроены в устройство.

Типы регуляторов IC

Регуляторы IC могут быть следующих типов —

  • Фиксированные положительные регуляторы напряжения
  • Фиксированные отрицательные регуляторы напряжения
  • Регулируемые регуляторы напряжения
  • Регуляторы напряжения с двойным слежением

Давайте теперь обсудим их подробно.

Фиксированный положительный регулятор напряжения

Выход этих регуляторов фиксируется на определенном значении, и значения являются положительными, что означает, что выходное напряжение является положительным напряжением.

Наиболее используемая серия — это серии 7800, и ИС будут похожи на IC 7806, IC 7812, IC 7815 и т. Д., Которые обеспечивают + 6 В, + 12 В и + 15 В соответственно в качестве выходных напряжений. На рисунке ниже показана микросхема 7810, подключенная для обеспечения фиксированного 10 В положительного регулируемого выходного напряжения.

На приведенном выше рисунке входной конденсатор C 1 используется для предотвращения нежелательных колебаний, а выходной конденсатор C 2 действует как линейный фильтр для улучшения переходного процесса.

Регулятор Фиксированного Отрицательного Напряжения

Выход этих регуляторов фиксируется на определенном значении, и значения являются отрицательными, что означает, что выходное напряжение является отрицательным напряжением.

Наиболее используемая серия — это серия 7900, и микросхемы будут похожи на IC 7906, IC 7912, IC 7915 и т. Д., Которые обеспечивают -6 В, -12 В и -15 В соответственно в качестве выходных напряжений. На рисунке ниже показана ИС 7910, подключенная для обеспечения фиксированного 10В отрицательного регулируемого выходного напряжения.

Читайте так же:
Импульсный стабилизатор тока схема 10а

На приведенном выше рисунке входной конденсатор C 1 используется для предотвращения нежелательных колебаний, а выходной конденсатор C 2 действует как линейный фильтр для улучшения переходного процесса.

Регулируемые регуляторы напряжения

Регулируемый регулятор напряжения имеет три клеммы IN, OUT и ADJ. Входные и выходные клеммы являются общими, тогда как регулируемая клемма снабжена переменным резистором, который позволяет варьировать выходной сигнал в широком диапазоне.

На приведенном выше рисунке показан нерегулируемый источник питания, приводящий в действие регулируемый регулятор IC 317, который обычно используется. LM 317 представляет собой трехполюсный положительный регулируемый регулятор напряжения и может подавать 1,5A тока нагрузки в регулируемом диапазоне выходных напряжений от 1,25 до 37 В.

Регуляторы напряжения с двойным слежением

Двойной регулятор слежения используется, когда необходимо разделить напряжение питания. Они обеспечивают равные положительные и отрицательные выходные напряжения. Например, микросхема RC4195 обеспечивает выходы постоянного тока + 15В и -15В. Для этого необходимо два нерегулируемых входных напряжения, например, положительный вход может варьироваться от + 18 В до + 30 В, а отрицательный вход может варьироваться от -18 В до -30 В.

На изображении выше показан регулятор RC4195 с двойным слежением. Также доступны регулируемые регуляторы двойного прихвата, выходы которых варьируются между двумя номинальными пределами.

Как сделать своими руками регулятор мощности: 110 фото-примеров самых простых и сложных самодельных моделей регуляторов

Регулятор мощности достаточно востребованное устройство, оно позволяет адаптировать работу того или иного электрического устройства под конкретные потребности потребителя. Кроме того, это позволяет не расходовать лишнюю электроэнергию, используя предмет в экономном режиме.

Подобные регуляторы мощности используются в водонагревателях, чайниках, а также во многих других приборах. В разных электроприборах этот элемент может быть совершенно разным.

В том случае, если необходимо приобрести отдельно регулятор мощности, можно попасть в замешательство, потому как разновидностей очень много, каждая из них обладает своими преимуществами и недостатками.

  • Однако, вполне можно сделать простой регулятор мощности своими руками.
  • Эта тактика хорошо подойдет тогда, если прибор, для которого необходимо регулятор, максимально простой и необходимо контролировать только 1 показатель.
  • В том случае, если нужно контролировать и регулировать 2 и более показателей, конструкция устройства значительно усложняется.

Содержимое обзора

Простая схема регулятора мощности

Самые первые устройства, задача которых была в контроле и регулировании мощности, были основаны на законе Ома. Это простейшие схемы, которые позволяли регулировать только один источник напряжения на одно устройство.

Закон Ома гласит, что мощность электричества равняется напрямую произведению тока в квадрате. Основанный прибор получил название реостат.

Реостат может подключаться как последовательно, также наискось, т. е противоположно. Путем изменения сопротивления получается регулировки мощности напряжения, все достаточно просто.

Особенности реостата

Когда ток поступает на реостат, он начинает разделять между устройством и самой нагрузкой. Если выбрана последовательная схема включения, то по контролем находятся напряжение и сила тока. При использовании параллельной схемы подключения под контролем находится разница потенциалов.

Сам реостат может быть совершенно разным.

  • Угольным
  • Жидкостным
  • Металлическим
  • Керамическим

При использовании реостата необходимо помнить о законах физики. Так электроэнергия, которая будет забираться, не может просто испариться. Реостат будет преобразовывать ее в тепло.

Это нужно учесть на тот случай, если планирует подавать на устройство большие значения. В случае с большой нагрузкой и выделением теплоты, нужно также учитывать необходимость отвода излишней теплоты.

В качестве системы охлаждения реостата можно использовать обдув, либо емкость с маслом, в которую помещается реостат. Оба варианта имеют как преимущества, так и недостатки.

Реостат достаточно интересное устройство, можно собрать схему регулятора мощности своими руками. Однако он имеет один достаточно значимый недостаток: не получится использовать маленькое устройство для пропуска через него больших значений электричества.

Современные устройства

С развитием полупроводниковой техники удалось существенно шагнуть от реостата к более технологичному оборудованию, который лишен недостатков своего предшественника. На сегодняшний день можно использовать радиоэлементы, коэффициент полезного действия которых от 80%, что очень много, в сравнение с тем же реостатом.

Использование таких элементов позволяет достаточно легко и просто применять современные устройства на сетях с напряжением в 220 В, что очень удобно. При этом современные устройства не требуют больших и сложных систем охлаждения, как это было раньше.

С изобретением микросхем интегрального типа фактически получилось сделать устройство по регулированию мощности максимально миниатюрным, и при этом повысить значение максимального напряжения, которое он может через себя пропустить.

Читайте так же:
Микросхема стабилизатор тока для аккумулятора

Разновидности

Инструкция, как сделать регулятор мощности, будет зависеть от выбранного конкретного типа этого устройства. Рассмотрим, какие бывают разновидности прибора на сегодняшний день.

  • Фазовый. Один из самых распространенных, применяется в лампах. Его задача состоит в том, чтобы управлять яркостью свечения ламп накаливания, либо галогенных.
  • Симисторный регулятор мощности подразумевает собой устройство, которое регулирует мощность путем изменения количества полупериодов напряжения, именно они воздействуют на нагрузку.
  • Тристорные. Не пользуются большой популярностью, однако в некоторых случаях может стать незаменимой вещью. Принцип работы завязан на определенной задержке включения тристорного ключа в систему на полупериоде тока.

Регулятор хода. Один из самых высокотехнологичных. Позволяет плавно изменить показатели напряжения, снижая или повышая электрическую мощность, которая подается на электродвигатель или еще куда-либо.

Регулировка

Стоит понимать, что регулировка устройства не зависит от формы входного сигнала. По типу размещения устройства делятся на стационарные и мобильные.

  • Различия очевидны, первый вид надежно прикреплен к какому-то определенному месту.
  • Второй вариант наоборот, имеет возможность находиться в любом месте, где это будет удобно мастеру.

Устройство по регулированию напряжения в настоящее время представляет собой электросхему, благодаря ей становится возможным регулирование напряжения в том или ином здании, если все правильно подключить.

Рекомендации

Если нет опыта и знаний о том, как обращаться с электрическими приборами, то лучше всего их не трогать. В случае неправильной проводки сеть может получить короткое замыкание, в результате чего этот прибор, а также несколько других, которые были подключены к сети — сгорели.

Использование услуг профессионалов значительно экономит время и финансовые средства, которые вполне все равно пришлась бы потратить на мастера, если все делал сам. В процессе работы можно расспрашивать профессионала о проводимых манипуляциях.

Он подробно расскажет что и каким образом нужно подключать и соединять. Поделится советами и рекомендациями, проведет практический урок с устройствами.

Регулятор тока.

Основной функцией регулятора тока является регулировка мощности нагрузки, при подключении к постоянному току напряжением от 10 до 75V и потреблении максимального тока не более 150А. Объектом подключения регулятора тока может быть прожектор, подключенный от автомобильной бортовой сети, электродвигатель постоянного тока или прочие.

Регулятор мощности постоянного тока.

В основе работы регулятора тока лежит принцип широтно-импульсной модуляции. Его основным элементом является мультивибратор с регулировкой скважности импульсов, буферного и выходного каскадов.

Сам мультивибратор выполнен на элементах D1.1 и D1.2. Он имеет регулируемую скважность импульсов на выходе. Частота импульсов мультивибратора приблизительно равна 100 Гц. Скважность импульсов регулируется в достаточно широком диапазоне. Так, в среднем положении переменного резистора R1 на выходе из него получите симметричные прямоугольные импульсы. Такое положение переменного резистора позволяет получать мощность отдаваемую в нагрузку на среднем уровне. Это объясняется тем, что полевой транзистор VT1 в течение контрольного участка времени будет одинаковое количество времени открыт и закрыт. Вращение ручки переменного резистора по сторонам приводит к изменению соотношения продолжительности открытого и закрытого состояния транзистора. Таким образом, это приводит к тому, что чем дольше открытое состояние, тем больше мощность в нагрузке и наоборот, более длительное закрытое состояние приводит к тому, что мощность, которая отдается в нагрузку уменьшается.

Мощный полевой транзистор IRFP260N служит для коммутации нагрузки. При этом он имеет относительно большую емкость затвора. Сопротивление затвора этого полевого транзистора практически бесконечно, поскольку он имеет большую емкость. Резкие изменения напряжения заметно проявляются на затворе, так как ток зарядки и разрядки затвора достаточно существенен. В случаях если в определенных устройствах процесс включение / выключение нагрузки происходит достаточно редко, то в цепь затвора можно подключить токоограничительный резистор. В то же время его не можно устанавливать импульсных схемах. В импульсных схемах увеличивается мощность выхода мультивибратора с помощью создания буферного каскада из четырех инверторов микросхемы К561ЛН2 (D1.3-D1.6).

Читайте так же:
Стабилизатор тока tl494 схема

Питание микросхемы происходит от параметрического стабилизатора VD3-R3-R4. Если предполагается работать с напряжением не более 20-25V можно КС512 заменить менее мощным стабилитроном, например, Д814Д, а вместе резисторов R3 и R4 установить один резистор имеющий сопротивление 1-2 кОм и мощность 0,125W.

  1. Транзистор IRFP260N можно заменить на IRFP2907 (при этом выходной ток может быть до 200А), IRFP150N, IRFP3710.
  2. Диоды 1N4148 также заменяются на КД522, КД521.
  3. Стабилитрон КС512 заменяем любым стабилитроном на 10-15V средней или большой мощности.

Как сделать регулятор мощности для тэна 3 квт своими руками

Отправим материал на почту

Недавно «по производственной необходимости», искал схему самодельного регулятора мощности, и делал само устройство. Результатом остался вполне доволен, и дальше расскажу о том, как своими руками сделать регулятор мощности.

Немного про симисторный регулятор мощности способы его применения

Симисторные регуляторы мощности, которые теперь следует называть диммеры, наш заполонили радиорынок.

Сегодня подобные устройства можно встретить даже в отделах по продаже дистилляторов, ведь диммеры иногда используют для регулировки температуры нагрева материала в перегонных аппаратах.

Также эти регуляторы мощности используются в электронагревателях водяных баков, инкубаторах, вулканизаторах для заклеивания автомобильных камер, в инструментах – паяльниках для плавной регулировки нагрева, в дрелях и болгарках для контролирования скорости вращения, в простых лампах накаливания для регулировки яркости и даже в самогонных аппаратах.

Если вкратце, то способов применения у регуляторов мощности огромное количество, диммеры весьма полезны в хозяйственной и технической деятельностях и являются необходимыми устройствами для каждой мастерской.

От чего зависит его мощность

Дальше будет про нюансы, коих всего три, и от которых может зависеть мощность диммера как заводского, так и самодельного.

Первый нюанс – запас мощности симистора.

Он должен быть около 30% для качественной работы, при этом разница в их цене будет незначительной.

Для примера можно взять стандартную ситуацию – вы заказываете симистор у продавца, он же в свою очередь будет утверждать, что его мощность достигает 4 кВт.

При этом он будет использовать различные уловки, например, сфотографирует близко для обмана зрения и теплоотвод будет казаться больше, чем он есть на самом деле.

Конечно, если включить такой диммер на полминуты, то он может и выдержит.

Однако обычно к нему подключают лампы накаливания или ТЭН, которые работают часами при такой мощности.

Такие регуляторы не выдержат, они даже на 3кВт будут максимально греться, а после просто перегорят.

Вы должны понимать, что такое 40 кВт, а также то, что регулятору придётся пропускать через себя 18 ампер и то, какое сечение должно быть у проводов для того, чтобы пропускать такой ток.

Второй нюанс был немного задет в прошлом абзаце, но всё же – сечение проводов и дороже печатной платы.

Чем сечение проводов и дорожек шире и толще – тем лучше, при этом чем сами эти дорожки и провода короче – тем также лучше.

При их пайке обязательно нужно их лудить оловом или паять вдоль дорожек медную жилку.

Дополнительно, если вы работаете с устройством на 3 000 Вт или более, то лучше отказаться от различных клемм для зажима и всяких разъёмов.

Ведь эти места становятся уязвимыми зонами – если контакт немного ослабнет, то происходит их нагревание, а после обгорание проводов, что, естественно, нежелательно.

Третий нюанс в теплоотводе.

Если теплоотвод для вашего собственноручно изготовленного диммера недостаточно большой площади, то через долговременное использование всё устройство будет крайне сильно греться (температура может доходить 90 градусов цельсия и выше), это будет настоящая печь.

Поэтому советую использовать в качестве теплоотвода радиатор от компьютера с кулером.

Подобные замены теплоотводу, даже небольшие, покажут хороший результат при долговременной работе на мощности 4 000 Вт, в то время как китайские радиаторы в теплоотводах позволят не выйти из строя устройству в ближайшие минуты после запуска на такой мощности.

Дополнительно немного расскажу о стеклянных предохранителях.

Коротко о главном! Не советую.

Вывел как-то держатель предохранителя с колпачком на заднюю панель, предохранитель поставил на 15 ампер, нагрузка была около 3 кВт.

В результате весь узел так сильно грелся, что рукой не прикоснуться.

Читайте так же:
Схемы стабилизаторов тока для авто

Поэтому лучше ставить вместо стеклянных предохранителей автоматические выключатели (если нагрузка 3 000 Вт, то выключатель на 16 ампер).

Схема регулятора мощности

Основным элементом регулировки является симистор BTA06-600, который же и триак.

Вы же можете его заменить на почти любой симистор из серии BTA, к примеру BTA12-60, BTA24-600 и другие.

При этом можно не проводить пересчёт номиналов элементов.

Покупая симистор, учитывайте то, что первые цифры – максимальный ток, который он пропускает в открытом состоянии.

Вторая же группа цифр – максимальное обратное напряжение данного симистора.

Вот, например, возьмём триак BTA06-600 – получается, что его ток 6 ампер, а напряжение 600 В.

Его хватит для регулировки устройства, нагрузка которого будет мощностью 800 Вт.

Также советую брать запас по току при выборе симистора – изменения в цене будут незначительны, однако надёжность конструкции повыситься.

Мощность резистора R1 должна быть 0,25 Вт для того, чтобы даже при использовании регулятора на 3000 Вт резистор будет холодным.

К переменному резистору нет особых требований, так что можете брать любой, что вам приглянулся.

Конденсатор C1 же должен быть пленочным и с напряжением 400 В.

Предохранитель следует выбрать в зависимости от тока нагрузки.

Светодиод можно не устанавливать в схему, но тогда вместо диода VD1 придётся установить перемычку.

Предохранитель F1 можно установить на отдельной колодке или же на самом проводе, при этом выведя колпачок его корпуса на заднюю панель устройства.

Работа схемы

Во время подключения симистор VD4 закрыт, а ток протекает через предохранитель F1 и резисторы R1, R2, при этом заряжается конденсатор C1.

Как только напряжение на конденсаторе C1 поднимается до 32 В открывается динистор VD3, через который пойдёт ток, открывая при этом симистор VD4.

Симистор будет пропускать через себя ток нагрузки и закроется, как только синусоида пройдёт нулевой потенциал.

После чего весь цикл повторяется.

Меры безопасности

Весь процесс сборки самодельного регулятора мощности должен происходить строго по схеме и инструкции при соблюдении правил безопасности.

Диммер работает при высоком напряжении в 220 вольт, в целях безопасности не касайтесь устройства инструментом, а тем более голыми руками.

Однако знайте, что от фланца и, соответственно, симистор током не бьёт – проверено на личном опыте.

Работоспособность диммера следует проверять на лампах накаливания мощностью от 60 до 80 Вт.

Подключать энергосберегающие, светодиодные или другие лампы, в которых включены пусковые устройства и импульсные преобразователи не рекомендуется.

Немного про охлаждение

Для охлаждения необходим, как ни странно, радиатор охлаждения.

Его следует при крепить к фланцу регулирующего элемента, при этом нанести между ними слой теплопроводной пасты.

Подобрать площадь поверхности радиатора необходимо путём проб и ошибок.

По опыту должен сказать, что если ваш самодельный диммер будет установлен на паяльник, лампу накаливания или другой предмет мощностью до 80 Вт, то можно будет обойтись без радиатора.

Если же регулятор будет использоваться в устройстве мощность регулируемой нагрузки которого достигает 1000 Вт, то потребуется радиатор с площадью 200 сантиметров квадратных, такой радиатор при длительной работе (5 часов) у меня нагревался до 90 градусов цельсия.

Ну и для длительных работ с нагрузкой мощностью 3 кВт я брал такой же радиатор, при этом установил дополнительно вентилятор-кулер из компьютера для охлаждения процессора, питание которому обеспечивалось от миниатюрного выпрямителя. При этом всём температура радиатора была комнатной.

Рекомендую следующее видео, в котором автор самостоятельно изготавливает регулятор мощности своими руками:

Как итог.

Сделать самодельный регулятор мощности для ТЭНа мощностью 3 кВт не трудно. Вы можете самостоятельно в этом убедиться, имея при этом базовый набор технических навыков и умений, а также комплектующих конструкции. Используйте схему, что находится выше, для изготовления столь полезного приспособления, которое можно применить во множестве устройств, например, электронагревателях, инкубаторах, вулканизаторах, паяльниках, дрелях, болгарках, просто в лампах накаливания и много где ещё.

Напишите в комментариях, как вы считаете какой регулятор более качественный и надёжный – самодельный или же фабричный?

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector