Sfera-perm.ru

Сфера Пермь
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Схема подключения электросчетчика активный реактивный

Электрофорум для электриков и домашних мастеров

Меню навигации

  • Форум
  • Участники
  • Правила
  • Поиск
  • Регистрация
  • Войти

Пользовательские ссылки

  • Активные темы

Объявление

Информация о пользователе

Вы здесь » Электрофорум для электриков и домашних мастеров » Электроснабжение » Как подключить счётчики активной и реактивной энергии (схемы)

Как подключить счётчики активной и реактивной энергии (схемы)

Сообщений 1 страница 10 из 26

Поделиться1Чт, 22 Апр 2010 16:24

  • Автор: Uem
  • напряжение
  • Откуда: г.Пермь
  • Зарегистрирован : Чт, 22 Апр 2010
  • Приглашений: 0
  • Сообщений: 20
  • Уважение: [+0/-1]
  • Позитив: [+0/-1]
  • Пол: Мужской
  • Возраст: 37 [1984-01-18]
  • Провел на форуме:
    4 часа 15 минут
  • Последний визит:
    Чт, 6 Май 2010 19:02

Выкладывайте сюда схемы. Работаем с напряжениям 35/6 кВ.

Поделиться2Чт, 22 Апр 2010 16:27

  • Автор: Uem
  • напряжение
  • Откуда: г.Пермь
  • Зарегистрирован : Чт, 22 Апр 2010
  • Приглашений: 0
  • Сообщений: 20
  • Уважение: [+0/-1]
  • Позитив: [+0/-1]
  • Пол: Мужской
  • Возраст: 37 [1984-01-18]
  • Провел на форуме:
    4 часа 15 минут
  • Последний визит:
    Чт, 6 Май 2010 19:02

Какие пременяются ТН-ТТ(пример НТМИ6/100?Тол-400/5.Ном35/100

Поделиться3Чт, 22 Апр 2010 17:53

  • Автор: Серый
  • инженер
  • Откуда: Украина, Запорожье
  • Зарегистрирован : Вс, 10 Июн 2007
  • Приглашений: 0
  • Сообщений: 1949
  • Уважение: [+142/-38]
  • Позитив: [+55/-41]
  • Пол: Мужской
  • Возраст: 41 [1980-04-12]
  • Провел на форуме:
    13 дней 12 часов
  • Последний визит:
    Чт, 26 Апр 2012 14:34

Выкладывайте сюда схемы.Работаем с напряжениям 35/6Кв.

Если Вы создаёте тему, начинайте ее с правильно поставленного вопроса (тщательно обдумайте суть сначала) или выкладывайте имеющуюся у Вас информацию. Плодить такие пустышки не нужно.

Опять не пойму смысл сообщения (или вопроса?). Весь спектр ТТ и ТН используется потребителями (в зависимости от расчетов нагрузки, типов объектов, классов напряжения, схем электроснабжения), иначе их не выпускали бы.

Думаю, тему закрыть придется. Пусть повисит пару дней. Потом поглядим.

Поделиться4Чт, 22 Апр 2010 18:13

  • Автор: Uem
  • напряжение
  • Откуда: г.Пермь
  • Зарегистрирован : Чт, 22 Апр 2010
  • Приглашений: 0
  • Сообщений: 20
  • Уважение: [+0/-1]
  • Позитив: [+0/-1]
  • Пол: Мужской
  • Возраст: 37 [1984-01-18]
  • Провел на форуме:
    4 часа 15 минут
  • Последний визит:
    Чт, 6 Май 2010 19:02

Я испросил просто схемы правельного подключения( приводя пример на этих ТТ-Тн)
Серый ты где работаещь и кем вообще.
Вылож пожалуста ,Допустим мне надо учёт Активной и реактивной энергии по 6Кв-приведёны выше ТТ и Тн.Как правельно цепочку создать,чтобы не получилось,что активная правельнаматывает а реактивную наоборот сматывает? вот как так полчилось.При этом применяя ,обычные Дисковый счетчи Реактивной энегргии.Приводить марку не буду.

Отредактировано Uem (Чт, 22 Апр 2010 18:16)

Поделиться5Чт, 22 Апр 2010 18:21

  • Автор: Серый
  • инженер
  • Откуда: Украина, Запорожье
  • Зарегистрирован : Вс, 10 Июн 2007
  • Приглашений: 0
  • Сообщений: 1949
  • Уважение: [+142/-38]
  • Позитив: [+55/-41]
  • Пол: Мужской
  • Возраст: 41 [1980-04-12]
  • Провел на форуме:
    13 дней 12 часов
  • Последний визит:
    Чт, 26 Апр 2012 14:34

Поделиться6Чт, 22 Апр 2010 18:25

  • Автор: Uem
  • напряжение
  • Откуда: г.Пермь
  • Зарегистрирован : Чт, 22 Апр 2010
  • Приглашений: 0
  • Сообщений: 20
  • Уважение: [+0/-1]
  • Позитив: [+0/-1]
  • Пол: Мужской
  • Возраст: 37 [1984-01-18]
  • Провел на форуме:
    4 часа 15 минут
  • Последний визит:
    Чт, 6 Май 2010 19:02

Серый,извени но там тока как 1 счётчик подключять к 3-х фазной сети,не что не сказана как про Реактивную энегрию как совместно 2 счётчика работаю.У мня проблема тока была . Что Ативную правель учитывает,а вот Реактивную наоборот матает.От чего зависит?

Поделиться7Чт, 22 Апр 2010 18:32

  • Автор: Uem
  • напряжение
  • Откуда: г.Пермь
  • Зарегистрирован : Чт, 22 Апр 2010
  • Приглашений: 0
  • Сообщений: 20
  • Уважение: [+0/-1]
  • Позитив: [+0/-1]
  • Пол: Мужской
  • Возраст: 37 [1984-01-18]
  • Провел на форуме:
    4 часа 15 минут
  • Последний визит:
    Чт, 6 Май 2010 19:02
Читайте так же:
Gsm модем для электросчетчика энергомера

Учёт идёт обычного цеха по 6Кв питая Трансформаторы 6000/0.4Q=1000Ква.Вот у мня затык как так получается что Он сматывает Реактивную энергию а не наматывает ,так скажим.Схема состороны ВН звезда,а со стороны НН-глухо заземлённая нетраль.

Поделиться8Чт, 22 Апр 2010 18:37

  • Автор: Серый
  • инженер
  • Откуда: Украина, Запорожье
  • Зарегистрирован : Вс, 10 Июн 2007
  • Приглашений: 0
  • Сообщений: 1949
  • Уважение: [+142/-38]
  • Позитив: [+55/-41]
  • Пол: Мужской
  • Возраст: 41 [1980-04-12]
  • Провел на форуме:
    13 дней 12 часов
  • Последний визит:
    Чт, 26 Апр 2012 14:34

Конкретно учетом не занимаюсь, для этого в отделе есть группа АСКУЭ. На наших электростанциях сейчас используют один счетчик для учета всех видов энергии — электронные SL7000, они считают все данные (активную, реактивную энергию, мощность — данные снимают каждые 15 минут). Трансформаторы разные — ТФРМ, ТФУМ, ТОГ, ТФНД, ЗНОМ и т. д. ТН-ы все индуктивные. Если не ошибаюсь, керны низкого напряжения трансформаторов собираются в схему звезда или треугольник и подключаются к счетчику. Все схемы типовые. Спрошу в группе, может дадут пару схем отсканировать.

Поделиться9Чт, 22 Апр 2010 18:49

  • Автор: Uem
  • напряжение
  • Откуда: г.Пермь
  • Зарегистрирован : Чт, 22 Апр 2010
  • Приглашений: 0
  • Сообщений: 20
  • Уважение: [+0/-1]
  • Позитив: [+0/-1]
  • Пол: Мужской
  • Возраст: 37 [1984-01-18]
  • Провел на форуме:
    4 часа 15 минут
  • Последний визит:
    Чт, 6 Май 2010 19:02

Спасибо серый.Большое завтро буду.Так у вас на комп по интерфейсуRS322 всё выходит,модернезированя подстанция.Таки счётчики хорошо. А у насто как на ввода поставили Вакумные вкл,не говаря о замене полной энерго системы.Денег жалко.Живём на пороховой бочке.

Реактивная энергия в электросети. Учет реактивной энергии

Электрическия система вырабатывает полную энергию, которая делится на полезную, или активную и остаточную под названием реактивная энергия. О том, что это такое и как ведётся её учёт, расскажет статья.

Остаточная энергия: что это такое?

Все электрические машины представлены реактивными и активными элементами. Именно они и потребляют электрическую энергию. К ним относят реактивные соединения кабелей, конденсаторные и трансформаторные обмотки.

В процессе течения переменного тока на этих сопротивлениях индексируются реактивные электродвижущие силы, которые создают реактивный ток.

В установках и приборах, создающих переменный ток, используется реактивная энергия в электросети, которая создает магнитное поле электрического поля.

Влияние индуктивного сопротивления на создание магнитного поля

Все приборы, которые питаются от электросети, имеют индуктивное сопротивление. Именно благодаря ему знаки тока и напряжения противоположны. Например, напряжение имеет отрицательный знак, а ток — положительный, или наоборот.

В это время электроэнергия, создаваемая в индуктивном элементе про запас, колебательными движениями исходит по сети за счёт нагрузки от генератора и обратно. Этот процесс и называется реактивной мощностью, которая создает магнитное поле электрического поля.

Для чего необходима реактивная энергия?

Можно сказать, что она направлена на регулировку изменений, которые вызывает в сети электрический ток. Сюда относят:

  • поддержка магнитного поля во время индуктивности в цепи;
  • при наличии конденсаторов и проводов поддержка их заряда.

Проблемы при выработке реактивной мощности

Если в сети существует большая доля выработки реактивной мощности, то приходится:

  • повышать мощность силовых аппаратов, которые предназначены для преобразования электрической энергии одного значения напряжения в электрическую энергию другого значения напряжения;
  • увеличивать сечение кабелей;
  • бороться с ростом потери мощности в силовых аппаратах и линиях передач;
  • увеличивать плату за потребление электроэнергии;
  • бороться с потерей напряжения в сети.

В чём разница между активной и реактивной энергией?

Люди привыкли платить за ту электроэнергию, которую они потребляют. Они оплачивают энергию, используемую для обогрева помещения, приготовления еды, нагревания воды в ванной комнате (кто пользуется индивидуальными водонагревателями) и другую полезную электрическую энергию. Именно она и называется активной.

Читайте так же:
Показания счетчика электроэнергии астана рэк

Активная и реактивная энергии различны в том, что вторая представляет собой оставшуюся часть энергии, которая не используется в полезной работе. Другими словами, они обе образуют полную мощность. Соответственно, потребителям невыгодно оплачивать помимо активной ещё и реактивную энергию в электросети, а поставщикам выгодно, чтобы они платили за полную мощность. Можно ли как-нибудь урегулировать этот вопрос? Давайте рассмотрим это.

Чем измеряют потребление энергии?

Для замера потребленной энергии используют счетчик активной и реактивной энергии. Всё они делятся на счетчики с одной фазой и тремя фазами. В чем же их различие?

Однофазные счетчики применяют для учета электрической энергии у потребителей, которые используют ее для бытовых нужд. Питание выполняется однофазным током.

Трехфазные счетчики используются для учета полной энергии. Они классифицируются исходя из схемы электроснабжения на трех- и четырехпроводные.

Различая счетчиков по способу включения

По тому, как они включаются, их делят на три группы:

  1. Не используют трансформаторы и напрямую включаются в сеть счетчики прямого включения.
  2. С использованием силовых аппаратов включаются счетчики полукосвенного включения.
  3. Счетчики косвенного включения. Они подключаются к сети не только с использованием силовых аппаратов тока, но и с использованием трансформаторов напряжения.

Различая счетчиков по способу оплаты

По способу начисления платы за электроэнергию принято делить счетчики на следующие группы:

  1. Счетчики, основанные на применении двух тарифов – их действие состоит в том, что тариф за потребляемую энергию меняется в течение суток. То есть в утренние часы и днем он меньше, чем в вечернее время.
  2. Счетчики с предварительной оплатой – их действие основано на том, что потребитель платит за электроэнергию заранее, так как находится в отдаленных местах проживания.
  3. Счетчики с указанием максимальной нагрузки – потребитель платит отдельно за потребленную энергию и за максимальную нагрузку.

Учет полной мощности

Учет полезной энергии направлен на определение:

  1. Электрической энергии, вырабатываемой машинами по производству напряжения на электростанции.
  2. Количества энергии, которая расходуется на собственные потребности подстанции и электростанции.
  3. Электроэнергии, направленной на расходование ее потребителями.
  4. Энергии, переданной для других энергосистем.
  5. Электрической энергии, которая пущена по шинам электростанций к потребителям.

Учитывать реактивную электрическую энергию при передаче потребителям от электростанции необходимо только в том случае, если эти данные подсчитывают и контролируют режим работы устройств, компенсирующих эту энергию.

Где проводят контроль оставшейся энергии?

Счетчик реактивной энергии устанавливают:

  1. Там же, где и счетчики по учету полезной энергии. Устанавливают их для потребителей, которые платят за полную используемую ими мощность.
  2. На источниках присоединения реактивной мощности для потребителей. Это делается, если приходится контролировать процесс работы.

Если потребителю разрешено пускать оставшуюся энергию в сеть, то ставят 2 счетчика в элементах системы, где идет учет полезной энергии. В других случаях ставят отдельный счетчик для учета реактивной энергии.

Как сэкономить на потреблении электричества?

Большой популярностью в этом направлении пользуется прибор для экономии электричества. Его действие основано на подавлении остаточной электроэнергии.

На современном рынке можно найти много подобных устройств, в основе которых лежит трансформатор, направляющий электроэнергию в нужное русло.

Прибор для экономии электричества направляет эту энергию на разнообразное бытовое оборудование.

Рациональное использование электроэнергии

Для рационального использования электроэнергии применяется компенсация реактивной энергии. Для этого применяют конденсаторные установки, электродвигатели и компенсаторы.

Они помогают уменьшить потери активной энергии, которые обусловлены перетоками реактивной мощности. Это существенно влияет на уровень транспортных технологических потерь распределительных электрических сетей.

Читайте так же:
Как управлять с пульта электросчетчик

Чем выгодна компенсация мощности?

Применение установок для компенсации мощности способно принести большую выгоду в экономическом плане.

Согласно статистическим данным, их применение приносит до 50 % экономии трат за пользование электрической энергией во всех уголках Российской Федерации.

Денежные вложения, которые потрачены на их установку, окупаются в течение первого же года их использования.

Кроме того, там, где проектируются данные установки, кабель приобретается с меньшим сечением, что также очень выгодно.

Преимущества конденсаторных установок

Применение конденсаторных установок имеет следующие положительные стороны:

  1. Небольшая потеря активной энергии.
  2. В конденсаторных установках отсутствуют вращающиеся части.
  3. Они легки в работе и эксплуатации.
  4. Инвестиционные затраты не высоки.
  5. Работают бесшумно.
  6. Их можно установить в любой точке электрической сети.
  7. Можно подобрать любую требуемую мощность.

Отличие конденсаторных установок от компенсаторов и синхронных двигателей состоит в том, что фильтрокомпенсирующие установки синхронно осуществляют компенсацию мощности и частично сдерживают присутствующие в компенсируемой сети гармоники. От того, насколько компенсируется мощность и будет зависеть стоимость за электроэнергию, ну и, соответственно, от действующего тарифа.

Какие виды компенсации существуют?

В процессе применения конденсаторных установок выделяют следующие виды подавляемой мощности:

  1. Индивидуальная.
  2. Групповая.
  3. Централизованная.

Рассмотрим подробнее каждую из них.

Индивидуальная мощность

Конденсаторные установки располагаются прямо у электрических приемников и коммутируются в то же время, что и они.

Недостатками этого вида компенсации считается зависимость времени включения конденсаторной установки от времени начала работы электроприемников. Кроме того, перед проведением работ необходимо согласовывать емкость установки и индуктивность электрического приемника. Это необходимо для предупреждения резонансных перенапряжений.

Групповая мощность

Название говорит само за себя. Эта мощность используется при компенсации мощности нескольких индуктивных нагрузок, которые одновременно присоединены к одному распределительному устройству с общей конденсаторной установкой.

В процессе одновременного включения нагрузки увеличивается коэффициент, что приводит к понижению мощности. Это способствует лучшей работе конденсаторной установки. Остаточная энергия подавляется эффективнее, чем при индивидуальной мощности.

Отрицательной стороной данного процесса является частичная разгрузка реактивной энергии в электросети.

Централизованная мощность

В отличие от индивидуальной и групповой мощности, эта мощность регулируется. Она применяется для обширного диапазона изменения потребления остаточной энергии.

Большую роль в регулировании мощности конденсаторной установки играет функция реактивного тока нагрузки. При этом установка должна быть оснащена автоматическим регулятором, а её полная компенсационная мощность разделена на отдельно коммутируемые ступени.

Какие проблемы решают конденсаторные установки

Конечно, в первую очередь они направлены на подавление реактивной мощности, но на производстве они помогают решать следующие задачи:

  1. В процессе подавления реактивной мощности, соответственно, снижается и полная мощность, что приводит к понижению загрузки силовых трансформаторов.
  2. Питание нагрузки обеспечивается по кабелю с меньшим сечением, при этом не происходит перегрева изоляции.
  3. Возможно подключение дополнительной активной мощности.
  4. Разрешает избежать глубокой просадки напряжения на линиях электроснабжения удаленных потребителей.
  5. Применение мощности автономных дизель-генераторов идёт по максимуму (судовые электроустановки, электроснабжение геологических партий, стройплощадок, установок разведочного бурения и т. д.).
  6. Индивидуальная компенсация позволяет упростить деятельность асинхронных двигателей.
  7. В случае аварийной обстановки конденсаторная установка немедленно отключается.
  8. Автоматически включается обогрев или вентиляция установки.

Выделяют два варианта конденсаторных установок. Это модульные, применяются на крупных предприятиях, и моноблочные — для малых предприятий.

Подведём итоги

Реактивная энергия в электросети негативно сказывается на работе всей электрической системы. Это приводит к таким последствиям, как потеря напряжения в сети и увеличение затрат на топливо.

В связи с этим активно применяются компенсаторы данной мощности. Их выгода состоит не только в хорошей экономии денежных средств, но и в следующем:

  1. Увеличивается срок службы силовых аппаратов.
  2. Улучшается качество электрической энергии.
  3. Экономятся деньги на покупку кабелей малого сечения.
  4. Снижается потребление электрической энергии.
Читайте так же:
Как зарядить электронный счетчик

Полукосвенное включение счетчика.

Поскольку максимальный ток счетчиков прямого включения ограничен значением 100А, применить их в электроустановках с большой потребляемой мощностью не получится.

В таком случае подключение счетчиков производится не напрямую, а через трансформаторы тока (ТТ).

Счетчики полукосвенного включения подсоединяются к сети по нескольким схемам.

Десятипроводная схема — эта схема имеет раздельные цепи тока и напряжения, что является плюсом с точки зрения электробезопасности.

Минусом условно можно назвать большое количество проводов, требующихся для подключения счетчика.

Назначение контактов трансформатора тока:

Л1 — вход фазной (силовой) линии

Л2 — выход фазной линии (нагрузка)

И1 — вход измерительной обмотки

И2 — выход измерительной обмотки.

Трансформаторы тока включаются силовыми контактами Л1 и Л2 в разрыв (последовательно) каждого фазного провода.

Рисунок 4 — Подключение через ТТ

Назначение контактных зажимов:

Зажим 1 — входной провод фазы А

Зажим 2 — входной провод измерительной обмотки фазы А

Зажим 3 — выходной провод фазы А

Зажим 4 — входной провод фазы В

Зажим 5 — входной провод измерительной обмотки фазы В

Зажим 6 — выходной провод фазы В

Зажим 7 — входной провод фазы С

Зажим 8 — входной провод измерительной обмотки фазы С

Зажим 9 — выходной провод фазы С

Зажим 10 — входной нулевой провод

Зажим 11 — нулевой провод

Включение трансформаторов тока в звезду — данная схема требует меньшего количества проводов для подключения.

Включение звездой достигается соединением вывода И2 всех обмоток трансформаторов тока в общую точку и подсоединением к зажиму 11 счетчика. Зажимы 3, 6, 9 и 10 соединяются между собой и подключаются к нулевому проводу.

Рисунок 5 — Включение ТТ в звезду

Для счетчиков трансформаторного включения существует требование ПУЭ— их подключение должно осуществляться через испытательную коробку (блок).

Наличие испытательной колодки (блока) позволяет выполнять закорачивание вторичных обмоток трансформаторов тока, подключать образцовый (эталонный) счетчик, не снимая нагрузки, а также производить замену счетчика путем отключения всех его цепей в испытательном блоке.

Схема подключения — десятипроводная, с той лишь разницей, что здесь между счетчиком и трансформаторами тока устанавливается испытательный блок.

Рисунок 6 — Подключение счетчика через испытательный блок

Семипроводная или схема с совмещенными цепями тока и напряжения.

Рисунок 7 — Семипроводная схема подключения счетчика

Такая схема считается устаревшей, но до сих пока не исчезнувшей «с лица земли».

Ее существенный минус — наличие гальванической связи между первичными и вторичными цепями, что делает такую схему источником опасности для обслуживающего персонала.

Совмещение токовых цепей и цепей напряжения осуществляется путем установки перемычек на счетчике (зажимы 1-2, 4-5 и 7-8) и на трансформаторах тока (Л1-И1).

Схема косвенного включения счетчика в сети.

На этой схеме в качестве счетчика реактивной энергии принят двухэлементный четырехпроводный счетчик с разделенными последовательными обмотками. Выше указывалось, что так как в средней фазе сети отсутствует ТТ, то вместо тока Ib.

Схема косвенного включения двухэлементных счетчиков активной и реактивной энергии в трехпроводную сеть свыше 1 кВ. соответствующим токовым обмоткам этого счетчика подведена геометрическая сумма токов Ia +Ic равная — Id. Вместо указанного счетчика реактивной энергии в данной схеме может использоваться счетчик с 90-градусным сдвигом. В этом случае к токовой обмотке второго элемента также подводится геометрическая сумма токов Ia + Ic .

На рисунке 8 показана схема включения с использованием трехфазного ТН типа НТМИ, у которого заземлена вторичной обмотки. На практике может применяться трехфазный ТН и с заземлением вторичной обмотки фазы В. Вместо трехфазного ТН также могут применяться два однофазных ТН, включенных по схеме открытого треугольника. В заключение отметим, что схема включения счетчика обычно нанесена на крышке зажимной коробки. Однако в условиях эксплуатации крышка может оказаться снятой со счетчика другого типа. Поэтому необходимо всегда убедиться в достоверности схемы путем ее сверки с типовой схемой и с разметкой зажимов.

Читайте так же:
Щиток электрический под счетчик ip54

Рисунок 8 – Схема косвенного включения в сети с выше 1кВ

Типовые схемы подключения УКРМ

Для повышения коэффициента мощности в электрических сетях применяют устройства компенсации реактивной мощности. УКРМ – отличный инструмент для выполнения программы энергосбережения и снижения потребляемой реактивной мощности.

Компенсация реактивной мощности актуальна в основном для промышленных объектов, где используется огромное количество электродвигателей.

Существуют как автоматические так и нерегулируемые конденсаторные установки. Предпочтение следует отдавать АКУ.

Обязательным условием для автоматической компенсации реактивной мощности является наличие внешнего измерительного трансформатора тока, измеряющего фазный ток потребления нагрузки, которую предполагается компенсировать. В некоторых случаях для суммирования сигналов тока с нескольких внешних ИТТ для одной КРМ применяется суммирующий трансформатор тока. При таком способе включения внешние ИТТ, должны быть установлены в одинаковой фазе на вводах, и коэффициенты трансформации их должны быть одинаковы.

Рассмотрим основные схемы подключения УКРМ в условно-симметричной сети 0,4кВ. В такой сети достаточно контролировать ток в одной фазе.

1 Индивидуальная компенсация реактивной мощности.

Индивидуальная компенсация реактивной мощности

В данной схеме силовая часть КРМ присоединяется непосредственно на зажимы крупного потребителя РМ (или в непосредственной близости). Внешний ИТТ (ТА1) устанавливается на одной из фаз ввода потребителя.

2 Групповая компенсация реактивной мощности.

Групповая компенсация реактивной мощности

При групповой компенсации силовая часть КРМ присоединяется на шины групповой сборки (ШР, ЩС и т.д.). Внешний ИТТ (ТА1) устанавливается на одной из фаз ввода группового щита.

3 Групповая компенсация реактивной мощности при питании с 2-х вводов.

Групповая компенсация реактивной мощности при питании с 2-х вводов

Для реализации данной схемы используют два измерительных трансформатора тока и суммирующий трансформатор тока. Внешние ИТТ (ТА1 и ТА2) устанавливаются на одной из фаз вводов группового щита. Для суммирования показаний тока с внешних ИТТ применяется суммирующий ТТ (ТА3). Коэффициенты трансформации внешних ИТТ (ТА1, ТА2) должны быть одинаковы.

4 Централизованная компенсация реактивной мощности.

Централизованная компенсация реактивной мощности

Пожалуй, одна из самых распространенных схем компенсации реактивной мощности. Внешний ИТТ (ТА1) устанавливаются на одной из фаз ввода секции шин 0,4кВ.

5 Централизованная компенсация реактивной мощности с двумя питающими трансформаторами.

Централизованная компенсация реактивной мощности с двумя питающими трансформаторами

Питающие трансформаторы могут работать как по отдельности, так и в параллели. Внешние ИТТ (ТА1, ТА2) устанавливаются на одной из фаз вводов секции шин 0,4кВ. Для согласования сигналов тока применяется суммирующий ТТ (ТА3), коэффициенты трансформации ИТТ ТА1 и ТА2 должны быть одинаковы.

6 Централизованная посекционная компенсация реактивной мощности с двумя питающими трансформаторами.

Централизованная посекционная компенсация реактивной мощности с двумя питающими трансформаторами

В данной схеме реализовано две секции шин с двумя питающими трансформаторами (Т1, Т2) и активным секционным выключателем (QS3). Внешние ИТТ (ТА1, ТА2) устанавливаются на одной из фаз вводов секции шин 0,4кВ, а также на межсекционной связи (ТА3, ТА4). Для согласования сигналов тока применяется суммирующие ТТ (ТА5, ТА6), коэффициенты трансформации ИТТ ТА1 — ТА4 должны быть одинаковы.

Я думаю теперь у вас возникнет меньше вопросов, при проектировании объектов, нуждающихся в компенсации реактивной мощности.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector