Sfera-perm.ru

Сфера Пермь
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Схема стабилизатор тока 20ма

Конвертер тока 4..20 mA в напряжение XY-ITOV

Промышленные датчики, сообщающие об изменении измеряемого параметра изменением тока в диапазоне 4.. 20 мА, широко распространены. Они обладают высокой помехоустойчивостью, поэтому к такому датчику можно подвести кабель длиной в несколько сотен метров. В статье я сделал подробное сравнение АЦП ESP32 и ADS1115 как раз на задаче определения тока 4..20 мА.

Простейший способ подключения датчика с токовой петлей 4..20 мА к микроконтроллеру — использовать следующую схему:

В ней нет гальванической развязки. Стабилитрон защищает входы микроконтроллера от напряжения превышающего 5,1 V и переплюсовки. На схеме стабилитрон и сопротивление R1 рассчитаны для микроконтроллера с 5-ти вольтовым уровнем ADC (Arduino). Для «чистых» ESP8266/32 нужны другие элементы, рассчитанные на предельное 1 V напряжение на АЦП.

Если смоделировать какое напряжение будет на АЦП микроконтроллера при протекании максимального тока в 20 мА, то видно, что из-за нелинейной вольтамперной характеристики стабилитрона происходит искажение напряжения и вместо 1V АЦП замерит 949 mV. Если-же убрать стабилитрон, есть риск выхода из строя входа микроконтроллера в случае подключения длинных линий, выступающих в роли индуктивности. Диод защищает вход микроконтроллера от отрицательных скачков напряжения.

В первой схеме, ток протекая через сопротивлление 250 Ом по закону Ома приводит к появлению на нем напряжения U = I*R.
Umin = 4 мА * 250 Ом = 1 В.
Umax = 20 мА * 250 Ом = 5 В.

Резистор соответствует уровню логики Arduino. Для микроконтроллеров ESP8266/ESP32 распаянных на плате с резистивным делителем преобразующим 3,3 В в 1 V на ADC сопротивление должно быть R = U/I. Rmax = 3 В / 20 mA = 150 Ом. Если же на плате не распаян резистивный делитель напряжения, тогда на АЦП напряжение не должно превышать 1,1 V.

Проверяем, что резистор стандартный с помощью калькулятора. Или сразу рассчитываем сопротивление подходящего резистора с помощью Resistance calculator. Падение напряжения на резисторе при минимальном токе Umin = 4 mA * 150 = 0,6 Вольт.

Есть и более сложные схемы. Например, скан из книги «1000 и одна микроконтроллерная схема». Автор Рюмик С.М. найденный на просторах Интернет:

Я подробно рассмотрел реализацию схему подключения датчиков 4..20 мА к микроконтроллеру ESP32 на операционном усилителе в другой статье.

Чтобы точно измерить изменение тока, резистор R1 на 250 Ом для Arduino на котором микроконтроллер замеряет напряжение (U = I*R) должен быть с минимальным допуском: 1% или лучше.

Здесь не подходит гальваническая развязка оптроном, поскольку его характеристика нелинейная, поэтому он будет искажать измерения.

Плата для преобразования тока 4..20 мА в напряжение

После продолжительных поисков мне удалось найти на Aliexpress модуль, реализующий преобразование ток 4..20 мА в напряжение и достаточно защищенный от разных напастей. Приобретал у этого продавца.

Напряжение питания модуля 7-36V. Если выставлен диапазон выходного напряжения 10 V, то напряжение питания должно быть не меньше 12 V.

На плате распаяно:

  • Прецизионный резистор на котором замеряется падение напряжения.
  • Защита входа от ошибки с полярностью.
  • Защита от превышения напряжения >5 V.
  • Усилитель, обеспечивающий напряжение на выходе в определенных диапазонах, заданных джамперами.

Настройка платы на нужный диапазон выходного напряжения производится джамперами.

  • ON: jumper cap buckles on the two jumper pins — джампер закорочен
  • OFF: two jumper pins without the jumper cap — джампер снят
Range, VoltJ1, перемычка 1-2J1, перемычка 3-4
0 — 2.5ONON
0 — 3.3OFFOFF
0 — 5.0ON.ON
0 — 10.0ONOFF

Для точной настройки преобразователя тока 4..20 мА в напряжение нужно подобрать значения двух потенциометров: ZERO и SPAN, соответствующие нулевому и максимальному значению тока на входе. Потенциометры претензионные с широким шагом.

  • При минимальном токе на входе (0 mA или 4 mA), вращая потенциометр ZERO, настроить нужное напряжение на выходе, соответствующее заданному току нуля. Вращение по часовой стрелке увеличивает напряжение на выходе.
  • Я не рекомендую выставлять 0 Вольт при минимальном токе 4 мА, поскольку в этом случае микроконтроллер не сможет определить оборван ли кабель к датчику или он действительно показывает минимальные значения.
  • При максимальном токе в 20 мА, вращая переменное сопротивление SPAN, подбирается максимальное значение в выствленном джамперами диапазоне. Вращение по часовой стрелке увеличивает напряжение на выходе.

Тестирование конвертера тока 4..20 мА в напряжение

Для настройки конвертера на вход подадим ток с простой последовательной цепочки источник питания (ИП) + резистор. По закону Ома, если напряжение ИП = 5 В, то^

  • Для тока 4 мА потребуется сопротивление R = 1,25 кОм (ближайший 1,2 кОм).
  • Для тока 20 мА — 250 Ом.

При этом учитываем тот момент, что на входе XY-ITOV, судя по моим замерам, стоит сопротивление на 99,5 Ом. Соответсвенно, в цепи уже есть сопротивление

100 Ом. Поэтому значения граничных сопротивлений будут:

Ддя 4 мА — 1,15 кОм

Для 20 мА — 150 Ом.

Последовательно соединяем резистор на 1,2 кОм. Я использовал на 10 кОм, под рукой не оказалось другого.

Калибровка XY-ITOV конвертера тока 4..20 мА в напряжение

    Подключил XY-ITOV к источнику питания

14 V. Если джамперами выставлено напряжение до 10 V, то источник питания должен быть >12V.

  • Оба джампер-а снял, чтобы диапазон напряжений был 0..3,3 V.
  • Подключаю амперметр как указано на схеме.
  • Подключаю мультиметр к клеммам Vout и GND и вращая потенциометр ZERO выставляю нижний диапазон напряжений на Vout. Я выставил 0,66 V для тока 4 mA.
  • Вращая потенциометр R1 подбираю ток на амперметре 20 mA.
  • Подключаю мультимер к клеммам Vout и вращая потенциометр SPAN выставляю верхний диапазон напряжений на Vout. Я выставил 3,3 V для тока 20 mA.
  • Если снять соединение источника питания с I-/I+, имитируя обрыв провода до сенсора, то на выходе будет напряжение 0,08 V.
  • Конвертер тока 4..20 mA в напряжение XY-ITOV откалиброван для работы.
  • Если вместо источника питания с напряжением >7 V использовать меньшее напряжение, для теста я использовал 5 V, преобразователь показывает Vou t= 2,94 V. При этом калибровка не проходит. Вращение потенциометра SPAN не приводит к изменению напряжения на выходе. Оно остается = 2,94 V.
  • Поключение преобразователя тока в напряжение к ESP8266

    Wemos D1 mini (ESP8266) широко представлен на Aliexpress по цене менее 3 USD. Подключим плату преобразователя тока в напряжение к этому микроконтроллеру.

    После тщательной калибровки подключаем землю от конвертера к пину G(ND) Wemos D1 mini, а Vout к пину A0.

    Читайте так же:
    7812 как стабилизатор тока

    Поскольку конвертер 10-ти битный, то количество уровней равно 2^10 = 1024. В теории, диапазон измерения напряжения АЦП ESP8266 от 0 до 1 V. Производители плат распаивают дополнительный резистивный делитель напряжения, поэтому данные о том, какое напряжение поддерживает АЦП нужно смотреть у производителя платы. 🙁 В источниках указывается, что «Wemos D1 Mini has already build in divider R1 220k/ R2 100k for pin A0», поэтому напряжение может меняться от 0 до 3,3 V. При калибровке было выставлено, что 20 mA соответствует 3 V. Верхнему напряжению должно соотвествовать значение 1023, поскольку 0 соответствует 0, а всего 1024 уровня. Расчетно получаем, что L = 1023*3/3,3 = 930.

    Однако, если подать на вход аналогового входа напряжение 3 V, то АЦП отобразит значение 991, что значительно отличается от теоретического расчета. Если пересчитать какой-же верхний предел соотвествует полученному для 3 V значению, то получится: 991*3,3/1023 = 3,196774 V. В общем, то-ли АЦП настолько плох, то-ли какие-то иные проблемы.

    Формула для пересчета значения АЦП в ток, I = adc*20(mA)/991, где adc — величина, считанная с входа АЦП.

    После запуска программы получаем следующие результаты:

    Если отсоединить источник тока, то АЦП показывает нулевое значение. Разрядности АЦП не хватает, чтобы распознать столь маленькое значение напряжение. По нулю на АЦП можно идентифицировать обрыв провода.

    ЦАП может быть программно переключен на измерение напряжения питания, в этом случае значения со входа A0 читать бессмысленно.

    Поключение преобразователя тока в напряжение к ESP32

    Подключаю землю от конвертера к пину G(ND) ESP32 DevKit, а Vout к пину ADC1_0 (GPIO36). В общем-то можно переносить код ESP8266 на ESP32 — он будет работать с парой правок: pin для чтения не 0, а 36 и поправочный коэффициент ориентировочно 3350. Точно откалибровать сложно. 12-битный АЦП достаточно точный, поэтому будет читать и малейшие изменения входного напряжения. Кроме того сам АЦП без откалиброванного опорного напряжения (reference voltage) не сможет обеспечить точные измерения.

    Можно использовать другой вариант кода для измерения напряжения на ESP32. Но в этом случае поправочный коэффициент будет 3850:

    Для сглаживания шума в схемотехнику ESP32 производитель рекомендует добавить емкость 0.1 uF на вход АЦП, который задействован и использовать усреднение по нескольким отсчетам.

    Конвертер напряжения в ток 4..20 мА

    По этой ссылке можно найти антипод ранее рассморенному модулю, производящий обратное преобразование напряжение в ток 4..20 мА (voltage to current converter). Этот модуль при подключении к датчику напряжения позволит увеличить длину кабеля от него до микроконтроллера.

    Аналоги преобразователей тока 4..20 мА

    Если искать на просторах интернет то конвертеры тока 4..20 мА в напряжение от брендовых производителей стоят недешево,

    22 USD. Например, такой. К нему можно подключить до 4-х сенсоров, т.е. цена за сенсор в районе 5 USD. На плате уже есть 16-ти разрядный АЦП, это ещё около 1,5 USD экономии. 🙂

    Fritzing part для current to voltage 4..20 mA converter

    Не нашел в Интернет подходящий fritzing part для конвертера тока 4..20 мА в напряжение. Поэтому нарисовал свой. Брать здесь. Не забываем лайкать. 🙂

    Пример схемотехники конвертера 4..20 мА из проекта

    В одном из проектов использовал следующую схему.

    Подключение двух токовых датчиков 4..20 мА к АЦП микроконтроллера ESP8266/ESP32 с защитой на MAX14626.

    Защита входа операционного усилителя с помощью MAX14626. Подробный расчет здесь.

    Как работает токовая петля 4-20 мА

    «Токовая петля» начала применяться в качестве интерфейса передачи данных еще в 50-е годы. Сначала рабочий ток интерфейса составлял 60 мА, а позже, начиная с 1962 года, широкое распространение в телетайпе получил 20 миллиамперный интерфейс токовой петли.

    В 80-е, когда началось обширное внедрение в технологическое оборудование разнообразных датчиков, средств автоматики и исполнительных устройств, интерфейс «токовая петля» сузил диапазон своих рабочих токов, — он стал составлять от 4 до 20 мА.

    Дальнейшее распространение «токовой петли» стало замедляться начиная с 1983 года, с появлением интерфейсного стандарта RS-485, и на сегодняшний день «токовая петля» почти нигде в новом оборудовании как таковая не применяется.

    Передатчик «токовой петли» отличается от передатчика интерфейса RS-485 тем, что в нем используется источник тока, а не источник напряжения.

    Ток, в отличие от напряжения, двигаясь из источника по цепи не меняет своего текущего значения в зависимости от параметров нагрузки. Вот почему «токовая петля» не чувствительна ни к сопротивлению кабеля, ни к сопротивлению нагрузки, ни даже к ЭДС индуктивной помехи.

    Кроме того ток петли не зависит от напряжения питания самого источника тока, а может изменяться лишь вследствие утечек через кабель, которые обычно пренебрежимо малы. Данная особенность токовой петли полностью определяет способы ее применения.

    Стоит отметить, что ЭДС емкостной наводки приложена здесь параллельно источнику тока, и для ослабления ее паразитного действия применяют экранирование.

    По этой причине линией передачи сигнала обычно выступает экранированная витая пара, которая, работая совместно с дифференциальным приемником, сама ослабляет синфазную и индуктивную помехи.

    На стороне приема сигнала, ток токовой петли при помощи калиброванного резистора преобразуется в напряжение. И при токе в 20 мА получается напряжение из стандартного ряда 2,5 В; 5 В; 10 В; — достаточно лишь использовать резистор с сопротивлением соответственно 125, 250 или 500 Ом.

    Первый и главный недостаток интерфейса «токовая петля» заключается в его низком быстродействии, ограниченном скоростью зарядки емкости самого передающего кабеля от упомянутого выше источника тока, расположенного на передающей стороне.

    Так, при использовании кабеля длиной в 2 км, с погонной емкостью 75 пФ/м, его емкость составит 150 нФ, а это значит что для зарядки данной емкости до 5 вольт при токе 20 мА потребуется 38 мкс, что соответствует скорости передачи данных 4,5 кбит/с.

    Ниже приведена графическая зависимость максимально доступной скорости передачи данных по «токовой петле» от длины применяемого кабеля при различных уровнях искажений (дрожания) и при разных напряжениях, оценка проводилась так же как для интерфейса RS-485.

    Еще один недостаток «токовой петли» заключается в отсутствии определенного стандарта на конструктивное исполнение разъемов и на электрические параметры кабелей, что тоже ограничивает практическое применение данного интерфейса. Но справедливости ради можно отметить, что фактически общеприняты диапазоны от 0 до 20 мА и от 4 до 20 мА. Диапазон 0 — 60 мА применяется значительно реже.

    Читайте так же:
    Лм317т схема включения стабилизатор тока

    Наиболее перспективные разработки, требующие применения интерфейса «токовая петля», в большинстве своем используют сегодня только 4. 20 мА интерфейс, позволяющий легко диагностировать обрыв линии. Кроме того, «токовая петля» может быть цифровой или аналоговой, в зависимости от требований разработчика (об этом — далее).

    Практически низкая скорость передачи данных по «токовой петле» любого типа (аналоговой или цифровой) позволяет использовать ее одновременно с несколькими приемниками соединенными последовательно, причем согласование длинной линии не потребуется.

    Аналоговая версия «токовой петли»

    Аналоговая «токовая петля» нашла применение в технике, где необходимо например передавать сигналы от датчиков к контроллерам или между контроллерами и исполнительными устройствами. Здесь токовая петля обеспечивает некоторые преимущества.

    Прежде всего диапазон варьирования измеряемой величины будучи приведен к стандартному диапазону позволяет изменять компоненты системы. Примечательна и возможность высокоточной (не более +-0,05% погрешности) передачи сигнала на значительное расстояние. Наконец, стандарт «токовая петля» поддерживается большинством поставщиков устройств промышленной автоматизации.

    Токовая петля 4. 20 мА имеет минимальный ток 4 мА в качестве начала отсчета сигнала. Таким образом при обрыве кабеля ток будет равен нулю. Тогда как при использовании токовой петли 0. 20 мА диагностировать обрыв кабеля будет сложнее, ибо 0 мА может просто обозначать минимальное значение передаваемого сигнала. Еще одно достоинство диапазона 4. 20 мА заключается в том, что уже при уровне 4 мА можно без проблем подводить питание к датчику.

    Ниже приведены две схемы аналоговой токовой петли. В первом варианте источник питания встроен в передатчик, тогда как во втором варианте источник питания внешний.

    Встроенный источник питания удобен в плане монтажа, а внешний позволяет варьировать его параметры в зависимости от назначения и условий работы устройства, с которым применяется токовая петля.

    Принцип действия токовой петли одинаков для обеих схем. Операционный усилитель имеет в идеале бесконечно большое внутреннее сопротивление и нулевой ток входов, и значит напряжение между его входами также изначально равно нулю.

    Таким образом, ток через резистор в передатчике будет зависеть только от величины входного напряжения и будет равен току во всей петле, при этом он не будет зависеть от сопротивления нагрузки. Напряжение на входе приемника может быть поэтому легко определено.

    Схема с операционным усилителем отличается тем преимуществом, что позволяет калибровать передатчик без необходимости подключать к нему кабель с приемником, ибо погрешность, вносимая приемником и кабелем, очень незначительна.

    Напряжение источника выбирается исходя из потребности транзистора передатчика для его нормальной работы в активном режиме, а также с условием компенсации падения напряжения на проводах, на самом транзисторе, и на резисторах.

    Допустим, резисторы имеют сопротивления по 500 Ом, а кабель — 100 Ом. Тогда для получения тока в 20 мА потребуется напряжение источника 22 В. Выбирают ближайшее стандартное — 24 В. Избыток мощности от запаса по напряжению будет как раз рассеян на транзисторе.

    Обратите внимание, что на обеих схемах изображена гальваническая развязка между передающим каскадом и входом передатчика. Это нужно для того чтобы избежать любых паразитных связей между передатчиком и приемником.

    В качестве примера передатчика для построения аналоговой токовой петли можно привести готовое изделие NL-4AO с четырьмя аналоговыми каналами вывода для связи компьютера с исполнительным устройством посредством протокола «токовая петля» 4. 20 мА или 0. 20 мА.

    Связь модуля с компьютером осуществляется по протоколу RS-485. Устройство калибруется по току для компенсации погрешностей преобразования и исполняет подаваемые с компьютера команды. Калибровочные коэффициенты хранятся в памяти устройства. Цифровые данные преобразуются в аналоговые при помощи ЦАП.

    Цифровая версия «токовой петли»

    Цифровая токовая петля работает, как правило, в режиме 0. 20 мА, поскольку цифровой сигнал проще воспроизвести именно в таком виде. Точность логических уровней здесь не так важна, поэтому источник тока петли может обладать не очень большим внутренним сопротивлением и сравнительно низкой точностью.

    На приведенной схеме при напряжении питания 24 В на входе приемника падает 0,8 В, значит при сопротивлении резистора 1,2 кОм ток будет равен 20 мА. Падением напряжения на кабеле, даже при его сопротивлении в 10% от общего сопротивления петли, можно пренебречь, как и падением напряжения на оптроне. Практически в данных условиях можно считать передатчик источником тока.

    Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

    Подписывайтесь на наш канал в Telegram!

    Просто пройдите по ссылке и подключитесь к каналу.

    Не пропустите обновления, подпишитесь на наши соцсети:

    Унифицированные аналоговые сигналы в системах автоматики

    При автоматизации технологических процессов используются различные датчики и исполнительные устройства. И те и другие так или иначе связаны с контроллерами или модулями ввода/вывода, которые получают от датчиков измеренные значения физических параметров и управляют исполнительными устройствами.

    Представьте, что все устройства, присоединяемые к контроллеру имели бы различные интерфейсы — тогда производителям пришлось бы «плодить» огромное количество модулей ввода-вывода, а для того, чтобы заменить, например, неисправный датчик, нужно было бы искать точно такой же.

    Именно поэтому, в системах промышленной автоматики принято унифицировать интерфейсы различных устройств.

    В этой статье мы расскажем об унифицированных аналоговых сигналах. Поехали!

    Унифицированные аналоговые сигналы

    С аналоговыми сигналами мы имеем дело при измерении любых физических величин (температуры, влажности, давления и т.д.), а так же при непрерывном управлении исполнительными устройствами (регулирование скорости вращения двигателя с помощью преобразователя частоты; управление температурой с помощью нагревателя и т.д.).

    Во всех перечисленных и им подобных случаях используются аналоговые (непрерывные) сигналы.

    В контроллерном оборудовании в подавляющем большинстве случаев используются два типа аналоговых сигналов: токовый 4-20 мА и сигнал напряжения 0-10 В.

    Унифицированный сигнал напряжения 0-10 В

    При использовании этого типа сигнала для получения информации с датчика весь его (датчика) диапазон делится на диапазон напряжения 0-10 В. Например, датчик температуры имеет диапазоны -10…+70 °С. Тогда при -10 °С на выходе датчика будет 0 В, а при +70 °С — 10 В. Все промежуточные значения находятся из пропорции.

    Это же верно для любого другого устройства. Например, если аналоговый выход частотного преобразователя настроен на передачу текущей скорости вращения двигателя — тогда 0 В у него на выходе означает, что двигатель остановлен, а 10 В, что двигатель крутится на максимальной частоте.

    Читайте так же:
    Регулируемый стабилизатор тока для зарядных устройств

    Управление сигналом 0-10 В

    С помощью унифицированного сигнала напряжения можно не только получать данные о физических величинах, но и управлять устройствами. Например, можно привести трёхходовой клапан в нужное положение, изменить скорость вращения электродвигателя через частотный преобразователь или мощность нагревателя.

    Возьмём для примера электродвигатель, частотой вращения которого управляет частотный преобразователь.

    Частоту вращения двигателя задаёт контроллер сигналом 0-10 В, приходящим на аналоговый вход частотника.Частота вращения двигателя двигателя может быть от 0 до 50 Гц. Тогда, если в соответствии с алгоритмом контроллер собирается раскрутить двигатель на 25 Гц, он должен подать на вход частотника 5В.

    «Токовая петля»: унифицированный аналоговый сигнал 4-20 мА

    Аналоговый сигнал 4-20 мА (ещё называют «токовая петля») так же как сигнал напряжения 0-10 В используется в автоматике для получения информации от датчиков и управления различными устройствами.

    По сравнению с сигналом 0-10 В сигнал 4-20 мА имеет ряд преимуществ:

    • Во-первых, токовый сигнал можно передать на большие расстояния в сравнении с сигналом 0-10 В, в котором происходит падение напряжения на длинной линии, обусловленное сопротивлением проводников.
    • Во-вторых, легко диагностировать обрыв линии, т.к. рабочий диапазон сигнала начинается от 4 мА. Поэтому если на входе 0 мА — значит на линии обрыв.

    Управление сигналом 4-20 мА

    Управление различными устройствами с помощью токового сигнала ничем не отличается от управления с помощью сигнала напряжения. Только в данном случае нужен уже источник не напряжения, а тока.

    Если устройство имеет управляющий вход 4-20 мА, то таким устройством может управлять контроллер или другое интеллектуальное устройство, имеющее соответствующий выход.

    Например, мы хотим плавно открывать вентиль, имеющий электропривод со входом 4-20 мА. Если подать на вход сигнал тока 4 мА, тогда вентиль будет полностью закрыт, а если подать 20 мА — полностью открыт.

    Активный и пассивный аналоговый выход 4-20 мА

    Зачастую аналоговый выход датчика, контроллера или другого устройства — пассивный, то есть не может являться источником тока без внешнего питания. Поэтому при проектировании схемы автоматики нужно внимательно изучить характеристики аналоговых выходов используемых устройств, и если они пассивные — добавить в схему внешний источник питания для пропитки токовой петли.

    На рисунке представлена схема подключения датчика с выходом 4-20 мА к измерителю-регулятору с соответствующим входом. Поскольку выход датчика пассивный — требуется его пропитка внешним блоком питания.

    Нормирующий преобразователь

    При измерении физической величины (температуры, влажности, загазованности, pH и др.) датчики преобразуют её значение в ток, напряжение, сопротивление, ёмкость и т.д. (в зависимости от принципа работы датчика). Для того, чтобы привести выходной сигнал датчика к унифицированному сигналу используют нормирующие преобразователи.

    Нормирующий преобразователь — устройство, приводящее сигнал первичного преобразователя к унифицированному сигналу тока или напряжения.

    Так выглядит датчик температуры с нормирующим преобразователем:

    Сайт Виктора Королева

    Простыми словами о ремонте телевизоров и домашней бытовой техники своими руками

    Мощное зарядное устройство

    Здравствуйте друзья!
    Очень много просьб приходит ко мне от автолюбителей, порекомендовать зарядное устройство для автомобильных аккумуляторов, которое было бы мощным и с током более 15 А. Побороздив просторы интернета, я наткнулся на очень занимательную схемку, которую и хочу представить моим читателям.
    Занимательна эта схема тем, что очень проста в исполнении. Единственное, что может привести к трудностям, так это поиск мощного транзистора КТ947, так как в настоящее время промышленностью он не выпускается. Но, если учесть, что это зарядное устройство может иметь ток до 20 А, можно приложить усилия для поиска данного компонента.
    Если посмотреть профессиональным взглядом, то можно увидеть, что данная схема представляет собой мощный регулируемый блок питания, для сборки которого понадобятся всего два транзистора.
    Трансформатор понадобится любой, у которого выходное напряжение должно быть от 24 до 30 вольт. Вторичная обмотка должна иметь серединный вывод. Таким образом, при, например, общем напряжении в 24 вольта, на среднем отводе должно быть ровно наполовину меньше, т.е. 12 вольт.
    Стабилитрон будем брать мощностью на 1 ватт, так как от его номинала будет зависеть диапазон выходного напряжения. Для снижения шумов стабилитрона VD3, параллельно ему ставится конденсатор C1. Как уже говорилось выше, в схеме задействованы два силовых ключа: VT2 (КТ947) – основной, а для его управления используется второй мощный составной ключ VT1 (КТ827).
    КТ947 может быть заменён аналогом или менее мощными транзисторами (КТ819, 2N3055), но при этом отдаваемый ток будет меньшим, 8 – 10 Ампер. КТ827 может быть заменён на TIP142 или BDW83C. Плавная регулировка выходного напряжения будет обеспечиваться переменным резистором R2, номинал которого может быть от 4,7 до 22 кОм. Данный вариант сборки позволяет плавно регулировать выходное напряжение от 0 до 15 Вольт.
    Транзисторы, используемые в схеме, должны быть расположены на радиаторах охлаждения.
    VD1, VD2 – Д132-50, VD3 – Д815Е; C1, C3 – 1000мкфХ25В, С2 – 0,01 мкф; R1, R3 – 1 кОм, R2 – 10 кОм; VT1 – КТ827, VT2 – КТ947.
    Даташит КТ947 вы можете найти в Библиотеке данного сайта. Там же есть и таблица отечественных биполярных транзисторов, руководствуясь которой, можно подобрать наиболее близкие аналоги.
    Если вам не трудно, поделитесь, пожалуйста, в соц.сетях данным материалом.

    17 комментариев

    Собрал, работает , но ток не регулируется,Стоит 3,38 А.Правда использовал диодный мост и транс без отмотки от середины. Транзисторы применил TIP 35c и TIP 147. Причем 2 TIP 35c запаралелил для умощнения. Схему проверил, исе правильно. Что не так?

    Транс нужен минимум на 24 В и с серединным отводом.

    Сам присматривался к этой схеме, но в итоге остановился на более сложном параметрическом стабилизаторе, но с силовым ключем по этой схеме 947/827.
    Не понятно в данном случае требование к трансу с отводом… на выходе с диодов , все равно получаем 1/2U вторичной обмотки. Единственный плюс среднего отвода — возможность посадки всех полупроводников на единый радиатор без изоляции… В чем я не прав?

    Можно и с простым трансформатором, но мощность будет меньше (Iобщ. = I1 + I2… + In). А ещё это делается, что бы не накапливать статическое электричество на линиях передачи, которое может пробить трансформатор, а также позволяет точнее балансировать сигнал.

    Не согласен. КПД трансформатора с обмоткой без отвода, но с мостом, будет в два раза выше чем КПД трансформатора со средним выводом и двумя диодами, как в схеме.
    Иными словами, если на приведенном на схеме трансе включить вторичные обмотки в параллель и использовать мост, то при том же напряжении, что на схеме с отводом и двумя диодами, а напряжение никак не измениться, с моста снимем ток в два раза больше.

    Читайте так же:
    Простой стабилизатор тока своими руками

    Возможно вы правы, при сборке я не вдавался в такие рассуждения. Как сказано в статье схему я нашел в сети и попробовал собрать бп. Получилось отлично и то, что мне было нужно. Что ж, возможно кто-нибудь воспользуется вашими советами. Комментарии на данном сайте к тому и призваны, чтобы посетители могли сказать свою точку зрения и поделиться своими знаниями, а также поправить автора. Я никоим образом не претендую на исключительную правильность моих суждений. Спасибо вам за предложения по поводу данной статьи. Надеюсь, что и по другим материалам услышим ваше мнение.

    С Новым годом! Удачи и наилучшими пожеланиями@

    Скажите пожалуйста! Это получается транзисторы увеличивают выходной ток независимо если будет ток меньше на трансформаторе?

    Транзисторы увеличивают мощность

    Скажите а можно ли сделать отдельно регулировку тока независимо от напряжения в этой схеме, может что то добавить?

    Можно. В сети полно схем.

    И еще хотел бы узнать, можно ли вместо кт827 поставить тот же кт947 ?

    Скажите пожалуйста если я поставлю два силовых транзистора ТК235-40-1-2 УХЛ2 трансформатор не будет греться?

    А скажите пожалуйста. В этой схеме присутствует защита от переплюсовки?

    Добавить комментарий Отменить ответ

    Для отправки комментария вам необходимо авторизоваться.

    Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.

    Правильное включение светодиода

    Светодиод — это диод способный светится при протекании через него тока. По-английски светодиод называется light emitting diode, или LED.

    Цвет свечения светодиода зависит от добавок добавленных в полупроводник. Так, например, примеси алюминия, гелия, индия, фосфора вызывают свечение от красного до желтого цвета. Индий, галлий, азот заставляет светодиод светится от голубого до зеленного цвета. При добавке люминофора в кристалл голубого свечения, светодиод будет светиться белым светом. В настоящее время промышленность выпускает светодиоды свечения всех цветов радуги, однако цвет зависит не от цвета корпуса светодиода, а именно от химических добавок в его кристалле. Светодиод любого цвета может иметь прозрачный корпус.

    Первый светодиод был изготовлен в 1962 году в Университете Иллинойса. В начале 1990-ых годов на свет появились яркие светодиоды, а чуть позже сверх яркие.
    Преимущество светодиодов перед лампочками накаливания не оспоримы, а именно:

    * Низкое электропотребления – в 10 раз экономичней лампочек
    * Долгий срок службы – до 11 лет непрерывной работы
    * Высокий ресурс прочности – не боятся вибраций и ударов
    * Большое разнообразие цветов
    * Способность работать при низких напряжениях
    * Экологическая и противопожарная безопасность – отсутствие в светодиодах ядовитых веществ. светодиоды не греются, от чего пожары исключаются.

    Маркировка светодиодов

    Рис. 1. Конструкция индикаторных 5 мм светодиодов

    В рефлектор помещается кристалл светодиода. Этот рефлектор задает первоначальный угол рассеивания.
    Затем свет проходит через корпус из эпоксидной смолы . Доходит до линзы — и тут начинает рассеиваться по сторонам на угол, зависящий от конструкции линзы, на практике — от 5 до 160 градусов.

    Излучающие светодиоды можно разделить на две большие группы: светодиоды видимого излучения и светодиоды инфракрасного (ИК) диапазона. Первые применяются в качестве индикаторов и источников подсветки, последние — в устройствах дистанционного управления, приемо-передающих устройствах ИК диапазона, датчиках.
    Светоизлучающие диоды маркируются цветовым кодом (табл. 1). Сначала необходимо определить тип светодиода по конструкции его корпуса (рис. 1), а затем уточнить его по цветной маркировке по таблице.

    Рис. 2. Виды корпусов светодиодов

    Цвета светодиодов

    Светодиоды бывают почти всех цветов: красный, оранжевый, желтый, желтый, зеленый, синий и белый. Синего и белого светодиода немного дороже, чем другие цвета.
    Цвет светодиодов определяется типом полупроводникового материала, из которого он сделан, а не цветом пластика его корпуса. Светодиоды любых цветов бывают в бесцветном корпусе, в таком случае цвет можно узнать только включив его…

    Таблица 1. Маркировка светодиодов

    Многоцветные светодиоды

    Устроен многоцветный светодиод просто, как правило это красный и зеленый объединенные в один корпус с тремя ножками. Путём изменения яркости или количества импульсов на каждом из кристаллов можно добиваться разных цветов свечения.

    Светодиоды подключаются к источнику тока, анодом к плюсу, катодом к минусу. Минус (катод) светодиода обычно помечается небольшим спилом корпуса или более коротким выводом, но бывают и исключения, поэтому лучше уточнить данный факт в технических характеристиках конкретного светодиода.

    При отсутствии указанных меток полярность можно определить и опытным путём, кратковременно подключая светодиод к питающему напряжению через соответствующий резистор. Однако это не самый удачный способ определения полярности. Кроме того, во избежание теплового пробоя светодиода или резкого сокращения срока его службы, нельзя определять полярность «методом тыка» без токоограничивающего резистора. Для быстрого тестирования резистор с номинальным сопротивлением 1кОм подходит большинству светодиодов если напряжение 12V или менее.

    При подключении светодиода необходимо соблюдать полярность, иначе прибор может выйти из строя. Напряжение пробоя указывается изготовителем и обычно составляет более 5 В для одного светодиода. Почему? Как уже ясно из названия, светодиод это не выпрямительный диод, и, хотя свойство пропускать ток в одном направлении у них общее, между ними есть значительная разница. Для того, что светодиод излучал в видимом диапазоне, у него значительно более широкая запрещенная зона, чем у обычного диода. А от ширины запрещенной зоны напрямую зависит такой паразитный параметр диодов, как внутренняя емкость. При изменении направления тока, эта емкость разряжается, за какое-то время, называемое временем закрытия, зависящее от размеров этой емкости. Во время разряда емкости, светодиодный кристалл испытывает значительные пиковые нагрузки на протяжении гараздо большего времени, нежели обычный диод. При последующем изменении направления тока на «правильное» ситуация повторяется. Поскольку время закрытия / открытия у обычных диодов значительно меньше, необходимо использовать их в цепях переменного тока, включая последовательно со светодиодами, для снижения негативного влияния переменного тока на светодиодный кристалл. Если светодиодное изделие не имеет встроенной защиты от переполюсовки, то ошибка подключения также приведет к снижению срока службы. В некоторые светодиоды токоограничивающий резистор встроен «с завода» и их сразу можно подключать к источнику 12 или 5 вольт, но такие светодиоды встречаются довольно редко и чаще всего к светодиоду необходимо подключать внешний токоограничивающий резистор.

    Читайте так же:
    Стабилизаторы напряжения постоянного тока понижающий

    Сразу следует предупредить: не следует направлять луч светодиода непосредственно в свой глаз (а также в глаз товарища) на близком расстоянии, что может повредить зрение.

    Напряжение питания

    Две главных характеристики светодиодов это падение напряжения и сила тока. Обычно светодиоды рассчитаны на силу тока в 20 мА, но бывают и исключения, например, четырехъкристальные светодиоды обычно рассчитаны на 80 мА , так как в одном корпусе светодиода содержаться четыре полупроводниковых кристалла, каждый из которых потребляет 20 мА. Для каждого светодиода существуют допустимые значения напряжения питания Umax и Umaxобр (соответственно для прямого и обратного включений). При подаче напряжений свыше этих значений наступает электрический пробой, в результате которого светодиод выходит из строя. Существует и минимальное значение напряжения питания Umin, при котором наблюдается свечение светодиода. Диапазон питающих напряжений между Umin и Umax называется “рабочей” зоной, так как именно здесь обеспечивается работа светодиода.

    Напряжение питания — параметр для светодиода неприменимый. Нет у светодиодов такой характеристики, поэтому нельзя подключать светодиоды к источнику питания напрямую. Главное, чтобы напряжение, от которого (через резистор) питается светодиод, было выше прямого падения напряжения светодиода (прямое падение напряжения указывается в характеристике вместо напряжения питания и у обычных индикаторных светодиодов колеблется в среднем от 1,8 до 3,6 вольт).
    Напряжение, указанное на упаковке светодиодов — это не напряжение питания. Это величина падения напряжения на светодиоде. Эта величина необходима, чтобы вычислить оставшееся напряжение, «не упавшее» на светодиоде, которое принимает участие в формуле вычисления сопротивления резистора, ограничивающего ток, поскольку регулировать нужно именно его.
    Изменение напряжение питания всего на одну десятую вольта у условного светодиода (с 1,9 до 2 вольт) вызовет пятидесятипроцентное увеличение тока, протекающего через светодиод (с 20 до 30 милиампер).

    Для каждого экземпляра светодиода одного и того же номинала подходящее для него напряжение может быть разным. Включив несколько светодиодов одного и того же номинала параллельно, и подключив их к напряжению, например, 2 вольта, мы рискуем из-за разброса характеристик быстро спалить одни экземпляры и недосветить другие. Поэтому при подключении светодиода надо отслеживать не напряжение, а ток.

    Величина тока для светодиода является основным параметром, и как правило, составляет 10 или 20 миллиампер. Неважно, какое будет напряжение. Главное, чтобы ток, текущей в цепи светодиода, соответствовал номинальному для светодиода. А ток регулируется включённым последовательно резистором, номинал которого вычисляется по формуле:

    R — сопротивление резистора в омах.
    Uпит — напряжение источника питания в вольтах.
    Uпад — прямое падение напряжения на светодиоде в вольтах (указывается в характеристиках и обычно находится в районе 2-х вольт). При последовательном включении нескольких светодиодов величины падений напряжений складываются.
    I — максимальный прямой ток светодиода в амперах (указывается в характернистиках и составляет обычно либо 10, либо 20 миллиамперам, т.е. 0,01 или 0,02 ампера). При последовательном соединении нескольких светодиодов прямой ток не увеличивается.
    0,75 — коэффициент надёжности для светодиода.

    Не следует также забывать и о мощности резистора. Вычислить мощность можно по формуле:

    P — мощность резистора в ваттах.
    Uпит — действующее (эффективное, среднеквадратичное) напряжение источника питания в вольтах.
    Uпад — прямое падение напряжения на светодиоде в вольтах (указывается в характеристиках и обычно находится в районе 2-х вольт). При последовательном включении нескольких светодиодов величины падений напряжений складываются. .
    R — сопротивление резистора в омах.

    Расчет токогораничивающего резистора и его мощности для одного светодиода

    Типичные характеристики светодиодов

    Типовые параметры белого индикаторного светодиода: ток 20 мА, напряжение 3,2 В. Таким образом, его мощность составляет 0,06 Вт.

    Также к маломощным относят светодиоды поверхностного монтажа — SMD. Он подсвечивают кнопки в вашем сотовом, экран вашего монитора, если он с LED-подсветкой, из них изготовлены декоративные светодиодные ленты на самоклеющейся основе и многое другое. Есть два наиболее распостраненных типа: SMD 3528 и SMD 5050. Первые содержат такой же кристалл, как и индикаторные светодиоды с выводами, то есть его мощность 0,06 Вт. А вот второй — три таких кристалла, поэтому его нельзя уже называть светодиодом — это светодиодная сборка. Принято называть SMD 5050 светодиодами, однако это не совсем правильно. Это — сборки. Их общая мощность, соответственно, 0,2 Вт.
    Рабочее напряжение светодиода зависит от полупроводникового материала, из которого он сделан, соответственно есть зависимость между цветом свечения светодиода и его рабочим напряжением.

    Таблица падения напряжений светодиодов в зависимости от цвета

    По величине падения напряжения при тестировании светодиодов мультиметром можно определить примерный цвет свечения светодиода согласно таблице.

    Последовательное и параллельное включение светодиодов

    При последовательном подключении светодиодов сопротивление ограничивающего резистора рассчитывается также, как и с одним светодиодом, просто падения напряжений всех светодиодов складываются между собой по формуле:

    При последовательном включении светодиодов важно знать о том, что все светодиоды, используемые в гирлянде, должны быть одной и той же марки. Данное высказывание следует взять не за правило, а за закон.

    Что б узнать какое максимальное количество светодиодов, возможно, использовать в гирлянде, следует воспользоваться формулой

    * Nmax – максимально допустимое количество светодиодов в гирлянде
    * Uпит – Напряжение источника питания, например батарейки или аккумулятора. В вольтах.
    * Uпр — Прямое напряжение светодиода взятого из его паспортных характеристик (обычно находится в пределах от 2 до 4 вольт). В вольтах.
    * При изменении температуры и старения светодиода Uпр может возрасти. Коэфф. 1,5 дает запас на такой случай.

    При таком подсчете “N” может иметь дробный вид, например 5,8. Естественно вы не сможете использовать 5,8 светодиодов, посему следует дробную часть числа отбросить, оставив только целое число, то есть 5.

    Ограничительный резистор, для последовательного включения светодиодов рассчитывается точно также как и для одиночного включения. Но в формулах добавляется еще одна переменная “N” – количество светодиодов в гирлянде. Очень важно чтобы количество светодиодов в гирлянде было меньше или равно “Nmax”- максимально допустимому количеству светодиодов. В общем, должно выполнятся условие: N =

    голоса
    Рейтинг статьи
    Ссылка на основную публикацию
    Adblock
    detector