Sfera-perm.ru

Сфера Пермь
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Схемы стабилизатор тока с регулируемым выходным напряжением

Тиристорный регулятор напряжения простая схема, принцип работы

Тиристор это один из мощнейших полупроводниковых приборов, именно поэтому он часто используется в мощных преобразователях энергии. Но он обладает своей спецификой управления: его можно открыть импульсом тока, а вот закроется он только когда ток опуститься почти до нуля (если быть точнее, то ниже тока удержания). Из этого тиристор в основном применяются для коммутирования переменного тока.

Фазовое регулирование напряжения

Существует несколько способов регулирования переменного напряжения тиристорами: можно пропускать или запрещать на выход регулятора целые полупериоды (или периоды) переменного напряжения. А можно включать не в начале полупериода сетевого напряжения, а с некоторой задержкой — ‘a’. В течении этого времени напряжение на выходе регулятора будет равно нулю, а мощность не будет передаваться на выход. Вторую часть полупериода тиристор будет проводить ток и на выходе регулятора появиться входное напряжение.

Время задержки ещё часто называют углом открывания тиристора, так вот при нулевом угле практически всё напряжение со входа будет попадать на выход, только падение на открытом тиристоре будет теряться. При увеличении угла тиристорный регулятор напряжения будет снижать выходное напряжение.

Регулировочная характеристика тиристорного преобразователя при работе на активную нагрузку приведена на следующем рисунке. При угле равном 90 электрических градусов на выходе будет половина входного напряжения, а при угле 180 эл. градусов на выходе будет ноль.

На основе принципов фазового регулирования напряжения можно построить схемы регулирования, стабилизации, а также плавного пуска. Для плавного пуска напряжение нужно повышать постепенно от нуля до максимального значения. Таким образом угол открывания тиристора должен изменяться от максимального значения до нуля.

Схема тиристорного регулятора напряжения

Таблица номиналов элементов

  • C1 – 0,33мкФ напряжение не ниже 16В;
  • R1, R2 – 10 кОм 2Вт;
  • R3 – 100 Ом;
  • R4 – переменный резистор 33 кОм;
  • R5 – 3,3 кОм;
  • R6 – 4,3 кОм;
  • R7 – 4,7 кОм;
  • VD1 .. VD4 – Д246А;
  • VD5 – Д814Д;
  • VS1 – КУ202Н;
  • VT1 – КТ361B;
  • VT2 – КТ315B.

Схема построена на отечественной элементной базе, собрать её можно из тех деталей, которые провалялись у радиолюбителей 20-30 лет. Если тиристор VS1 и диоды VD1-VD4 установить на соответствующие охладители, то тиристорный регулятор напряжения будет способен отдавать в нагрузку 10А, то есть при напряжении 220 В получаем возможность регулировать напряжение на нагрузке в 2,2 кВт.

В устройстве всего два силовых компонента диодный мост и тиристор. Они рассчитаны на напряжение 400В и ток 10А. Диодный мост превращает переменное напряжение в однополярное пульсирующее, а фазовое регулирование полупериодов осуществляет тиристор.

Параметрический стабилизатор из резисторов R1, R2 и стабилитрона VD5 ограничивает напряжение, которое подается на систему управления на уровне 15 В. Последовательное включение резисторов нужно для увеличения пробивного напряжения и увеличения рассеиваемой мощности.

В самом начале полупериода переменного напряжения С1 разряжен и в точке соединения R6 и R7 тоже нулевое напряжение. Постепенно напряжения в этих двух точках начинают расти и чем меньше сопротивление резистора R4, тем быстрее напряжение на эмиттере VT1 перегонит напряжение на его базе и откроет транзистор.
Транзисторы VT1, VT2 составляют маломощный тиристор. При появлении напряжения на база-эмиттерном переходе VT1 больше порогового, транзистор открывается и открывает VT2. А VT2 отпирает тиристор.

Представленная схема достаточно проста, её можно перевести на современною элементную базу. Также можно при минимальных переделках снизить мощность или напряжение работы.

27 thoughts on “ Тиристорный регулятор напряжения простая схема, принцип работы ”

Раз уж мы заговорили о электрических углах, то хочется уточнить: при задержке «а» до 1/2 полупериода (до 90 эл. градусов) напряжение на выходе регулятора будет равным практически максимальному, а уменьшаться начнет только при «а» > 1/2 (>90). На графике — красным по серому начертано! Половина полупериода — не половина напряжения.
У данной схемы один плюс — простота, но фаза на управляющих элементах может привести к непростым последствиям. Да и помехи наводящиеся в электросети тиристорной отсечкой немалые. Особенно при большой нагрузке, что ограничивает область применения данного устройства.
Я вижу только одно: регулировать нагревательные элементы и освещение в складских и подсобных помещениях.

  1. admin Автор записи 18.03.2016 в 22:58

На первом рисунке ошибка, 10 мс должно соответствовать — полупериоду, а 20 мс соответствует периоду сетевого напряжения.
Добавил, график регулировочной характеристики при работе на активную нагрузку.
Вы видимо пишите про регулировочную характеристику когда нагрузкой является выпрямитель с емкостным фильтром? Тогда да, конденсаторы будут заряжаться на максимуме напряжения и диапазон регулирования будет от 90 до 180 градусов.

Читайте так же:
Биполярный транзистор как стабилизатор тока

подобные схемы собирал…все работают безупречно, только больше нравится на кт 117

Залежи советских радиодеталей есть далеко не у каждого. Почему бы не указать «буржуйские» аналоги старых отечественных полупроводниковых приборов (например, 10RIA40M для КУ202Н)?

  1. admin Автор записи 18.03.2016 в 23:31

Тиристор КУ202Н сейчас продают меньше чем за доллар (не знаю, производят ли или старые запасы распродают). А 10RIA40M дорогой, на алиэкспрессе его продают примерно за 15$ плюс доставка от 8$. 10RIA40M имеет смысл использовать только когда нужно отремонтировать устройство с КУ202Н, а КУ202Н не найти.
Для промышленного применения более удобны тиристоры в корпусах TO-220, TO-247.
Два года назад делал преобразователь на 8кВт, так тиристоры покупал по 2,5$ (в корпусе TO-247).

Это и имелось в виду, если ось напряжения (почему-то помечена Р) провести, как на 2-м графике, то станет яснее с градусами, периодами и полупериодами приведенными в описании. Осталось убрать знак переменного напряжения на выходе (оно уже выпрямлено мостом) и моя дотошность будет удовлетворена полностью.
КУ202Н продают сейчас на радиорынках действительно за копейки, причем в исполнении 2У202Н. Кто в теме, поймет, что это военное производство. Наверное распродаются складские НЗ, которым все сроки вышли.

  1. Pavel08.06.2016 в 09:51

На рынке, если брать с рук могут среди новых подложить и выпаянную деталь.
Быстро проверить тиристор, например КУ202Н можно простым стрелочным тестером, включенным на измерение сопротивлений по шкале в единицы ом.
Анод тиристора соединяем на плюс, катод на минус тестера, в исправном КУ202Н утечки быть не должно.
После замыкания управляющего электрода тиристора на анод стрелка омметра должна отклониться, и остаться в таком положении после размыкания.
В редких случаях такой метод не срабатывает, и тогда для проверки понадобится низковольтный блок питания, желательно регулируемый, лампочка от фонарика, и сопротивление.
Вначале устанавливаем напряжение блока питания и проверяем светится ли лампочка, затем последовательно с лампочкой, соблюдая полярность соединяем наш тиристор.
Лампочка должна загореться лишь после кратковременного замыкания анода тиристора с управляющим электродом через резистор.
При этом резистор нужно подбирать, исходя из номинального открывающего тока тиристора и напряжения питания.
Это самые простейшие методы, но возможно существуют и специальные приборы для проверки тиристоров и симисторов.

  1. сергей08.07.2017 в 11:01

кратковременно проверку выдерживают без сопротивления

На выходе напряжение не выпрямлено мостом.Оно выпрямлено только для схемы управления.

На выходе переменка,мост выпрямляет только для схемы управления.

Я бы назвал не регулирование напряжения, а регулирование мощности. Это стандартная схема регулятора освещения, которую раньше собирали почти все. И про радиатор к тиристору загнули. В теории конечно можно, но в практике думаю тяжело обеспечить тепло обмен между радиатором и тиристором для обеспечения 10А.

  1. Greg01.04.2016 в 14:42

А какие сложности с теплообменом у КУ202? Вкрутил торцевым болтом в радиатор и все! Если радиатор новый, точнее, резьба не разболтана, даже КТП мазать не надо. Площадь стандартного радиатора (иногда и в комплекте шли), как раз и расчитана на нагрузку 10 А. Никакой теории, сплошная практика. Единственно, что радиаторы должны были находится на открытом воздухе (по инструкции), а при таком подключении сети — чревато. Поэтому закрываем, но ставим кулер. Да, мостовые друг к другу не прислоняем.

  1. Иван13.08.2020 в 11:19

А что мешает поставить тиристор на радиатор через слюдяную прокладку? Так в СССР делали часто. В те времена, когда кулер назывался ещё вентилятором, по русски. Конвенцию в корпусе создать то же не сложно, безо всяких кулеров.

Вполне согласен с регулированием отдаваемоей мощности в нагрузку. Тиристор, конечно, не нужно ставить в предельные режимы. А так, моя любимая схема. даже использовал успешно для регулировки в первичной обмотке трансформатора.

Подскажите, что за конденсатор С1 -330нФ?

  1. admin Автор записи 12.08.2016 в 10:59

Наверное правильнее будет написать C1 — 0,33мкФ, можно устанавлиявать керамический или пленочный на напряжение не меньше 16В.

Всем самого доброго! Сначала собирал без транзисторов схемы… Одно плохо — регулировочное сопротивление грелось и выгорал слой графитовой дорожки. Потом собрал эту схему на кт. Первая неудачно — вероятно из-за большого усиления самих транзисторов. Собрал на МП с усилением около 50. Заработала без проблем! Однако есть вопросы…

  1. Майк18.06.2017 в 21:15

Я тоже собирал без транзисторов,но ничего не грелось.Это было два резистора и конденсатор,В последствии убрал и конденсатор.Фактически остался переменник между анодом и управляющим,ну и естественно мостик.Использовал для регулировки мощности паяльника,причем как на 220 вольт,так и на первичку трансформатора для паяльника на 12 вольт и все работало и не грелось.Сейчас до сих пор в кладовке лежит в исправном состоянии.У Вас возможно была утечка в конденсаторе между катодом и управляющим для схемы без транзисторов.

Читайте так же:
Схема стабилизатора тока зарядное устройство для

Собрал на МП с усилением около 50. Работает! Но стало больше вопросов…

Номиналы R4 и R5 явно перепутаны. Никто не собирал схему в железе?

  1. admin Автор записи 08.08.2017 в 23:00

Можно поконкретнее о диодном мосте. Как направлены диоды?

  1. Владимир17.09.2018 в 20:45

плюс на право ,минус на лево ))

График неправильный. При 90 градусах *мощность* будет половина. А напряжение будет в корень из двух меньше исходного. Типа от 220 останется 155, а не 110.

А заменить транзисторы на динистор DB3 (стоит 4 рубля) можно? Дайте схему пожалуйста

…а если его — регулировать обороты вентилятора?, (но там индуктивная нагрузка,…. это вопрос).

ЭТИ. ВСЕ. СХЕМЫ. К. СОЖАЛЕНЬЮ. НЕ. РЕГУЛИРУЮТ. **ОТ. НУЛЯ**. НЕ. ЗНАЮ—ПОЧЕМУ. ОБ. **ЭТОМ—-**НИ—СЛОВА*.

Стабилизированный выпрямитель с плавной регулировкой напряжения

С помощью описанного ниже выпрямителя можно налаживать различные радиолюбительские конструкции, а также заряжать аккумуляторы, испытывать маломощные электродвигатели и реле.

Выпрямитель (рис. 13.17) собран на диодах VD1. VD4, включенных по мостовой схеме. Пульсации выпрямленного напряжения сглаживаются электролитическими конденсаторами С1, С2 и транзисторным стабилизатором, выполненным на стабилитроне VD5, транзисторах VT1, VT2 и диодах VD6 и VD7.

Выходное напряжение стабилизатора равно разности между выпрямленным напряжением, поступающим на вход стабилизатора с конденсатора С1, и падением напряжения на переходе эмиттер — коллектор (Uэк) регулирующего транзистора VT1. Напряжение UэK зависит от напряжения Uэб этого транзистора, равного падению напряжения на резисторе R2, создаваемому протекающим через него коллекторным током транзистора VT2, который, в свою очередь, зависит от напряжения Uбэ транзистора VT2. Напряжение Uбэ транзистора VT2 можно изменять потенциометром R3. При этом изменяются коллекторный ток транзистора VT2, напряжение Uэб транзистора VT1 и напряжение перехода эмиттер — коллектор транзистора VT1, что в конечном счете приводит к изменению выходного напряжения.

Диоды VD6 и VD7 служат для предотвращения выхода из строя регулирующего транзистора VT1 при коротком замыкании выхода стабилизатора или значительном увеличении тока нагрузки.

В выпрямителе используется трансформатор с площадью поперечного сечения сердечника S не менее 4 см2.

Число витков первичной обмотки при питании от сети с напряжением 220 В рассчитывается по формуле:
W1=220 (48/S). Диаметр провода D1 — 0,2. 0,22 мм.
Напряжение U2 на вторичной обмотке W2 трансформатора должно составлять примерно 15 В. Тогда число витков вторичной обмотки W2 будет определяться по формуле:
W2=15 (52/S). Диаметр провода d2= 1,2 мм.
Обмотка W3 используется для питания индикаторной лампочки. Таковой может быть лампочка от карманного фонаря с напряжением U3, равным 2,5; 3,5 или 6,3 В. При этом число витков обмотки W3 находят по формуле:
W3= U3 (52/S). Диаметр провода D0,41 мм.

Если ток нагрузки, подключаемой к выпрямителю, не превышает 300. 400 мА, в качестве VD1. VD2 можно использовать диоды типа Д226 с любым буквенным индексом. Если от данного выпрямителя требуются токи до 1.. .1,5 А, в качестве VDL. .VD4 могут служить диоды типа Д242, Д243 или Д245. Транзистор VTI типа П214. П217 должен быть установлен на радиаторе.

Регулировочный потенциометр R3 можно снабдить шкалой. Для этого к выходным гнездам XI, Х2 выпрямителей надо подключить контрольный вольтметр и, вращая ручку потенциометра, на шкале сделать отметки, соответствующие определенным значениям напряжения. Кроме того, нужно подобрать режим работы стабилитрона VD5. С этой целью разрывают цепь подключения стабилитрона в точке о и в разрыв включают миллиамперметр. Затем подбирают резистор R1 таким образом, чтобы ток, протекающий через стабилитрон, составлял 7.. .8 мА.

От сопротивления резистора R4 зависит максимальный ток нагрузки. Подбирают его следующим образом. Между гнездами XI и Х2 подключают резистор RH, при котором создается максимальный ток в нагрузке. Например, если максимальный ток должен составлять 500 мА при максимальном выходном напряжении 15В, то сопротивление резистора RH должно быть равно 30 Ом (15:0,5). Потом к этим же гнездам подключают вольтметр и подбирают резистор R4. Причем выходное напряжение должно отличаться от его значения на холостом ходу (при отсутствии R„) не более чем на 0,5 В.

При применении исправных деталей источник питания не требует налаживания. Подключив контрольный вольтметр к гнездам XI и Х2 и вращая движок потенциометра R3, убеждаются в плавном изменении выходного напряжения, которое должно увеличиваться при вращении движка потенциометра по часовой стрелке. Если же это напряжение при таком вращении движка уменьшается, следует перепаять (поменять местами) провода, соединяющие концы потенциометра.

Читайте так же:
Стабилизатор частоты вращения двигателя переменного тока

Простой блок питания с регулировкой напряжения и тока.

Довольно распространенная схема такого блока питания выполнена на двух транзисторах, силовом p-n-p КТ818 и усилителе КТ815. Схема для начинающих и они часто задают вопрос, можно ли выполнить эту схему на более распространенном силовом n-p-n транзисторе. Сделать можно, результаты даже лучше, чем на КТ818. О том, как это сделать рассказано в этой статье.

Для начала приведу, базовую, назовем ее так, схему простого блока питания на силовом p-n-p транзисторе КТ818.

Схема простого блока питания состоит из понижающего трансформатора Tr1, двухполупериодного выпрямителя на четырех диодах 1N4007, конденсатора фильтра С1, резистора R1, ограничивающего ток стабилитрона VD1, регулятора напряжения R4, усилителя на Т2, силового транзистора Т1, цепи регулировки тока R5 с ограничителем R2, диода развязки тока базы Т2 и резистора, повышающего стабильность работы схемы при разных токах нагрузки R3.

Максимальное выходное напряжение определяется напряжением вторичной обмотки трансформатора, рабочим напряжением стабилитрона VD1, допустимым напряжением транзисторов Т1 и Т2.

Максимальный ток нагрузки определяется мощностью трансформатора Tr1, соответственно диаметром провода вторичной обмотки, током диодов выпрямителя, максимальным током К-Э транзистора Т1, его коэффициентом усиления и как следствие, его током базы и параметрами транзистора Т2, который должен увеличить малый ток от стабилитрона до необходимого значения тока базы силового транзистора Т1, иначе Т1 полностью не откроется и на выходе не будет увеличения напряжения и тока при повороте соответствующих регуляторов (R4, R5).

Учитывая изложенный выше принцип работы схемы, был изготовлен вариант на силовом транзисторе n-p-n по следующей схеме.

В качестве транзисторов были опробованы несколько вариантов:

Т1 – КТ819, КТ805, КТ829, КТ8109, КТ8101

Т2 – КТ814, КТ816, КТ973

Сочетания транзисторов использовались разные. Наилучшие результаты получены на транзисторах Т1 КТ805БМ и Т2 КТ814В1.

Вот как выглядят детали, примененные в этой схеме:

Диапазон регулировки напряжения и тока самый широкий, падение напряжения на силовом транзисторе Т1 самое низкое и соответственно его нагрев меньше.

Что еще важно учитывать при изготовлении этой, и других подобных схем линейных стабилизаторов.

  1. Так как все лишнее напряжение падает на силовом транзисторе Т1, он греется. Больше всего он греется при больших тока и низких напряжениях на выходе. Например, при входном напряжении 16В, выходном 5В и токе 2А на транзисторе Т1 будет падать напряжение 11В. При токе 2А мощность, рассеиваемая на этом транзисторе будет равна 2А х 11В = 22Вт. При приблизительной оценке площади радиатора для Т1 получаем значение более 400 см кв. Это пластина 20х20 см или ребристый радиатор с такой же площадью охлаждения.

  1. Это понижает КПД устройства и делает его применение невыгодным при больших мощностях. Самый простой выход для повышения КПД, подобрать трансформатор с отводами на вторичной обмотке и поставить переключатель. В таком случае при нужном напряжении на выходе 5В на входе можно установить 7В. В этом случае, при том же токе 2А, на транзисторе Т1 будет рассеиваться мощность 4Вт. Это более чем в 4 раза меньше, чем в предыдущем случае.
  2. Схемапростого блока питания не имеет эффективной защиты от короткого замыкания в нагрузке и при неблагоприятных ситуациях (большом токе и нагретом Т1) силовой транзистор Т1 может выйти из строя.
  3. Вывод. Данная схема удобна при использовании для токов в нагрузке до 1А. Наиболее рациональным в этом случае является изготовление металлического корпуса для блока питания и использования его в качестве радиатора для транзистора Т1. Главное достоинство – простота, отсутствие дефицитных деталей, а также плавная регулировка напряжения и тока делает схему привлекательной.

Материал статьи продублирован на видео:

8 Стабилизаторы напряжения и тока

Тема: Стабилизаторы напряжения и тока.

Вопрос 1. Общие сведения.

Стабилизатором называют устройство, автоматически поддерживающее с заданной точностью напряжение или ток в нагрузке при изменении питающего напряжения или сопротивления нагрузки в обусловленных пределах.

Основным параметром стабилизатора напряжения является коэффициент стабилизации напряжения, а стабилизатора тока — коэффициент стабилизации тока

Kст U=; Kст I= при Rн=const,

где Uвх, Uвых, Iвых — номинальные напряжения на входе и выходе стабилизатора и номинальный ток нагрузки;

DUвх, DUвых, D Iвых — изменения напряжений на входе и выходе стабилизатора и изменение тока нагрузки.

Влияние нагрузки Rн оценивается по внешним характеристикам Uвых(Iвых) и Iвых(Rн) или выходным (внутренним) сопротивлением стабилизатора

Рекомендуемые файлы

Rвых= при Uвх=const.

Для стабилизатора напряжения Rвых >Rн.

Применяют два типа стабилизаторов: параметрические и компенсационные.

В параметрических стабилизаторах используются элементы с нелинейной вольтамперной характеристикой (ВАХ), обеспечивающие постоянство напряжения при значительных изменениях тока для стабилизаторов напряжения и постоянство тока при изменении напряжения в стабилизаторах тока. Такими элементами могут быть стабилитроны, бареттеры или транзисторы.

Читайте так же:
Зарядное устройство для автомобильных аккумуляторов стабилизатор тока

Вопрос 2. Компенсационные стабилизаторы напряжения.

Компенсационные стабилизаторы напряжения имеют большие коэффициенты стабилизации и меньшее Rвых при более высоком КПД. Структурная схема такого стабилизатора приведена на рис.6.1. Стабилизатор состоит из источника эталонного напряжения (1), измерительного элемента (2) и регулирующего элемента (3).

На входы измерительного элемента подаются эталонное напряжение U и Uвых. Если Uвых не равно U появляется сигнал рассогласования, который поступает на вход регулирующего элемента. Под действием этого сигнала падение напряжения на регулирующем элементе меняется таким образом, чтобы Uвых оставалось постоянным

Uвых=UвхDU=const.

В качестве источника эталонного напряжения чаще всего используется стабилитрон, а роль регулирующего элемента выполняет транзистор или составной транзистор. В большинстве современных стабилизаторов измерительный элемент выполняется на операционном усилителе.

Kcm U=h21/(h11+R1); Rвых=.

В настоящее время широко применяются стабилизаторы в интегральном исполнении. Например, микросхема К142ЕН1 представляет собой регулируемый стабилизатор с выходным напряжением 3-12 В на ток до 150 мА. В схеме предусмотрена защита от перегрузки и коротких замыканий на выходе.

Вопрос 3. Стабилизатор тока.

Схема стабилизатора тока показана на рис.6.3. На базе транзистора VT поддерживается постоянный потенциал, задаваемый параметрическим стабилизатором на стабилитроне VD. Нагрузка Rн включена в коллекторную цепь транзистора VT, который работает по схеме ОБ, где Iк=aIэ.

Ток эмиттера Iэ определяется напряжением Uэб=UR2Iэ

Благодаря этому устанавливается режим работы

У современных транзисторов a®1, таким образом, получается устройство, выходной ток которого Iвых=Iк»Iэ, не зависит от Rн, а определяется только U и R2. Режим стабилизации поддерживается до тех пор, пока транзистор VT работает в активном режиме, т.е. Uвх>DU+IвыхRн, где DU — напряжение насыщения транзистора.

Отсюда максимальное значение сопротивления нагрузки, при котором сохраняется рабочий режим стабилизатора

Rн max=.

Коэффициент стабилизации тока

Выходное сопротивление стабилизатора

Rвых=.

1. Каково назначение электронных стабилизаторов?

2. Как устроен и как работает параметрический стабилизатор напряжения и тока?

3. Поясните назначение элементов схемы компенсационного стабилизатора напряжения?

4. От каких элементов зависит коэффициент стабилизации?

5. Как можно осуществить регулирование Uвых стабилизатора напряжения?

6. Поясните принцип действия стабилизатора тока.

7. Как можно изменить выходной ток стабилизатора?

8. Почему стабилизатор тока может работать только на нагрузку с R меньше Rнmax?

9. Почему стабилизатор тока и стабилизатор напряжения имеют разные выходные сопротивления?

Tl431 Схемы Подключения

К недостатку можно записать довольно большое падение напряжения а следовательно и мощности на транзисторе VT1. Принцип работы TL легко понять по структурной схеме: если напряжение на входе источника ниже опорного напряжения Vref, то и на выходе операционного усилителя низкое напряжение соответственно транзистор закрыт и ток от катода к аноду не протекает точнее он не превышает 1 мА.


При уменьшении освещенности увеличивается сопротивление фототранзистора. Чтобы увеличить токи стабилизации одного транзистора становится мало, нужен промежуточный усилительный каскад.

Вследствие этого напряжение на управляющем контакте TL ниже заданного уровня, из-за этого светодиод не горит.
Индикатор напряжения на светодиодах.



Проверить исправность микросхемы мультиметром нельзя, так как она состоит из 10 транзисторов. Если значение подставлять в Омах, то ток будет в Амперах, если подставлять в кило Омах, то ток будет в мили Амперах.

Индикатор пониженного напряжения Рисунок 3. Главная же ее особенность в том, что при помощи внешнего делителя напряжение стабилизации можно изменять в пределах 2,5…30 В.

Смотрите сами, какие есть в вашем распоряжении. Его можно сделать и на микросхеме tl

Описание, распиновка, схема включения, datasheet

Следующая схема имеет два режима ограничения: по току; по напряжению; Пока напряжение на выходе меньше 4,2 В ограничивается выходной ток, при достижении напряжением величины 4,2 В начинает ограничиватся напряжение и ток заряда снижается. Когда напряжение подбирается к уровню 4,2 В в работу начинает вступать DA1 и ограничивать напряжение на выходе зарядного устройства.

Регулируемый стабилизатор напряжения на Tl431 и полевом транзисторе.

Источник опорного напряжения TL431

В то же время ток светодиода очень круто зависит от питающего напряжения. Выпускаются радиоконструкторы для самостоятельной сборки своими руками.

Для контроля уровня жидкости, например воды в ванне, к схеме подключается датчик из двух нержавеющих пластин, которые расположены на расстоянии нескольких миллиметров друг от друга.

Вследствие этого напряжение на управляющем контакте TL ниже заданного уровня, из-за этого светодиод не горит.

Общее описание TL TL — регулируемый или программируемый регулятор напряжения.

Если же светодиод совсем не светится, то это означает что контролируемое напряжение на уровне заданного порога 0,05…0,1В. Поскольку данной величины тока хватает для того чтобы светодиод светился, то что бы избежать этого, нужно просто параллельно светодиоду подсоединить сопротивление на 2…3 кОм.

Если потенциал ниже порога установленного делителем R1 и R2, то светодиод горит зеленым цветом, если же выше порогового значения, то светодиод горит красным цветом.

Она также находит применение практически во всех маломощных импульсных источниках питания. При этом сопротивление резистора должно быть около 20 Ом, мощность рассеивания — 18 мВт.
Как сделать индикатор напряжения 2,5-36 Вольт

Читайте так же:
Стабилизатор тока для ангельских глазок

Самоделки, хобби, увлечения.

Выбранный вариант зависит от назначения устройства.

Теперь кратко назначение компонентов: Резистор R2 он является ограничителем тока базы транзистора vt1 можно использовать от до ом.

Чтобы стабилизировать токи на уровне единиц и десятков Ампер одним транзистором в компенсационном стабилизаторе не обойтись, нужен промежуточный усилительный каскад.

В первую очередь это просто электрическое напряжение. Когда вода достигнет датчика, его сопротивление уменьшается, а микросхема через резисторы R1 R2 входит в линейный режим.

Все особенности и типовые схемы включения указаны в datasheet на русском языке. При таком включении контролируемое напряжение может находиться в пределах от трех, до нескольких десятков вольт. Резистор R2 совместно с транзистором vt1 является своеобразным шунтом на котором с помощью обратной связи поддерживается напряжение 2,5 вольта.

Кому лень читать


В трехвыводном корпусе этой микросхемы спрятано 10 транзисторов, а функция, выполняемая ею, одинакова с обычным стабилитроном диод Зенера. В качестве излучателя можно применить излучатель ЗП А теперь перейдем к рассмотрению различных конструкций на базе микросхемы TL Силовые элементы с радиаторами, диодными мостами тоже там есть. Если такая мощность не нужна, можно сократить количество светодиодов до одного.

Для получения более высокого выходного тока может быть использована следующая схема. Рисунок 1. Основная область применения микросхемы TL, конечно же блоки питания.

Необходимое выходное напряжение может быть установлено с помощью всего двух внешних резисторов делитель напряжения , подключенных к выводу REF. Резистор в этой схеме рассчитывается по следующей формуле: где Ist — ток TL, а Il — ток нагрузки. Аналоги имеют совершенно другие температурные параметры. Следующая схема имеет два режима ограничения: по току; по напряжению; Пока напряжение на выходе меньше 4,2 В ограничивается выходной ток, при достижении напряжением величины 4,2 В начинает ограничиватся напряжение и ток заряда снижается.
Lm317T сборка схемы

Кому лень читать

Я не зря опять затронул эту тему ,это одна из самых массово выпускаемых интегральных микросхем.

Улучшенная схема будет выглядеть так: Данная доработка позволяет значительно снизить пульсации тока и, следовательно, яркости светодиодов. Для стопроцентного предотвращения загорания светодиода в его цепь дополнительно включены 2 диода.

Datasheet на русском.. К примеру, если в качестве датчика применить фототранзистор , то в конечном итоге получится фотореле, реагирующее на степень освещенности. На данной микросхеме реализовано множество схем зарядных устройств для литиевых аккумуляторов. Быстрое переключение.

Схема, приведенная ниже, представляет собой мощный светильник на двух ваттных светодиодах и ваттном IRF в корпусе ТО см. В полной схеме включения к TL добавляются еще два резистора, но в этом случае можно получить произвольное выходное напряжение. Рисунок 5.

Простое зарядное устройство для литиевого аккумулятора. Но этого тока достаточно для очень слабого свечения светодиода HL1. Следующая формула справедлива для вычисления сопротивлений резисторов, в случае если мы хотим получить какое-то фиксированное напряжение. Но главный плюс схемы заключается в нормализации режима работы светодиодов и защита их от бросков напряжения во время включения.

Вместо заключения

Но у светодиода максимально допустимый ток составляет всего 20 мА. В данной схеме R3 рассчитывается точно также, как если бы использовался обычный стабилитрон, то есть зависит от выходного напряжения, диапазона входного напряжения и диапазона токов нагрузки. Варианты использования данной микросхемы могут быть различные, но максимальное распространение она получила в блоках питания с регулируемым и фиксированным напряжением. Реле времени TL нашел свое применение не только как источник опорного напряжения, а и во многих других применениях. Все это время она находится на первых местах в списке мировых лидеров в производстве электронных компонентов, прочно удерживаясь в первой десятке или, как чаще говорят, в мировом рейтинге TOP

TL Ее выпуск стартовал в году. В этом случае вместо фототранзистора нужно подсоединить два нержавеющих электрода, которые втыкают в землю на небольшом расстоянии друг от друга.
TL431 управляемый стабилитрон,как проверить работу.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector