Sfera-perm.ru

Сфера Пермь
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Схема интегрального стабилизатора тока

3.5. Интегральный компенсационный стабилизатор

Цель работы: изучение характеристик и измерение параметров интегрального компенсационного стабилизатора.

1. Собрать схему компенсационного интегрального стабилизатора напряжения (рис. 3.11), в соответствии с вариантом задания (табл.

Напряжение источника постоянного напряжения V1

Сопротивление нагрузки RHном рассчитать по формуле

Рис. 3.11. Схема интегрального компенсационного стабилизатора напряжения (пример).

Рис. 3.12. Вид окна с амплитудной (передаточной) характеристикой интегрального компенсационного стабилизатора (пример).

2. Построить амплитудную (передаточную), рис. 3.12, характеристику интегрального компенсационного стабилизатора.

3. Изменяя напряжение на входе стабилизатора, установить на выходе напряжение Uст. Зафиксировать значение Uвх0. Увеличить напряжение на входе стабилизатора на 1В, измерить Uвых и Iвых определить

ΔUвых = Uвых – Uст,

ΔIн = Iвых – Iном

4. Определить значение коэффициента стабилизации:

Kст = (ΔUвх/Uвх) / (ΔUвых/Uст),

Зависимости от сопротивления нагрузки

RH, Ом0,5RHном0,7RHном0,9RHномRHном2RHном3RHном5RHном10RHном20RHном
Uвых, В
Iн, А
ΔUвых, В
ΔIн, А
Pвых, Вт
Iвх, А
Pвх, Вт
Rст, Ом
η, %

5. Определить внутреннее сопротивление стабилизатора:

где ΔUвых= Uвых – Uст (изменение выходного напряжения при изменении входного напряжения на 1В); ΔIн = Iвых – Iном (изменение выходного тока при изменении входного напряжения на 1В).

6. Используя показания маркеров тока и напряжения по формуле

Pвых = Uвых2 / RH = Uвых ? Iном

определить мощность, потребляемую нагрузкой (выходная мощность стабилизатора).

определить мощность, потребляемую стабилизатором (входная мощность стабилизатора).

определить коэффициент полезного действия параметрического стабилизатора напряжения. Результаты измерений и расчётов занести в табл. 3.11.

7. Установить величину сопротивления нагрузки RH = 0,9 RHном. Зафиксировать соответствующую величину Uвых.

Определить соответствующий ток нагрузки Iн = Uвых / RH.

Определить внутреннее сопротивление стабилизатора:

где ΔUвых= Uвых – Uст (изменение выходного напряжения при изменении входного напряжения на 1В); ΔIн = Iвых – Iном (изменение выходного тока при изменении входного напряжения на 1В).

Изменяя значение сопротивления нагрузки RH, в соответствии с табл. 3.11, определить соответствующие значения η , Rст(п. 5-6). Контрольные вопросы

1. Как определяется коэффициент стабилизации?

2. Как определяется дифференциальное сопротивление стабилизатора напряжения?

3. Укажите достоинства и недостатки простейшего параметрического стабилизатора напряжения.

4. Для чего используется последовательное соединение стабилитронов?

5. Почему не допускается параллельное соединение стабилитронов?

6. Как строятся многокаскадные схемы параметрических стабилизаторов напряжения?

7. Дайте функциональную схему компенсационного стабилизатора напряжения с непрерывным регулированием.

8. Объясните работу принципиальной схемы компенсационного стабилизатора напряжения с последовательным включением регулирующего элемента.

9. Чем определяется коэффициент стабилизации в компенсационном стабилизаторе напряжения?

10. Укажите недостатки компенсационного стабилизатора напряжения с непрерывным регулированием.

11. Как строятся схемы защиты компенсационных стабилизаторов напряжения от перегрузки по току?

LDO-стабилизаторы напряжения ON Semi. Выбор и применение

Доминирующим направлением компании ON Semiconductor остается управление питанием (Power Management). В этой категории линейные регуляторы традиционно являются одними из самых востребованных на современном рынке полупроводниковой продукции. Особым спросом пользуются линейные стабилизаторы с малым падением напряжения LDO (Low DropOut), которых в номенклатуре ON Semiconductor насчитываются десятки типов. Основными преимуществами LDO-стабилизаторов напряжения ON Semi является их широкая номенклатура для различных приложений, высокое качество и надежность при невысоких ценах

История микросхем интегральных стабилизаторов напряжения начинается с 1967 г. С тех пор интегральные стабилизаторы напряжения являются неотъемлемой частью современной радиоэлектронной аппаратуры, характеристики которой в значительной степени определяются точностью и стабильностью питающих напряжений. Стабилизаторы с малым падением напряжения используют в качестве регулирующего элемента биполярный PNP-транзистор или полевой транзистор (одиночный либо составной). Падение напряжения в этом случае составляет десятые доли вольта, что, безусловно, расширяет область применения LDO-стабилизаторов.

В настоящее время в номенклатуре ON Semi несколько десятков типов LDO-стабилизаторов, отличающихся величиной минимального напряжения, диапазоном рабочих выходных токов и входного напряжения, числом каналов, уровнем шумов, а также наличием дополнительных функций. Каждый квартал в номенклатуре появляются новые микросхемы LDO. Целью новых разработок является: расширение номенклатуры для успешной конкуренции во всех нишах, снижение цены, а также разработка новых типов по новым технологиям для адекватной замены морально устаревших позиций.

Выпускаемые промышленностью современные LDO-стабилизаторы можно условно разделить на несколько групп в соответствии с их параметрами и областью применения:

– типовые с фиксированным и регулируемым выходным напряжением;

– экономичные (с малым статическим током);

– со сверхмалым (Ultra LDO — 200 мВ и менее) падением напряжения;

– прецизионные с точностью установки выходного напряжения выше 1%;

– быстродействующие (с быстрым откликом);

– многоканальные (сдвоенные и т.д.);

– специализированные с дополнительными сервисными функциями.

Такие сервисные устройства как схемы защиты от перегрузки по току и перегрева, а также схемы отключения нагрузки при повышении и понижении выходного напряжения стабилизатора, в настоящее время являются стандартными и используются в большинстве LDO. У стабилизаторов, предназначенных для работы в устройствах с батарейным питанием, делается защита по входу от переполюсовки и значительного превышения входного напряжения при неправильном подключении элементов питания. Ряд микросхем имеет управляющий вход On/Off (Shutdown) установки дежурного режима (Sleep Mode), в котором отключается выходное напряжение и существенно снижается ток потребления. Во многих современных типах LDO введена и защита от протекания обратного тока (Reverse Bias Protected). Этот нежелательный эффект возникает при резком падении напряжения на входе до нуля и его сохранении на выходе за счет конденсатора. В стабилизаторе с биполярными регулирующими транзисторами ток в этом случае начнет протекать через p-n-переход от выхода к входу. Защита реализована за счет введения дополнительного транзистора, который принудительно разряжает выходную емкость стабилизатора при уменьшении входного напряжения ниже порога.

Читайте так же:
Стабилизатор тока для зарядного устройства автомобильных аккумуляторов

Классификация LDO

По области применения LDO-стабилизаторы разделяются на универсальные (Multi-market) и стабилизаторы для приложений с расширенным температурным диапазоном (исполнение Automotive). LDO класса Automotive предназначены не только для автомобильных и транспортных приложений, но и для любых приложений с жесткими условиями эксплуатации. На рисунке 1 представлена номенклатура универсальных LDO-стабилизаторов напряжения компании ON Semiconductor.

Особый интерес представляют новые изделия, появившиеся на рынке в последние годы. Любое новое изделие выводится на рынок с целью либо восполнить пробел в существующей линейке, либо заменить имеющееся изделие новым с улучшенными параметрами, востребованными в современных приложениях.

Эффективность LDO может проявляться при малом падении напряжения между входом и выходом. Другое преимущество LDO перед импульсными источниками напряжения — отсутствие импульсных помех и низкий уровень ЭМИ.

Основной сектор применения LDO — это, конечно, портативные приборы с батарейным питанием. Другой сектор — вторичные источники для питания процессоров и ПЛИС, в которых требуются разные напряжения питания. В этом случае базовым источником питания устройства, например, является источник 3,3 или 5 В, а напряжения меньшего номинала формируются с помощью LDO..

Стабилизаторы по технологии NoCap

На выходе первых разработанных LDO-стабилизаторов напряжения для обеспечения устойчивости работы требовалась установка довольно дорогих электролитических конденсаторов Low ESR большой емкости и габаритов. По мере внедрения новых технологий LDO стали появляться микросхемы, в которых не требуется установка конденсаторов Low ESR большой емкости. Вместо них достаточно было установить недорогие и более компактные керамические конденсаторы малой емкости. Этот тип стабилизаторов получил название NoCap. В большинстве случаев для обеспечения устойчивости достаточно установки керамических конденсаторов до 1 мкФ, которые за последнее время не только заметно подешевели, но и уменьшились в размерах. Почти все новые типы LDO не требуют установки на выходе дорогих конденсаторов Low ESR, поэтому практически все современные LDO можно условно отнести к типу NoCap. Однако в номенклатуре LDO сохранилась такая классификация. К ним можно отнести серию NCP552, NCP553, NCV553.

Эта серия стабилизаторов напряжения NoCap с фиксированным напряжением предназначена для приборов с батарейным питанием, для которых важен малый ток покоя. Выходной ток стабилизатора составляет –80 мА, а ток покоя — всего 2,8 мкА. В качестве проходного элемента используется мощный транзистор PMOS. Имеется защита от перегрева. Основное достоинство этих устройств в том, что для обеспечения устойчивой работы стабилизатора достаточно установки недорогой керамической емкости на выходе. Стабилизатор может работать и без выходного конденсатора. На входе стабилизатора рекомендуется установить керамическую емкость на 1 мкФ, а на выходе для устойчивости достаточно поставить керамический конденсатор на 0,1 мкФ.

Микросхема выполнена в субминиатюрном корпусе для поверхностного монтажа типа SC-82 AB. Она поставляется в версиях с фиксированными выходными напряжениями: 1,5; 1,8; 2,5; 2,7; 2,8; 3,0; 3,3 и 5,0 В. Возможны и заказные исполнения. Дискретность установки напряжения для заказных версий составляет 100 мВ.

Портативные приборы с батарейным питанием

Это, несомненно, самый доминирующий сектор, в котором в полной мере могут реализоваться все преимущества LDO — малое падение напряжение, высокое быстродействие, наличие сервисных функций, различные и гибкие режимы энергосбережения. Область применения подобных устройств крайне широка — это мобильные средства связи, портативные компьютеры, устройства питания микроконтроллеров, автономные видеокамеры слежения и т.д.

Использование LDO в телекоммуникационном оборудовании

Как правило, в таком оборудовании используется AC/DC-преобразователь на выходные напряжения 5 или 3,3 В. Конструкция может содержать базовую плату и интерфейсные мезонинные модули. В базовой (материнской) плате используются напряжения 2,5; 2,0; 1,8 В для питания ядер ПЛИС, DSP или коммуникационных контроллеров, процессоров или трансиверов. На каждом мезонинном модуле могут использоваться свои локальные источники LDO на 2,5/2,0/1,8 В. При невысоком потреблении тока, например, до 50 мА, могут использоваться LDO в корпусах SOT-23 или SOT-83. На токи 150–300 мА для источников 2,5/2,0 В следует применять LDO в корпусах с большей рассеиваемой мощностью.

Исполнение Automotive

Микросхемы исполнения Automotive имеют в названии типа префикс NCV. Стабилизаторы для автомобильных приложений выделены в отдельную группу, поскольку область применения накладывает на изделия ряд специфических требований:

– максимальное значение входного напряжения не ниже 12 В, что определяется напряжением сети питания автомобиля;

– устойчивость к кратковременным броскам напряжения в сети;

– широкий диапазон рабочих температур (–40…125°С);

– температурный диапазон хранения –65…150°С.

Некоторые продукты ON Semi для данного исполнения имеют даже более широкий температурный диапазон. На первый взгляд, использование LDO в автомобильной электронике нецелесообразно: на фоне потребляемого источниками света тока 10…20 А при запущенном двигателе и работе генератора экономия единиц мА не вполне оправдана. Но часть электроники продолжает работать и при выключенном моторе. Это сервисные системы — охранная сигнализация, часы реального времени и т.д. Для питания управляющих микроконтроллеров используются напряжения 3…5 В. Система должна сохранять работоспособность даже при разряде автомобильного аккумулятора ниже порогового уровня, когда энергии и тока недостаточно для работы стартера, или же когда просадка напряжения аккумулятора в момент работы стартера достигает 6 В. При больших токовых нагрузках использование LDO проблематично. В этих случаях лучше применять стабилизаторы напряжения на основе импульсных преобразователей.

Читайте так же:
Что такое пусковые токи стабилизатора

5,0-В LDO-стабилизатор NCV4949A с формирователем сигнала Reset и датчиком входного напряжения

Микросхема NCV4949A стабилизатора LDO на 5 В (см. рис. 2) имеет дополнительные функции, такие как формирование сигнала сброса для микроконтроллера и пороговый датчик входного напряжения. Микросхема предназначена для формирования питания встроенных микроконтроллерных бортовых систем, в частности, автомобильных.

– диапазон входных напряжений: 5,0…28 В;

– броски напряжения: до 40 В;

– высокоточное выходное напряжение: 5,0 В 1%;

– нагрузочная способность: до 100 мА;

– падение напряжения на стабилизаторе: менее 0,4 В;

– схема формирования сигнала сброса по изменению выходного напряжения;

– программируемая задержка импульса сброса;

– компаратор низкого входного напряжения;

– схема защиты от перегрева и КЗ на выходе.

Стабилизатор NCV8508B с дополнительными функциями RESET, Wakeup, Watchdog

Микросхема NCV8508B имеет исполнения с выходным напряжением 5,0 и 3,3 В. Это микромощный прецизионный LDO-стабилизатор на ток 250 мA. Логика управления микропроцессора включает сигналы сброса RESET (с задержкой), инициализации (Wakeup) и сторожевой таймер (Watchdog). Функция Wakeup пробуждает микропроцессор из режима Sleep. Сигнал Wakeup формируется по таймеру Watchdog. При нормальной работе микропроцессор производит регулярный сброс сторожевого таймера по входу WDI. Сигнал RESET формируется при уменьшении выходного напряжения ниже 1,0 В. Сигнал RESET активируется и при начальном включении питания. Задержка включения регулируется внешним резистором Rdelay. Ток покоя микросхемы: – 100мкА. Применение: модули управления двигателем, электротранспорт.

– выходное напряжение: версии 5,0 и 3,3 В;

– точность выходного напряжения: ±3,0%;

– выходной ток: 250 мА;

– ток покоя не зависит от нагрузки: 100 мкА;

– защита: от перегрева, короткого замыкания, бросков входного напряжения до 45 В.

На рисунке 3 показаны временные диаграммы сигналов, формируемых на выводах микросхемы.

Микросхема NCV8537 с функцией Power Good

Микросхема LDO-стабилизатора NCV8537 обеспечивает выходной ток 500 мА. Она является модификацией популярной микросхемы NCV8535, сохраняя все лучшие качества предшественника, в т.ч. высокую точность, отличную стабильность работы, низкий уровень выходного шума, защиту от протекания обратного тока. В данной модификации добавлена дополнительная сервисная функция — выходной сигнал Power Good пороговой схемы мониторинга выходного напряжения. Если напряжение становится ниже порога, на выходе PG появляется низкий логический уровень. Диапазон входных напряжений: 2,9…12 В.

Микросхема доступна в исполнениях с выходными напряжениями 1,8; 2,5; 3,3; 5,0 В, а также с регулировкой выходного напряжения. Корпус DFN10.

– сетевые телекоммуникационные устройства, DSL/кабельные модемы;

– аудиосистемы для автомобильных приложений;

Многоканальные LDO

Двухканальный 3,3-В микромощный стабилизатор CS8363 с формирователями сигналов ENABLE и RESET

На рисунке 4 показана схема применения двухканального стабилизатора CS8363. После подачи напряжения на вход стабилизатора в нем формируется импульсный сигнал начального сброса микроконтроллера, и подается питание по основному каналу. Второй канал стабилизатора обеспечивает питание периферийных устройств, подключаемых к микроконтроллеру. Напряжение на выходе этого канала регулируется. Включение канала питания производится по сигналу ENABLE, формируемому микроконтроллером.

Как можно заметить, в данном типе LDO рекомендуется установка на выходах конденсаторов Low ESR довольно большой емкости — 10 мкФ. В настоящее время на рынке доступны недорогие керамические конденсаторы емкостью 10–20 мкФ, которые можно устанавливать вместо дорогих танталовых или ниобиевых Low ESR.

Двухканальный NCP4672 стабилизатор с формированием сигналов сброса

NCP4672 имеет два детектора для фиксации напряжения на входе и выходе стабилизатора, что позволяет формировать требуемую последовательность подключения питания для микросхем, в которых используется несколько разных источников напряжения, например, для питания ядра и периферии.

На входах и выходах стабилизатора можно устанавливать недорогие керамические конденсаторы емкостью 0,1 и 4,7 мкФ.

Трехканальный CMOS LDO NCP4523 для питания ВЧ-модулей

Стабилизаторы серии NCP4523 являются многоканальными стабилизаторами с различными напряжениями на выходе и высокой нагрузочной способностью. Токи выходов: 200; 100; 100 мА. Эта серия характеризуется низким уровнем шума выходных сигналов, низким собственным потреблением, высокой степенью подавления импульсных помех. Каждый из трех отдельных модулей содержит свой источник опорного напряжения и резистивный делитель для установки уровня выходного напряжения. Каждый канал имеет защиту от короткого замыкания на выходе и вход разрешения. Установка резистивных делителей производится лазерной подгонкой в процессе производства.

– питание сотовых телефонов GSM, CDMA и систем персональной связи;

– питание видеокамер, цифровых камер;

– питание батарейных приборов.

Заводская установка резистивного делителя определяется кодом заказа. В таблице 1 указаны маркировки для трех стандартных версий микросхемы.

Таблица 1. Номиналы выходных напряжений и маркировка стандартных версий NCP4523

Управляемый стабилизатор напряжения TL431 (ON Semiconductor)

Описание

TL431 – datasheet на русском. TL431 представляет собой регулируемый стабилизатор напряжения параллельного типа (интегральный аналог стабилитрона) и предназначен для использования в качестве ИОН и регулируемого стабилитрона с гарантированной термостабильностью по сравнению с применяемым коммерческим температурным диапазоном.

Выходное напряжение может быть установлено на любом уровне от 2,495 V (VREF) до 36 V, для этого применяются два внешних резистора, которые являются делителем напряжения.

Этот стабилизатор имеет широкий диапазон рабочих токов от 1,0 мА до 100 мА с динамическим сопротивлением 0,22 Ом. Активные выходные элементы TL431 обеспечивают резкие характеристики включения, благодаря чему эта микросхема работает лучше обычных стабилитронов во многих схемах.

Погрешность опорного напряжения ± 0,4% (TL431B) позволяет отказаться от использования переменного резистора, что экономит затраты и уменьшает проблемы дрейфа и надежности.

Читайте так же:
Автоматический стабилизатор напряжения трехфазный переменного тока

Особенности TL431

  • Программируемое выходное напряжение до 36 V
  • Точность опорного напряжения: ±0.4%, Typ @ 25°C (TL431B)
  • Низкое динамическое выходное сопротивление, 0.22 Ом
  • Рабочий ток от 1,0 мА до 100 мА
  • Эквивалентный температурный коэффициент 50 ppm/°C
  • Термостабильность во всем диапазоне рабочих температур
  • Низкий выходной шум
  • Без содержания свинца

Электрические характеристики TL431

  • Входное (опорное) напряжение 2.495 V
  • Рабочий ток от 1 мА до 100 мА
  • Выходное напряжение от 2.495 до 36V
  • Входной ток 1.8 µA
  • Динамическое сопротивление 0,22 Ом

Цоколевка TL431

TL431 выпускается в нескольких корпусах

Схемы включения TL431

Напряжение на выходе этой схемы будет равно напряжению внутреннего ИОН TL431, то есть 2.5 V.

Схема ниже заменяет обычные стабилитроны с напряжением стабилизации от 2.5 до 36 вольт. Изменяя номиналы резисторов в делителе напряжения (R1, R2) можно менять выходное напряжение.

Рекомендованный максимальный ток для TL431 — 100 мА. Если нужен более мощный стабилитрон, можно использовать следующую схему. Максимальный ток будет зависеть от применяемого транзистора.

На рисунке ниже представлена схема компенсационного стабилизатора напряжения последовательного типа. По сравнению с предыдущей схемой, такой стабилизатор отличается меньшим входным сопротивлением, большим коэффициентом стабилизации, большим выходным током.

Одной из типовых схем включения TL431 является стабилизатор тока.

С помощью TL431 можно увеличить выходное напряжение стабилизатора 7805 и ему подобных.

На следующем рисунке изображена схема индикатора напряжения. Светодиод будет светиться, когда контролируемое напряжение находится между верхним (устанавливается R3,R4) и нижним уровнем (R1,R2).

Компаратор с температурно-компенсированным порогом.

Как работает TL431

Если управляющее напряжение превышает 2.5 вольта (внутренний источник опорного напряжения), выходной транзистор TL431 открывается, в результате чего между катодом и анодом TL431 протекает ток. Если управляющее напряжение меньше 2.5 вольт, то ток между катодом и анодом не протекает (вернее он очень маленький).

Характеристика и как сделать своими руками трансформаторный блок питания на 12В

Трансформаторный блок питания на 12В используется для преобразования сетевого напряжения до уровня необходимого для работы определенного устройства. Сегодня в данной разновидности блоков питания устанавливаются системы предохранения от резких скачков напряжения, коротких замыканий и для нормализации высокочастотных помех. Конструкция обладает надежностью при сравнительной простоте и низкой стоимости. Блок питания с трансформаторным типа можно самостоятельно сконструировать и собрать в домашних условиях.

  1. Устройство и принцип работы
  2. Общая структура
  3. Трансформатор
  4. Конструкция
  5. Принцип работы
  6. Выбор напряжения
  7. 12В
  8. 3.3 В
  9. Выпрямитель
  10. Используем мостовую схему выпрямления
  11. Как работает
  12. Как спаять
  13. Фильтр
  14. Назначение
  15. Выбор конденсатора
  16. Как правильно подключать
  17. Стабилизатор напряжения или тока
  18. Стабилитрон
  19. Интегральный стабилизатор напряжения
  20. Серия LM 78xx
  21. Серия LM 79xx
  22. Вспомогательные узлы
  23. Индикаторные светодиоды
  24. Амперметр и вольтметр
  25. Схема самодельного источника питания
  26. Как паять
  27. Правила выбора комплектующих

Устройство и принцип работы

От обычного блока питания трансформаторный отличается наличием понижающего устройства, который позволяет снизить подаваемое в сети напряжение с 220В до 12В. Также в этих устройствах используется выпрямитель, который изготавливают из 1, 2 или 4 диодов полупроводникового типа – в зависимости от разновидности схемы.

В блоках питания этой категории используются трансформаторы в которых используется три основных компонента:

  • Сердечник специального сплава металлов или из ферромагнетика;
  • Сетевая первичная обмотка которая питается от 220В;
  • Вторичную обмотку применяют с понижающим действием – к ней подключается выпрямитель.

В остальном данный блок совпадает по принципу работы, строению и устройству с обычным блоком питания. Благодаря этому есть возможность подключать устройства различных категорий.

Применяемый выпрямитель определяется схематическим устройством, которое зависит от того, до каких значений нужно довести уровень напряжения. Например, в случае удвоения напряжения, используется два полупроводника. После проводника необходимо в устройстве конструкции использовать электролитический конденсатор.

Общая структура

Структурная схема блока питания с трансформаторным действием имеет следующий тип:

При этом в некоторых зарядных устройствах трансформаторного типа не используются последние два элемента. По сути основными являются трансформатор и выпрямитель, именно они отвечают за снижение напряжения, но фильтр и стабилизатор обеспечивают дополнительную защиту и регулировку значений в подаваемом на устройство напряжении.

На рынке электроники сегодня наиболее популярными являются однополярные трансформаторные блоки питания. Схема данного устройства выглядит следующим образом:

О конструкции самого трансформатора и принципах его работы поговорим далее. Двухполюсный блок питания данной категории имеет следующую схему:

В отличии от первой схемы, в этой применяется трансформатор с одинаковыми парными вторичными обмотками, которые последовательно соединяются.

Трансформатор

Один из основных элементов конструкции трансформатора – сердечник. В блоках питания он может быть Ш-образный либо U-образный, в редких случаях применяются тороидальные сердечники. На них располагаются трансформаторные обмотки из двух слоев: вторичная поверх первичной.

Конструкция

При сборке конструкции используется специальная формула, которая позволяет вычислить необходимые габариты трансформатора:

В этой формуле используются следующие значения:

  • N – число витков на 1 вольт;
  • F – уровень частоты в переменном напряжении;
  • S – сечение магнитопровода;
  • B – индукция магнитного поля в магнитопроводе.

Таким образом можно вычислить конструктивные особенности трансформатора. В трансформаторных блоках питания применяются тороидальные, стержневые и броневые виды обмоток.

Их внешний вид представлен на картинке ниже:

Для расчета вторичной обмотки можно использовать следующий прием. Наматывается 10 витков, собирается трансформатор и с соблюдением техники безопасности, стандартным методом первичная обмотка подключается к электросети. Затем производятся замеры уровня напряжения на выводе из вторичной обмотки. Полученные значения делятся на 10, после этого 12 делится на 10. Так определяется число витков необходимое для выработки напряжения в 12В.

Читайте так же:
Стабилизатор тока для стабилитрона

Принцип работы

Трансформатор на этой разновидности блока питания позволяет преобразовывать напряжение в 220В получаемое из обычной электросети до необходимого уровня напряжения для определенного устройства.

Генератором электромагнитных полей выступает проводник через который проходит переменный ток, а благодаря тому, что на трансформаторе он смотан в катушку его действие производится более плотно. Согласно закону электромагнитной индукции переменное поле наводится во вторичной обмотке.

Выбор напряжения

Необходимое напряжение определяется устройством, для питания которого будет использоваться блок питания. Можно использовать напряжение в 12В, 3.3В, 5В и 9В. Это самые популярные значения напряжения на выходе, при этом оно может иметь и другие значения. Все зависит от конструкции трансформатора, количества обмоток и размер сечения, используемого магнитопровода.

Блок питания с напряжением на выходе в 12В широко используются в быту с конца прошлого столетия. Их применяют для питания котлов отопления, светодиодных лент, игровых устройств, сварочных аппаратов, телевизионных приставок и различных бытовых приборов.

Блоки с напряжением этого уровня используются преимущественно в персональных компьютерах, но могут использоваться и для подзарядки других устройств, например, в сварочных аппаратах.

Данный вид трансформаторных блоков питания также используется для обеспечения питания компьютеров и серверов.

Эта разновидность блоков для питания устройств широко применяется для работы со строительной техникой и различных бытовых устройств. Например, им подпитывается дрель, болгарка или перфоратор.

Выпрямитель

В трансформаторном блоке питания используется обычно мостовой выпрямитель с одним, двумя или четырьмя диодами.

Используем мостовую схему выпрямления

Использование мостового выпрямителя показано на данной схеме:

Как работает

Принцип работы у выпрямителя мостового типа следующий: во время течения в полупериоде, электрический ток идет через два диода, которые включены в прямом направлении. Это позволяет конденсатору получать напряжение с пульсацией в два раза большей частотой от питания.

Выше представлена схема как использовать выпрямитель мостового типа в конструкции. Чтобы понять, как работает выпрямитель с постоянным и переменным напряжением мостового типа можно использовать для ознакомления данную схему:

Треугольники на схеме – это диоды, которые позволяют работать мостовому выпрямителю.

Как спаять

Для спайки мостового выпрямителя следует использовать следующую схему:

Фильтр

В блоках трансформаторного типа фильтрация и отсечение переменных, составляющих являются обязательными. С этой целью в данных устройствах используются электролитические конденсаторы с большой емкостью.

Назначение

Электролитический конденсатор, выполняющий роль фильтра в этих устройствах используется как при работе блока с постоянным, так и переменным напряжением. Но в некоторых случаях выбор конденсатора может быть другим.

Выбор конденсатора

Для трансформаторных блоков питания подбирается конденсатор согласно уровню напряжения, с которым он работает. При постоянном напряжении вместо электролитного конденсатора можно использовать постоянный резистор, а при переменном напряжении обычной перемычкой, так как конденсатор становится проводником.

Как правильно подключать

Чтобы при самостоятельной сборке трансформаторного блока питания на 12В конденсаторы правильно работали, на выходе устройство укомплектовывается резистором с сопротивлением от 3 до 5 Мом.

Стабилизатор напряжения или тока

Источник питания стандартного типа собирается с использованием электролитического конденсатора с емкостью не более 10000 мкФ, двухполупериодного выпрямителя мостового типа из диодов с обратным напряжением в 50 вольт и прямым током 3А, а также с предохранителем 0,5А. В роли интегрального стабилизатора напряжения на 12В используется конденсатор 7912, либо 7812.

Стабилитрон

Для постоянства напряжения при выходе из блока питания рекомендуется использовать стабилитрон.

Интегральный стабилизатор напряжения

Без использования стабилизатора напряжения блок питания не сможет правильно функционировать. В роли этих компонентов используются конденсаторы серий LM 78xx и LM 79xx. Стабилитроны подбираются по подходящей величине параметров тока и напряжения, на рынке их большое множество, но самым продвинутым считается элемент типа КР142ЕН12.

Чем больше емкость конденсатора, тем лучше уровень сигнала на выходе, он имеет правильную форму и стремится к прямой линии.

Серия LM 78xx

Данные регуляторы напряжения имеют выходной ток до 1А, и выходное напряжение: 5, 6, 8, 9, 12, 15, 18, 24. Кроме того в этих конденсаторах есть тепловая защита от перегрузок и защита от коротких замыканий.

Серия LM 79xx

Эти регуляторы напряжения имеют значения схожие с серией 78xx. В них также реализована тепловая защита от больших перегрузок и защита от замыканий.

Вспомогательные узлы

В конструкции можно реализовать вспомогательные узлы, например, индикаторы или переключатели напряжения. Главное не переусердствовать и делать устройство согласно всем нормам и рекомендациям.

Индикаторные светодиоды

В конструкции можно продумать светодиодные индикаторы, которые применяются в заводских блоках и подзарядных устройствах. Светодиоды служат сигнализатором о том, что полезная работа трансформатора производится и напряжение соответствует требуемому значению.

Амперметр и вольтметр

Для произведения расчетов и подбора элементов, а также для правильной сборки блока питания необходимо использовать амперметр и вольтметр.

Схема самодельного источника питания

Схемы как собрать самодельный блок питания трансформаторного типа представлены были выше, но для удобства предлагаем для ознакомления еще одну схему, с понятными обозначениями.

На данной схеме изображен понижающий трансформатор с двумя обмотками и диодный мост для выпрямления.

Это простая схема, которая позволяет собрать самодельный источник питания с трансформатором любому начинающему электрику.

Как паять

Для сборки используется печатная плата из фольгированного диэлектрика. Сначала рисуется схема, затем на заготовку платы наносится рисунок и производится протравка. После этого засверливаются отверстия для крепления каждого элемента схемы блока.

Читайте так же:
Импульсный стабилизатор тока tl494

Правила выбора комплектующих

Чтобы сделать своими руками блок питания с трансформатором необходимо правильно подобрать комплектующие. В данной статье мы разобрались как подсчитать значения необходимых элементов устройства, какие трансформаторы, выпрямители и фильтры можно использовать в блока питания этой разновидности. Для удобства предлагаю таблицу ниже, она поможет при выборе комплектующих:

В данной таблице приведены оптимальные значения и соотношения мощности устройства и технических характеристик всех компонентов, используемых в конструкции. Емкость конденсаторов должна обеспечивать заданную пульсацию в расчете 1мкФ на 1Вт в показателях мощности на выходе. Электролитический конденсатор должен выбираться для напряжения от 350В.

СТАБИЛИЗАТОРЫ ДЛЯ ПИТАНИЯ МИКРОСХЕМ

В этой статье мы рассмотрим возможности и способы питания цифровых устройств собранных своими руками, в частности на микроконтроллерах. Ни для кого не секрет, что залогом успешной работы любого устройства, является его правильное запитывание. Разумеется, блок питания должен быть способен выдавать требуемую для питания устройства мощность, иметь на выходе электролитический конденсатор большой емкости, для сглаживания пульсаций и желательно быть стабилизированным.

Стабилизированное зарядное устройство

Последнее подчеркну особенно, разные нестабилизированные блоки питания типа зарядных устройств от сотовых телефонов, роутеров и подобной техники не подходят для питания микроконтроллеров и других цифровых устройств напрямую. Так как напряжение на выходе таких блоков питания меняется, в зависимости от мощности подключенной нагрузки. Исключение составляют стабилизированные зарядные устройства, с выходом USB, выдающие на выходе 5 вольт, вроде зарядок от смартфонов.

Измерение мультиметром напряжения на блоке питания

Многих начинающих изучать электронику, да и просто интересующихся, думаю шокировал тот факт: на адаптере питания например от приставки Денди, да и любом другом подобном нестабилизированном может быть написано 9 вольт DC (или постоянный ток), а при измерении мультиметром щупами подключенными к контактам штекера БП на экране мультиметра все 14, а то и 16. Такой блок питания может использоваться при желании для питания цифровых устройств, но должен быть собран стабилизатор на микросхеме 7805, либо КРЕН5. Ниже на фото микросхема L7805CV в корпусе ТО-220.

Такой стабилизатор имеет легкую схему подключения, из обвеса микросхемы, то есть из тех деталей которые необходимы для её работы нам требуются всего 2 керамических конденсатора на 0.33 мкф и 0.1 мкф. Схема подключения многим известна и взята из Даташита на микросхему:

Схема подключения 7805

Соответственно на вход такого стабилизатора мы подаем напряжение, или соединяем его с плюсом блока питания. А минус соединяем с минусом микросхемы, и подаем напрямую на выход.

Схема снижения с 12 вольт до 5

И получаем на выходе, требуемые нам стабильные 5 Вольт, к которым при желании, если сделать соответствующий разъем, можно подключать кабель USB и заряжать телефон, mp3 плейер или любое другое устройство с возможностью заряда от USB порта.

Стабилизатор снижение с 12 до 5 вольт — схема

Автомобильное зарядное устройство с выходом USB всем давно известно. Внутри оно устроено по такому же принципу, то есть стабилизатор, 2 конденсатора и 2 разъема.

Автомобильное зарядное устройство в прикуриватель

Как пример для желающих собрать подобное зарядное своими руками или починить существующее приведу его схему, дополненную индикацией включения на светодиоде:

Схема автомобильной зарядки на 7805

Цоколевка микросхемы 7805 в корпусе ТО-220 изображена на следующих рисунках. При сборке, следует помнить о том, что цоколевка у микросхем в разных корпусах отличается:

При покупке микросхемы в радиомагазине, следует спрашивать стабилизатор, как L7805CV в корпусе ТО-220. Эта микросхема может работать без радиатора при токе до 1 ампера. Если требуется работа при больших токах, микросхему нужно установить на радиатор.

Радиатор для стабилизаторов

Разумеется, эта микросхема существует и в других корпусах, например ТО-92, знакомый всем по маломощным транзисторам. Этот стабилизатор работает при токах до 100 миллиампер. Минимальное напряжение на входе, при котором стабилизатор начинает работать, составляет 6.7 вольт, стандартное от 7 вольт. Фото микросхемы в корпусе ТО-92 приведено ниже:

Цоколевка микросхемы, в корпусе ТО-92, как уже было написано выше, отличается от цоколевки микросхемы в корпусе ТО-220. Её мы можем видеть на следующем рисунке, как из него становится ясно, что ножки расположены зеркально, по отношению к ТО-220:

Маломощный стабилизатор 78l05 цоколевка

Разумеется, стабилизаторы выпускают на разное напряжение, например 12 вольт, 3.3 вольта и другие. Главное не забывать, что входное напряжение, должно быть минимум на 1.7 — 3 вольта больше выходного.

Микросхема 7833 — схема

На следующем рисунке приведена цоколевка стабилизатора 7833 в корпусе ТО-92. Такие стабилизаторы применяются для запитывания в устройствах на микроконтроллерах дисплеев, карт памяти и другой периферии, требующей более низковольтного питания, чем 5 вольт, основное питание микроконтроллера.

Стабилизатор для питания МК

Я пользуюсь для запитывания собираемых и отлаживаемых на макетной плате устройств на микроконтроллерах, стабилизатором в корпусе, как на фото выше. Питание подается от нестабилизированного адаптера через гнездо на плате устройства. Его принципиальная схема приведена на рисунке далее:

Схема стабилизатор на 7805 для 5В

При подключении микросхемы нужно строго соответствовать цоколевке. Если ножки спутать, даже одного включения достаточно, чтобы вывести стабилизатор из строя, так что при включении нужно быть внимательным. Автор материала — AKV.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector