Sfera-perm.ru

Сфера Пермь
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Схема подключения трехфазного счетчика с амперметром

Как подключить вольтметр амперметр

Очень часто начинающие радиолюбители задают один и тот же вопрос: — Как подключить универсальный китайский вольтметр амперметр к самодельному зарядному устройству или регулируемому блоку питания? В последнее время меня буквально заваливают вопросами, как подключить, куда подключить. Поэтому я решил написать специально отдельную статью, в которой подробно расскажу, как и каким образом подключить китайский вольтметр амперметр к зарядному устройству или самодельному регулируемому блоку питания.

На сегодняшний день существует две популярные китайские, универсальные модели вольтметров амперметров со встроенным шунтом, которые так любят покупать в Китае на АлиЭкспресс все без исключения начинающие и профессиональные радиолюбители.

Давайте детально рассмотрим две модели самых популярных вольтметров амперметров китайского производства.

Оба прибора имеют пять проводов для подключения к блоку питания. У первого слева три толстых провода (черный, синий, красный) и два тонких (черный, красный). Тонкие провода предназначены для питания прибора: красный плюс, черный минус. Толстые провода: Черный минус амперметра, синий выход амперметра, красный вход вольтметра.

Второй прибор также имеет пять проводов три тонких (черный, красный, желтый) и два толстых провода (черный, красный). Тонкие провода предназначены для питания прибора: красный плюс, черный минус, желтый вход вольтметра. Толстые провода: черный минус амперметра, красный выход амперметра.

В каждый китайский универсальный измерительный прибор (КУИП) встроен измерительный шунт для амперметра, а это большой плюс, потому, что не надо ничего «колхозить», сделано по принципу «поставил и забыл». В некоторых КУИПах шунт изогнутый буквой «М» и блестящий, мне достались экземпляры с медным «П» образным шунтом. Как я понял, на качество измерений форма и цвет шунта никак не влияет.

У приборов на плате имеются подстроечные SMD резисторы с помощью которых, есть возможность подкорректировать показания вольтметра и амперметра.

На этом рисунке изображена схема подключения вольтметра амперметра первой модели к зарядному устройству из компьютерного блока питания.

Схема подключения вольтметра амперметра и вентилятора к зарядному устройству из компьютерного блока питания

Питание прибора осуществляется от отдельного источника питания в данном случае это пяти вольтовая зарядка от телефона, которую легко разместить в корпусе блока питания. Дело в том, что если подключить вольтметр амперметр к регулируемому выходу блока питания, то при понижении напряжения менее 4.5В прибор просто перестанет работать. Скорость вентилятора то же будет снижаться, но при низком напряжении радиаторы блока питания будут немного теплыми и ничего страшного не произойдет.

При выходном напряжении более 12В стабилизатор напряжения L7812CV включается в работу и тем самым поддерживает постоянное напряжение на вентиляторе не более 12В.

На этом рисунке изображена схема подключения вольтметра амперметра второй модели к зарядному устройству из компьютерного блока питания.

Схема подключения вольтметра амперметра и вентилятора к зарядному устройству из компьютерного блока питания

С зарядным устройством из компьютерного блока питания все понятно. Давайте рассмотрим схему подключения китайского вольтметра амперметра первой модели к регулируемому блоку питания. В верхней части схемы изображен регулируемый блок питания с защитой от короткого замыкания, состоящий из диодного моста, конденсатора, стабилизатора напряжения LM317, транзистора MJE13009, переменного резистора и трех постоянных резисторов.

Схема подключения вольтметра амперметра к регулируемому блоку питания

В нижней части схемы вентилятор и китайский вольтметр амперметр подключаются через стабилизатор напряжения L7812CV к выходу диодного моста параллельно конденсатору С1. Стабилизированное напряжение на вентиляторе и КУИПе не более 12В.

На этом рисунке изображена схема подключения китайского вольтметра амперметра второй модели к регулируемому блоку питания.

Схема подключения вольтметра амперметра к регулируемому блоку питания

Многие радиолюбители предпочитают устанавливать в зарядные устройства и регулируемые блоки питания аналоговые китайские измерительные приборы (КИП) за многие годы не утратившие своей популярности. Поэтому предлагаю рассмотреть схему подключения классического стрелочного вольтметра и амперметра.

На этом рисунке изображена схема подключения вольтметра и амперметра со встроенным токоизмерительным шунтом.

Схема подключения вольтметра и амперметра со встроенным шунтом к блоку питания

Вольтметр подключается параллельно к источнику питания с соблюдением полярности. На приборе должны быть отметки плюс и минус. Амперметр обычно подключают в разрыв минусового провода после вольтметра. Так же можно подключить в разрыв плюсового провода на точность измерений способ подключения прибора никак не влияет. Главное условие, соблюдение полярности.

Читайте так же:
Коэффициент трансформации тока электросчетчика это

Иногда бывают амперметры без встроенного токоизмерительного шунта. Тогда шунт приходится покупать отдельно. Чтобы у вас не было дополнительных расходов, перед покупкой амперметра всегда уточняйте у продавца наличие шунта внутри прибора. Иногда стоимость отдельного шунта больше стоимости прибора со встроенным шунтом.

На этом рисунке изображена схема подключения вольтметра и амперметра с отдельным токоизмерительным шунтом к блоку питания.

Схема подключения вольтметра и амперметра с отдельным шунтом к блоку питания

Шунт всегда подключается параллельно амперметру. Без него прибор просто сгорит. Как подобрать шунт? Если прибор рассчитан на 10А, значит и шунт должен быть на 10А. На каждом шунте имеется маркировка указывающая на какую силу тока он рассчитан.

Ну вот и все, моя статья подошла к концу, у вас теперь есть новая пища для размышлений.

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Рекомендую посмотреть видеоролик о том, как подключить вольтметр амперметр

Как правильно подключить амперметр

Без электричества нельзя представить жизнь современного человека. Оно обогревает дома, дает свет, движет машины, заставляет работать компьютеры и смартфоны. Невозможно назвать сферу жизни, где можно обойтись без электричества.

Основными физическими величинами, характеризующими электрический ток, являются его напряжение и сила. Их показатели можно измерить с помощью специальных приборов. Напряжение — с помощью вольтметра, силу тока — амперметра. В статье пойдет речь о том, что такое амперметр, каково его устройство, как осуществляется подключение к сети и для чего это нужно.

Применение амперметров

Без амперметров не обойтись там, где занимаются выработкой и распределением электроэнергии. Они нужны на промышленных предприятиях, где работает большое количество станков и машин, потребляющих электричество. Замеры необходимы при возведении жилых комплексов, чтобы быть уверенными в том, что сети смогут выдержать расчетную нагрузку. Силу тока измеряют:

  • в электролабораториях;
  • на аккумуляторных производствах;
  • при создании точных приборов;
  • в автомобильной промышленности;
  • при строительстве энергетических объектов;
  • в сельском хозяйстве;
  • при установке электрооборудования на концертах и шоу, и так далее, и тому подобное.

Находят свое применение амперметры и в быту. У многих людей, имеющих минимальные навыки электрика, в хозяйстве найдется этот прибор, позволяющий измерить силу тока, выдаваемого автомобильным аккумулятором или домашней электросетью при подключении того или иного устройства. Это позволяет понять, является ли безопасным для проводки подключение электробытовых приборов с повышенным потреблением тока.

Принцип работы амперметра

Работа традиционного прибора основана на принципе возникающего взаимодействия между полями постоянного магнита и обмоткой катушки, через которую пропускается электрический ток. Во время подачи тока через обмотку, появляется электромагнитный импульс, вызывающий вихревые токи, заставляющие катушку вращаться относительно неподвижно закрепленного магнита.

Соединенная с рамкой, стрелка начинает отклоняться на величину, пропорциональную силе воздействующего тока. Она движется вдоль откалиброванной шкалы с цифровыми значениями. Круговому движению противодействуют пружины. Чем больше сила тока в проводнике в момент измерения, тем сильнее будет отклонение стрелки. Когда момент вращения, возникший под действием движущихся заряженных частиц проводника, уравновешивается силой противодействия пружин, стрелка амперметра замирает, показывая значение тока, проходящего через прибор.

Зачастую необходимо измерить силу тока, которая заведомо выше, чем предел измерений амперметра. В этом случае, в цепь включают резистор, называемый шунтирующим, а саму схему называют шунтом. Параметры шунта рассчитываются заранее и учитываются в производстве приборов. С этим учетом производится настройка магнита и противодействующих пружин. Учитывается и внутреннее сопротивление самого амперметра, которое существенно влияет на показываемые им данные. Ведь устройство подключается к сети последовательно. Подробно о подключении амперметра к сети будет рассказано ниже.

Виды амперметров

От того, каково устройство амперметра и на каких принципах основывается его работа, зависит и точность показаний. В соответствии с общепринятой классификацией, все измерительные приборы подразделяются на:

  • электромагнитные;
  • магнитоэлектрические;
  • термоэлектрические;
  • электродинамические;
  • ферродинамические;
  • цифровые.

Существуют и другие классификации. Но они не так распространены из-за использования приборов измерения в узкопрофильных отраслях. К ним можно отнести модульные амперметры для установки в силовых щитах или компактные, применяемые для контроля заряда автомобильных аккумуляторов.

Читайте так же:
Как воровать электричество если есть счетчик

Электромагнитные амперметры

Отличительной особенностью электромагнитных устройств является отсутствие в них подвижной рамки с обмоткой. Вместо катушки, вращательное движение стрелке придает сердечник, расположенный на оси.

Такие амперметры менее восприимчивы к движению заряженных частиц, поэтому их показания не так точны, в отличие от магнитоэлектрических приборов. Плюсом же является универсальность. Их можно использовать для замеров в цепях и с постоянным, и с переменным током.

Магнитоэлектрические устройства

Магнитоэлектрические амперметры — наиболее характерный пример устройств для измерения силы тока. В принцип их действия заложено взаимодействие магнитных полей наэлектризованной подвижной катушки и постоянного магнита. Преимуществами такой конструкции являются:

  • минимальное потребление энергии;
  • высокая чувствительность;
  • максимальная точность показаний амперметра.

Показания магнитоэлектрических приборов снимаются с равномерно градуированной шкалы с подвижной стрелкой.

Хотя амперметры этого вида получили широкое распространение, особенно в электролабораториях и промышленности, у них есть и ряд минусов. Среди недостатков рассматриваемых устройств выделяют их сложность, обусловленную необходимостью оборудования их движущейся катушкой. Кроме того, замеры таким прибором производятся лишь в электроцепи с постоянным током.

Термоэлектрические приборы

Термоэлектрические устройства, измеряющие силу тока, применяются для измерения в цепях, характеризующихся высокочастотными токами. Работают такие приборы, используя магнитоэлектрический механизм с термопарой. Во время прохождения тока через амперметр, рабочие элементы прибора нагреваются. И чем выше интенсивность движения электронов, тем сильнее нагрев, который и переводится в конкретные показатели амперметра.

Электродинамические амперметры

Электродинамические приспособления, для замера тока в электрических цепях, работают, используя принцип взаимодействия электрических полей, возникающих в магнитных катушках под воздействием проходящего тока. В конструкции таких амперметров предусмотрено наличие сразу двух катушек, одна из которых подвижная, а другая закреплена неподвижно. С положительной стороны можно отметить универсальность, дающую возможность измерять силу, как постоянного, так и переменного тока

Недостатком является чрезмерная восприимчивость к изменению магнитного поля. Это может помешать получить точный результат, если поблизости с прибором будет находиться источник электромагнитных помех. Поэтому электродинамические амперметры защищают специальным экраном.

Ферродинамический измеритель силы тока

Амперметры этого типа характеризуются самыми точными показателями замеров и высокой эффективностью. Для них нет необходимости устанавливать дополнительную защиту, так как ферродинамические амперметры не восприимчивы к электромагнитным полям за пределами устройства. Кроме того, они чрезвычайно точны.

Конструкция включает неподвижную катушку с сердечником и замкнутой ферромагнитной проводкой. Из-за своих технических характеристик, надежности и простоты использования, такие изделия получили наибольшее распространение в оборонной сфере и на военных объектах.

Цифровые амперметры

Цифровые амперметры — это самые современные приборы измерения силы тока. Замеренные показатели выводятся не на шкалу с использованием стрелки, а на дисплей, с помощью световой индикации. Так как показываются конкретные цифры, снимать показания с цифровых устройств более удобно, чем с аналоговых стрелочных приборов измерения. И они отображаются более точно. Кроме этого, такие амперметры спокойно переносят тряску и вибрации. А так как положение дисплея не играет роли в объективности показаний, его можно разместить под любым, удобным для наблюдения, углом.

По этой причине, именно цифровые приборы получили распространение в автомобильной промышленности. Для большей надежности их обеспечивают элементами защиты от попадания внутрь устройства пыли и влаги. Корпуса таких амперметров часто изготавливают противоударными. Кроме механических воздействий, цифровые приборы не реагируют на электромагнитные поля и им не страшны низкие или высокие температуры. Поэтому они могут использоваться как внутри, так и снаружи помещений.

Подключение амперметра

Вот и добрались до основного раздела статьи. При подключении амперметра, пожалуй, может возникнуть лишь один вопрос: параллельно или последовательно подсоединять прибор к тестируемой цепи? Ответ тоже один: ПОСЛЕДОВАТЕЛЬНО. При этом подключение может быть прямым и косвенным.

В случае прямого соединения, амперметр включается в цепь между источником питания и электроприбором. При косвенном подключении включение в цепь происходит с шунтом или через трансформатор. Если шунт увеличивает сопротивление сети, то трансформатор преобразует ток с большими значениями до величин, которые можно измерить амперметром.

К сведению. Существенной разницей между подключением вольтметра и амперметра является то, что вольтметр подключается параллельно. Из-за этого профессионалы говорят, что измеритель напряжения к цепи подключают, а прибор для измерения силы тока в цепь включают.

При подключении амперметра нужно учесть несколько важных моментов:

  • измеряемый в цепи ток не должен превышать максимально допустимого для данного устройства;
  • при включении в цепь обязательно соблюдение полярности.
Читайте так же:
60 ампер сколько киловатт выдержит счетчик трехфазный

Во время проведения измерений необходимо обеспечить отсутствие вибраций в месте установки амперметра. Порядок действий при подключении прибора следующий:

  1. Определяются входящий и выходящий контакты, и их полярность. Положительный контакт окрашен в красный цвет, отрицательный в черный. На некоторых моделях может быть еще один контакт, преимущественно зеленого цвета. Это заземление.
  2. В зависимости от того, в цепи с каким током (постоянным или переменным) будут проводиться замеры, переключатель прибора переводится в положение «AC» или «DC». Первые символы обозначают цепь с переменным током, вторые — с постоянным.
  3. В любом месте, между источником питания и устройством-энергопотребителем, производится разрыв одного провода электрической цепи.
  4. Амперметр последовательно включается в цепь.

После того, как движение стрелки, или смена цифр на дисплее, прекратится, снимаются показания силы тока.

Видео по теме

Подключение вольтамперметра DSN-VC288 100 вольт 10 ампер. Все просто

Доброго утра, дня и вечера Уважаемые мастера — самодельщики!

Сегодня я хочу Вам рассказать об одном из самых популярных, на сегодняшний день, китайском измерительном приборе, вольт амперметре DSN-VC288. С рабочими параметрами измерения напряжения от 0 до 100В и силой тока от 0 до 10А.

Вольт амперметр DSN-VC288, на сегодняшний день, является одним из самых популярных и востребованных, для измерения напряжения и силы тока, у радиолюбителей и мастеров самодельщиков. Устанавливается на различные электрические приборы. Цена данного прибора весьма бюджетна. В интернет магазинах колеблется от 100 до 200 русских рублей. Что на сегодняшний день, можно считать практически даром.

Вольт амперметр DSN-VC288 не слишком годится для сборки лабораторного блока питания. Так как минимальный шаг индикации показаний силы тока, 10 ma. Т.ч. поставить его можно в ЛБП с не слишком высокими требованиями к точности измерения выдаваемого напряжения и силы тока. То есть в домашний блок питания, где не требуется очень высокая точность.

Подключается данный прибор очень просто. В данном приборе присутствуют два разъема. Разъем на 3 контакта служит для подачи напряжения питания на сам прибор. Все таки это электронная система и тоже любит кушать электричество, правда совсем немного. Питание вольт амперметра укладывается в вилочку от 5 до 30 В. Контакт для снятия измеряемого напряжения на нагрузке. Изамеряемое напряжение, это напряжение которое будем снимать непосредственно с нагрузки от 0 до 100 В. Контакт третий это минус. 2-Х контактный разъем служит для измерения силы тока в цепи. Подключается в цепь через минус последовательно от источника питания к нагрузке.Так же на плате вольт амперметра DSN-VC288 размещены два подстроечных резистора. Которые служат для калибрования индикации измеряемого напряжения и тока, соответственно.

Многие, кому пришлось столкнуться с выше указаным прибором измерения, недовольны низким качеством калибровочных подстроечных сопротивлений. Здесь, как говорится, кому повезет, а кому не очень.

Как всегда, немного о технике безопасности. Это важно, уважайте электричество, не суйте пальцы в розетку, не измеряйте напряжение языком и оно вас не тронет.

Любителям смотреть, а не читать предлагаю посмотреть, с удовольствием, видео ролик с подробным описанием подключения вольтамперметра DSN-VC288.

Видео ролик инструкция:

Инструменты для подключения измерительного прибора:

1. Паяльник, желательно предназначенный для пайки электронных схем, а не старых тазиков.
4. Контрольный тестер, которому вы доверяете. Для проверки точности измерения, нашим прибором, напряжения и силы тока. И дальнейшей калибровки вольтамперметра DSN-VC288.
5. Любая нагрузка для контрольного измерения (можно использовать светодиодную лампочку соответственного напряжения) .
7. Канцелярский нож для снятия изоляции и подготовки проводов для пайки.

Расходные материалы при подключении:

1. Припой.
2. Паяльная кислота или канифоль.
3. Набор проводов для монтажа.
4. Изоляционные материалы, изолента или термо усадка.
5. Немного электричества для проверки прибора.

Порядок подключения нашего вольт амперметра DSN-VC288:






Существует две схемы подключения нашего вольт амперметра.
Схема номер один, подключения. Собирается в том случае если напряжение измерения укладывается в вилку используемого напряжения питания вольтамперметра. То есть от 5 до 30В.

Читайте так же:
Водный провод от счетчика

В этом случае (+) прибора и (+) измеряемой нагрузки запитываются в одной точке.
При выпадании измеряемого напряжения из вилки 5-30В (0-5В или 30-100В) подключение плюсового провода питания прибора и плюсового провода снятия напряжения подключаются от разных источников напряжения. Если подать напряжение на питание прибора менее 5В прибор не будет работать. Если подать напряжение более 30В прибор выйдет из строя.

Распиновка проводов прибора:

1. Колодка на три провода. Я называю ее колодка напряжения.
— Красный. Плюс электро питания нашего прибора.
— Черный. Минус электро питания нашего прибора.
— Желтый. Плюсовой провод измерения напряжения на подключаемой нагрузке.

Схемы подключения китайского вольт амперметра даны ниже.
Первая схема подключения по первому варианту. Вторая по второму.

Если вы имеете желание посмотреть очень подробное пошаговое разъяснение как подключить китайский вольтамперметр модель DSN-VC288, оно изложено в видеоролике размещенном выше, так же в ютубовском варианте ниже видео размещена ссылка, на интернет магазин. Где можно приобрести данный вольт амперметр. На сегодняшний день, за 100 рублей.

На сегодня все, . дорогу осилит идущий. Удачи Вам!

Электрическая схема цифрового вольтметра и амперметра

  1. Микросхема СА3162Е для вольтметра и амперметра
  2. Принципиальная схема вольтметра
  3. Принципиальная схема амперметра
  4. Схема подключения
  5. Рекомендации по подбору комплектующих
  6. Налаживание цифрового вольтметра и амперметра
  7. Видео о создании

Сегодня мы рассмотрим несложные электрические схемы цифровых вольтметра и амперметра, построенных без использования микроконтроллеров на микросхемах СА3162, КР514ИД2. Обычно, у хорошего лабораторного блока питания есть встроенные вольтметр и амперметр. Вольтметр позволяет точно установить выходное напряжение, а амперметр показывает ток через нагрузку.

В старых лабораторных блоках питания были стрелочные индикаторы, но сейчас используются цифровые. Сейчас радиолюбители чаще всего делают такие приборы на основе микроконтроллера или микросхем АЦП вроде КР572ПВ2, КР572ПВ5.

Микросхема СА3162Е для цифровых вольтметра и амперметра

Существуют и другие микросхемы аналогичного действия. Например, микросхема СА3162Е предназначена для создания измерителя аналоговой величины с отображением результата на трехразрядном цифровом индикаторе.

Микросхема СА3162Е представляет собой АЦП с максимальным входным напряжением 999 mV (при этом показания «999») и логической схемой, которая выдает сведения о результате измерения в виде трех поочередно меняющихся двоично-десятичных четырехразрядных кодов на параллельном выходе и трех выходах для опроса разрядов схемы динамической индикации.

Чтобы получить законченный прибор, нужно добавить дешифратор для работы на семисегментный индикатор и сборку из трех семисегментных индикаторов, включенных в матрицу для динамической индикации, а также, трех управляющих ключей.

Тип индикаторов может быть любым — светодиодные, люминесцентные, газоразрядные, жидкокристаллические, все зависит от схемы выходного узла на дешифраторе и ключах. Здесь используется светодиодная индикация на табло из трех семисегментных индикаторов с общими анодами.

Индикаторые включены по схеме динамической матрицы, то есть, все их сегментные (катодные) выводы включены параллельно. А для опроса, то есть, последовательного переключения, используются общие анодные выводы.

Принципиальная схема вольтметра

Выше можно увидеть электрическую схему вольтметра, измеряющего напряжение от 0 до 100V (0. 99,9V). Измеряемое напряжение поступает на выводы 11–10 (вход) микросхемы D1 через делитель на резисторах R1–R3.

Конденсатор СЗ исключает влияние помех на результат измерения. Резистором R4 устанавливают показания прибора на ноль, при отсутствии входного напряжения А резистором R5 выставляют предел измерения так, чтобы результат измерения соответствовал реальному, то есть, можно сказать, им калибруют прибор.

Теперь о выходах микросхемы. Логическая часть СА3162Е построена по логике ТТЛ, а выходы еще и с открытыми коллекторами. На выходах «1-2-4-8» формируется двоичнодесятичный код, который периодически сменяется, обеспечивая последовательную передачу данных о трех разрядах результата измерения.

Если используется дешифратор ТТЛ, как, например, КР514ИД2, то его входы непосредственно подключаются к данным входам D1. Если же будет применен дешифратор логики КМОП или МОП, то его входы будет необходимо подтянуть к плюсу при помощи резисторов. Это нужно будет сделать, например, если вместо КР514ИД2 будет использован дешифратор К176ИД2 или CD4056.

Читайте так же:
Что будет если разбить электросчетчик

Выходы дешифратора D2 через токоограничивающие резисторы R7–R13 подключены к сегментным выводам светодиодных индикаторов Н1–НЗ. Одноименные сегментные выводы всех трех индикаторов соединены вместе. Для опроса индикаторов используются транзисторные ключи VT1–VT3, на базы которых подаются команды с выходов Н1–НЗ микросхемы D1.

Эти выводы тоже сделаны по схеме с открытым коллектором. Активный ноль, поэтому используются транзисторы структуры р-п-р.

Принципиальная схема амперметра

Схема практически такая же, за исключением входа. Здесь вместо делителя стоит шунт на пятиваттном резисторе R2 сопротивлением 0,1 От. При таком шунте прибор измеряет ток до 10А (0. 9.99А). Установка на ноль и калибровка, как и в первой схеме, осуществляется резисторами R4 и R5.

Выбрав другие делители и шунты, можно задать другие пределы измерения, например, 0. 9.99V, 0. 999mA, 0. 999V, 0. 99.9А. Это зависит от выходных параметров того лабораторного блока питания, в который будут установлены эти индикаторы. Также, на основе данных схем можно сделать и самостоятельный прибор для измерения напряжения и тока (настольный мультиметр).

При этом нужно учесть, что даже используя жидкокристаллические индикаторы прибор будет потреблять существенный ток, так как логическая часть СА3162Е построена по ТТЛ-логике. Поэтому, хороший прибор с автономным питанием вряд ли получится. А вот автомобильный вольтметр (рис.4) выйдет неплохой.

Питаются приборы постоянным стабилизированным напряжением 5V. В источнике питания, в который будут они установлены, необходимо предусмотреть наличие такого напряжения при токе не ниже 150 mA.

Подключение прибора
На рисунке 3 показана схема подключения измерителей в лабораторном источнике.

Схема подключения вольтметра и амперметра в лабораторном источнике

Ниже отражена схема подключения измерителей в лабораторном источнике:

Самодельный автомобильный вольтметр на микросхемах

Рекомендации по подбору комплектующих для монтажа вольтметра и амперметра

Пожалуй, самое труднодоставаемое — это микросхемы СА3162Е. Из аналогов нам известна только NTE2054. Возможно есть и другие аналоги. С остальным значительно проще. Как уже сказано, выходную схему можно сделать на любом дешифраторе и соответствующих индикаторах. Например, если индикаторы будут с общим катодом, то нужно КР514ИД2 заменить на КР514ИД1 (цоколевка такая же), а транзисторы VТ1–VТЗ перетащить вниз, подсоединив их коллектора к минусу питания, а эмиттеры — к общим катодам индикаторов. Можно использовать дешифраторы КМОП-логики, подтянув их входы к плюсу питания при помощи резисторов.

Налаживание цифрового вольтметра и амперметра

В общем-то оно совсем несложное. Начнем с вольтметра. Сначала замкнем между собой выводы 10 и 11 D1, а подстройкой R4 выставим нулевые показания. Затем, убираем перемычку, замыкающую выводы 11–10 и подключаем к клеммам «нагрузка» образцовый прибор, например, мультиметр.

Регулируя напряжение на выходе источника, резистором R5 настраиваем калибровку прибора так, чтобы его показания совпадали с показаниями мультиметра. Далее налаживаем амперметр. Сначала, не подключая нагрузку, регулировкой резистора R5 устанавливаем его показания на ноль. Теперь потребуется постоянный резистор сопротивлением 20 От и мощностью не ниже 5W.

Устанавливаем на блоке питания напряжение 10V и подключаем этот резистор в качестве нагрузки. Подстраиваем R5 так чтобы амперметр показал 0,50 А.

Можно выполнить калибровку и по образцовому амперметру, но нам показалось удобнее с резистором, хотя конечно на качество калибровки очень влияет погрешность сопротивления резистора.

Таким же образом можно сделать и автомобильный вольтметр:

От первой схемы эта отличается только входом и схемой питания. Такой прибор теперь питается от измеряемого напряжения, то есть измеряет напряжение, поступающее на него как питающее.

Напряжение от бортовой сети автомобиля через делитель R1-R2-R3 поступает на вход микросхемы D1. Параметры этого делителя такие же как в первой схеме, то есть для измерения в пределах 0. 99.9V.

Но в автомобиле напряжение редко бывает более 18V (больше 14,5V уже неисправность). И редко опускается ниже 6V, разве только падает до нуля при полном отключении. Поэтому прибор реально работает в интервале 7. 16V. Питание 5V формируется из того же источника, с помощью стабилизатора А1.

Видео о создании цифрового вольтметра своими руками:

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector