Sfera-perm.ru

Сфера Пермь
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Схема устройства счетчика гейгера

САМОДЕЛЬНЫЙ СЧЕТЧИК ГЕЙГЕРА

Описанный выше прибор для измерения уровня радиации привлекателен прежде всего простотой своего изготовления. Однако есть в нем и свой маленький нюанс: важнейшую деталь устройства, а именно — датчик излучения, который, собственно, и является основой счетчика Гейгера-Мюллера, достать не всем по силам. И хотя устройство счетчика известно из учебника физики, сделать его в домашних условиях практически невозможно — прибор достаточно сложен. Однако не стоит отчаиваться! Взамен устройства, описанного в предыдущей статье, можно сделать другое, доступное многим. Вместо счетчика изготовим неплохой заменитель, который вполне сможет регистрировать бета- и гамма- излучения.

Возьмите стартер от люминесцентной пампы и включите его в сеть последовательно с лампой накаливания 15 ватт (см. рисунок 1). Вот и получился простейший счетчик Гейгера. Теперь главное — выйти на рабочий режим. Наш счетчик работает так: после включения в сеть через газовый разрядный промежуток в стартере между биметаллической пластиной 1 и столбиком 2 начинает идти слабый ток; его силы недостаточно для горения лампы 3. Некоторое время спустя изогнутая биметаллическая пластина 1 нагревается, немного разгибается, прикасается к столбику 2 и замыкает цепь.

В этот момент загорается лампа накаливания 3. Примерно через 0,25 секунды биметаллическая пластина 1 остывает, снова сгибается, отходит от столбика 2, ток в цепи ослабевает, и лампа накаливания 3 гаснет. Между биметаллической пластиной 1 и столбиком 2 снова возникает тлеющий разряд, пластина опять нагревается, и процесс повторяется.

Теоретически он должен идти с какой-то регулярной периодичности, то есть лампа накаливания 3 должна, например, каждые пять секунд загораться и гаснуть. V некоторых стартеров так и бывает. Однако стартеры для люминесцентных ламп значительно разнятся по своим параметрам. Многие предприятия во время ремонтов часто выбрасывают металлическую арматуру для люминесцентных ламп, и если подобрать сразу 15 — 20 стартеров на 220 вольт, то среди них наверняка найдется один подходящий.

У части стартеров тлеющий разряд в разрядном промежутке недостаточен, чтобы нагреть пластину и замкнуть цепь, и лампа накаливания 3 не горит вообще.

Рабочий режим счетчика базируется на том явлении, что слабый разряд не может нагреть пластину, но в момент пролета частицы ток усиливается, пластина нагревается и на мгновение прикасается к столбику. Тут-то лампа накаливания и вспыхивает. Затем стартёр снова переходит в режим ожидания. Нерегулярность вспышек как раз и свидетельствует о том, что мы попали в рабочий режим. Перерыв между вспышками может варьировать от 0,1 до 3-5 с при, повторяем, полном отсутствии регулярности.

В учебнике физики сказано, что стандартный фабричный счетчик Гейгера не регистрирует частицы в момент искры (щелчка или срабатывания индикатора). У нашего счетчика этот момент существенно больше. Пластине нужно нагреться, а лампе накаливания — вспыхнуть и погаснуть. Но так как естественный фон радиоактивности невысок, а время срабатывания раз в 20 — 30 меньше периода пролета частиц, то результаты работы счетчика удовлетворительны. В минуту должно быть примерно от 12 до 25 вспышек.

Читайте так же:
Энерго счетчик для дачи

У фабричных счетчиков существует зависимость числа срабатываний N от напряжения U (рис. 2). Если батарея дает низкое напряжение, то регистрируются не все частицы. При подаче расчетного для данного счетчика напряжения на графике появляется плато Гейгера, то есть все частицы регистрируются. При дальнейшем повышении напряжения увеличивается количество ложных срабатываний, и затем происходит непрерывный пробой — кривая на графике уходит вверх.

Все это справедливо и для нашего счётчика. Таким образом, режим регистрации частиц относительный. Если стартер лежит на столе, счетчик срабатывает реже, а если поднести к стартеру пыльную тряпку, то количество вспышек в минуту увеличивается — ведь пыль всегда содержит радиоактивные изотопы.

Следует учитывать и колебания силы тока в цепи, но в течение 20-30 минут она, как правило, постоянна. Предпочтительно также проводить измерения поздним вечером. Если у вас есть подстроечный трансформатор-стабилизатор со встроенным вольтметром от старого телевизора — вообще прекрасно. Главное, наш счетчик позволяет проводить относительные измерения — определять степень радиоактивности, скажем, овощей или интересующих вас предметов. Можно, наконец, тарировать счетчик по стандартному фабричному, взяв его ненадолго у кого-то из друзей или знакомых.

Счётчик Гейгера

Счётчик Ге́йгера, счётчик Ге́йгера—Мю́ллера — газоразрядный прибор для автоматического подсчёта числа попавших в него ионизирующих частиц. Представляет собой газонаполненный конденсатор, который пробивается при пролёте ионизирующей частицы через объём газа. Изобретён в 1908 году Гансом Гейгером.

Дополнительная электронная схема обеспечивает счётчик питанием (как правило, не менее 300 V), обеспечивает, при необходимости, гашение разряда и подсчитывает количество разрядов через счётчик.

Счётчики Гейгера разделяются на несамогасящиеся и самогасящиеся (не требующие внешней схемы прекращения разряда).

Чувствительность счётчика определяется составом газа, его объёмом, а также материалом и толщиной его стенок.

В бытовых дозиметрах и радиометрах производства СССР и России обычно применяются счетчики с рабочим напряжением 390В:

  • «СБМ-20» (по размерам — чуть толще карандаша), СБМ-21 (как сигаретный фильтр, оба со стальным корпусом, пригодный для жёсткого β- и γ-излучений)
  • «СИ-8Б» (со слюдяным окном в корпусе, пригоден для измерения мягкого β-излучения)

Широкое применение счётчика Гейгера—Мюллера объясняется высокой чувствительностью, возможностью регистрировать разного рода излучения, сравнительной простотой и дешевизной установки. Счётчик был изобретен в 1908 году Гейгером и усовершенствован Мюллером.

Цилиндрический счётчик Гейгера—Мюллера состоит из металлической трубки или металлизированной изнутри стеклянной трубки, и тонкой металлической нити, натянутой по оси цилиндра. Нить служит анодом, трубка — катодом. Трубка заполняется разреженным газом, в большинстве случаев используют благородные газы — аргон и неон. Между катодом и анодом создается напряжение порядка 400В.Для большинства счетчиков существует так называемое плато, которое лежит приблизительно от 360 до 460 В,в этом диапазоне небольшие колебания напряжения не влияют на скорость счета.

Работа счетчика основана на ударной ионизации.γ-кванты, испускаемые радиоактивным изотопом, попадая на стенки счетчика, выбивают из него электроны. Электроны, двигаясь в газе и сталкиваясь с атомами газа, выбивают из атомов электроны и создают положительные ионы и свободные электроны. Электрическое поле между катодом и анодом ускоряет электроны до энергий, при которых начинается ударная ионизация. Возникает лавина ионов, и ток через счетчик резко возрастает. При этом на сопротивлении R образуется импульс напряжения, который подается в регистрирующее устройство. Чтобы счётчик смог регистрировать следующую попавшую в него частицу, лавинный разряд нужно погасить. Это происходит автоматически. В момент появления импульса тока на сопротивлении R возникает большое падение напряжения, поэтому напряжение между анодом и катодом резко уменьшается — настолько, что разряд прекращается, и счетчик снова готов к работе.

Читайте так же:
Счетчики некурения для андроид

Важной характеристикой счётчика является его эффективность. Не все γ-фотоны, попавшие на счетчик, дадут вторичные электроны и будут зарегистрированы, так как акты взаимодействия γ-лучей с веществом сравнительно редки, и часть вторичных электронов поглощается в стенках прибора, не достигнув газового объема.

Эффективность счётчика зависит от толщины стенок счётчика, их материала и энергии γ-излучения. Наибольшей эффективностью обладают счётчики, стенки которых сделаны из материала с большим атомным номером Z, так как при этом увеличивается образование вторичных электронов. Кроме того, стенки счётчика должны быть достаточно толстыми. Толщина стенки счётчика выбирается из условия её равенства длине свободного пробега вторичных электронов в материале стенки. При большой толщине стенки вторичные электроны не пройдут в рабочий объем счётчика, и возникновения импульса тока не произойдет. Так как γ-излучение слабо взаимодействует с веществом, то обычно эффективность γ-счётчиков также мала и составляет всего 1-2 %. Другим недостатком счётчика Гейгера—Мюллера является то, что он не даёт возможность идентифицировать частицы и определять их энергию. Эти недостатки отсутствуют в сцинтилляционных счётчиках.

Примечание

Следует отметить, что по историческим причинам сложилось несоответствие между русским и английским вариантами этого и последующих терминов:

ИЗУЧЕНИЕ СЧЕТЧИКА ГЕЙГЕРА — МЮЛЛЕРА

Цель работы: ознакомиться с работой счетчика и определить его основные характеристики.

Приборы и оборудование: прибор «Арион» со свинцовым домиком (рис.1 ), источник β-излучения (соль KClв кювете, пластинка с отверстием для ограничения потока β — частиц.

Рис.1 Схема измерительной камеры.

1 – корпус камеры, 2 – счетчики СТС–6, 3 – пластина для ограничения потока излучения, 4 — кювета с радиоактивной солью KCl.

Литература: [1], т. 2, , [2], гл.23, п.23.1 — 23.2, [3], гл.14, п.116, 118.

1. Устройство и принцип действия.Счетчики Гейгера-Мюллера являются разновидностью газонаполненных детекторов. В общем случае к детекторам в ядерной физике относят приборы для регистрации, идентификации и установления характеристик заряженных или нейтральных частиц. Счетчики Гейгера-Мюллера предназначены только лишь для регистрации α — частиц, β — частиц и γ- квантов. Конструктивно газоразрядный счетчик представляет собой тонкостенную металлическую или стеклянную, покрытую с внутренней стороны слоем металла, цилиндрическую камеру (рис.2).

Читайте так же:
Федеральный закон 102 поверка счетчиков

Цилиндр служит катодом. Анодом является тонкая металлическая нить, расположенная по оси цилиндра. Счетчик заполнен специально подобранным газом, например, аргоном, при давлении 10 — 760 мм рт. ст. Между катодом и анодом за счет внешнего источника создается разность потенциалов 300 — 2500 В. Традиционная схема включения счетчика Гейгера-Мюллера в электрическую цепь показана на рис.3.

Рис.3. Схема включения счетчика Гейгера – Мюллера.

1 – катод, 2 – анод, 3 – сопротивление нагрузки, 4 – разделительный конденсатор, 5 – источник питания.

Регистрируемая частица, проходящая через объем счетчика, создает на выходе схемы электрический импульс. Физические процессы, происходящие в газоразрядных счетчиках, можно разделить на три стадии: первичная ионизация, вторичная ионизация, повторные лавины.

Первичная ионизация. Она возникает вдоль траектории заряженной частицы, проходящей через счетчик. Первичные ионы могут возникнуть в любой области счетчика. Если трек умещается внутри трубки счетчика, то число ионов пропорционально энергии частицы.

Вторичная ионизация. Первичные электроны и положительные ионы движутся к электродам, разгоняясь электрическим полем. Электрическое поле внутри счетчика неоднородно, что является следствием асимметричности геометрии электродов. Электроны, движущиеся к нити-аноду, попадают в область очень больших электрических полей (силовые линии у нити сгущаются) и вблизи нити резко ускоряются. В результате возникает вторичная ударная ионизация. Вновь выбитый электрон успевает разогнаться и произвести новую ионизацию. Следовательно, процесс носит лавинный характер. На один первичный электрон в лавине ударных ионизаций образуется более 10 3 вторичных частиц. Вторичная ионизация происходит в области порядка 0,1 мм около нити, а первичные электроны образуются вне этой области во всем пространстве счетчика. Первичную лавину отличает малая длительность – примерно 10 -8 с.

Повторные лавины.Повторные лавины, как следствие первой лавины, могут возникать в счетчике за счет двух различных механизмов.

Первый механизм обусловлен быстро протекающими процессами. В начале развития лавины электроны возбуждают нейтральные молекулы, которые, возвращаясь в исходное состояние, испускают фотоны. Эти фотоны выбивают из катода за счет явления фотоэффекта электроны, которые и являются родоначальниками новых лавин. Время развития этого процесса 10 -6 с. Второй механизм образования повторных лавин обусловлен более медленными процессами. Он состоит в том, что положительные ионы, доходя до катода, выбивают из него электроны в процессе нейтрализации, т.к. потенциал ионизации атомов газа, заполняющего счетчик, в несколько раз выше работы выхода электронов из металла (4-5 эВ). Длительность развития лавины имеет порядок 10 -4 с.

Таким образом, если два рассмотренных механизма смогут вызывать повторные лавины неопределенно длительное время, то разряд в счетчике превращается в самостоятельный. В этом случае возникает проблема гашения самостоятельного разряда.

Счетчики Гейгера-Мюллера работают в режиме самостоятельного разряда с гашением. Импульс напряжения, создаваемый этими счетчиками достаточно велик (0,2-40 В) и не зависит от энергии регистрируемой частицы. Следовательно, эти счетчики только регистрируют частицу без измерения ее энергии. Разрешающее время этих счетчиков 10 -3 – 10 -5 с (в лучших до 10 -7 с).

Читайте так же:
Срок годности счетчика гвс

Конструктивные особенности счетчиков определяются видом регистрируемых частиц, в первую очередь их энергией и проникающей способностью.

2. Эффективность счетчика.Эффективностью счетчика называется отношение числа регистрируемых счетчиком частиц или квантов к полному числу проходящих через него частиц. Счетчики Гейгера-Мюллера не обладают 100%-ной эффективностью. Это обусловлено тем, что частица, прошедшая через счетчик, может не создать даже одной пары ионов. Тем не менее, эффективность счетчика для электронов составляет 99% и даже 99,9%.

Регистрация γ— лучей осуществляется через посредство быстрых электронов, образующихся при поглощении или рассеянии γ— квантов, в основном, в стенках счетчика. Эффективность счётчика для γ— лучей зависит от материала стенок (катода) и энергии γ— квантов и составляет обычно около 3%.

3. Счетная характеристика. Счетной характеристикой счетчика Гейгера-Мюллера называется зависимость скорости счета от приложенного напряжения при неизменной интенсивности ионизирующего облучения счетчика. Типичная счетная характеристика имеет четыре участка (рис.4).

На участке малых напряжений (участок 1) регистрация импульсов не происходит. Напряжение начала счета Uп (пороговое напряжение) соответствует минимальным амплитудам импульсов, пропускаемых формирователем. Величина этого напряжения зависит от диаметра нити анода, рода газов, входящих в состав рабочей смеси, давления газа и т.д. На начальном участке счетной характеристики (участок 2) быстрый рост числа импульсов объясняется тем, что счетчик работает в области ограниченной пропорциональности, где возникновение разряда в счетчике зависит от числа первоначально образовавшихся пар ионов.

Рис. 4. Счетная характеристика.

В области так называемого “плато” счетной характеристики (участок 3) число зарегистрированных импульсов практически не зависит от напряжения, т.к. каждая ионизирующая частица, попадающая в объем счетчика, вызывает электронно-ионную лавину и самостоятельный разряд в газе. В действительности плато имеет некоторый наклон, вызванный ложными импульсами за счет неполного гашения, краевых эффектов и т.д. Наличие плато обеспечивает устойчивую работу счетчика. Рабочее напряжение выбирается на середине плато. Хорошие счетчики имеют плато протяженностью 100-300 В с наклоном 5-7% на 100 В.

При дальнейшем увеличении напряжения скорость счета резко возрастает (участок 4), т.к. счетчик переходит в режим спонтанного разряда.

Пороговое напряжение, положение и длина плато являются индивидуальными характеристиками счетчика и могут меняться в широких пределах. Поэтому для правильного выбора рабочего напряжения необходимо снимать счетную характеристику каждого счетчика.

Разрешающее время счетчиков.В течение разряда и некоторого промежутка времени, непосредственно следующего за разрядом, электрическое поле в счетчике имеет меньшую величину. Частицы, попавшие в счетчик в начальной стадии развития разряда, вообще не регистрируются. Этот интервал времени τ носит название мертвого времени счетчика.Промежуток времени, необходимый для полного восстановления электрического поля в счетчике после окончания мертвого времени, называется временем восстановления tв. Мертвое время определяет минимальный промежуток времени, которым должны быть разделены пролеты через счетчик частиц, чтобы они были зарегистрированы отдельно. Типичное значение мертвого времени для счетчиков Гейгера-Мюллера 10 -3 –10 -5 с.

Читайте так же:
До олимпиады осталось счетчик

Вещь. Счетчик Гейгера для смартфона

С чем ассоциируется у вас лето? Солнце, пляжи, активные игры? Или, может быть, «тихая охота» и сбор ягод?

Как бы то ни было, многие из нас приобретают грибы и фрукты на рынке, у бабушек перед магазинами или прямо на трассах во время поездок.

Почему бы и нет? Свежее, только из леса/с дачи, природное-полезное.

Вот только радиоактивных зон в России такое количество, что всех не упомнишь: Часто именно на них отлично растут грибы и разнообразные полезные растения.

Так что без счетчика Гейгера нам, гикам-параноикам, никуда.

Помочь с приобретением датчика могут наши китайские друзья: например, здесь в одном лоте собраны сразу все наиболее популярные варианты доступного счетчика Гейгера, использующего в роли экрана смартфон.

Так намного дешевле полноценного лабораторного прибора.

Самый простой вариант FSG-001-Basic позволяет определять радиацию в диапазоне 0,1-200 мкЗв/ч.

Жаль, точность этой 6-граммовой приставки для мини-джека оставляет желать лучшего.

Наличие фона определит, величину — с очень большой погрешностью.

Для работы используются довольно простые приложения Smart Geiger counter и Smart Checker, доступные в Google Play и App Store.

Более продвинутый датчик Geiger Counter Pro-SGP-001 имеет увеличенный диапазон до 0,05-200 мкЗв/ч измерений и повышенную точность.

Как и предшественник, использует для подключения мини-джек смартфона под управлением iOS или Android.

Этот прибор за счет точности поможет определиться — стоит ли приобретать фрукты на рынке, или оставить их владельцу.

Все же, природный фон никуда не деть. И не всегда наличие радиации критично.

Работает с мультиязычным приложением Smart Geiger Pro (Google Play, App Store): тут и шкала наглядная, и сохранения есть, и время работы учитывается.

Наконец, беспроводной счетчик Гейгера BSG-001-Bluetooth с точностью 0,1-200 мкЗв/ч пригодится в прогулках по незнакомой местности.

Устройство подключается по Bluetooth, передавая данные на 10 метров. Правда, если iPhone подходят любые, то Android должен быть не свежее версии 8.0.

Чувствительность гаджета позволяет распознавать наличие радиоактивного фона с максимальным определяемым значением за 50 метров.

Точность этой версии выше, но вряд ли лучше 10-25%: подойдет только в любительских целях.

Стоит обратить внимание на приложение: Wireless Smart Geiger (Google Play, App Store) больше подходит для аналитических и походных задач.

Чем выше точность, тем дороже устройство. Так что стоит обдумать свои задачи.

FSG-001-Basic обойдется 2424 рублей. Pro-SGP-001 стоит уже 4441 рублей. За самый продвинутый BSG-001 придется отдать 5138 рублей.

Здоровье дороже. Только версию выбирайте вдумчиво.

P.S. Никогда не задумывались о том, чтобы проверять продукты на радиоактивность?

  • Твитнуть
  • Поделиться
  • Рассказать
  • AliExpress,
  • Вещь

Николай Маслов

Kanban-инженер, радиофизик и музыкант. Рассказываю об технике простым языком.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector