Sfera-perm.ru

Сфера Пермь
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Счетчики реактивной мощности тока

УЧЕТ РЕАКТИВНОЙ ЭЛЕКТРОЭНЕРГИИ

Для измерения реактивной энергии трехфазного тока применяются следующие схемы учета:

1) с одним, двумя или тремя однофазными счетчиками;

2) с трехфазным двухэлементным реактивным счетчиком с нормальным 90-градусным сдвигом фаз магнитных потоков и подразделенными последовательными обмотками;

3) с трехфазным двухэлементным реактивным счетчиком 60-градусным сдвигом фаз магнитных потоков;

4) с трехфазным двухэлементным счетчиком активной энергии.

Для симметричной трехфазной трехпроводной сети для учета реактивной энергии можно использовать один однофазный счетчик.

Частота вращения диска счетчика пропорциональна мощности

,

где — линейное напряжение, приложенное к параллельной обмотке счетчика; — ток последовательной обмотки счетчика; — угол сдвига между линейным напряжением и током .

Расход реактивной энергии за определенное время t в трехфазной сети равен

.

Используя схему рис. 3, а можно помимо учета активной энергии определить расход реактивной энергии в этой сети, если вычесть показания однофазного счетчика из показаний другого ( только в случае возрастаний показаний обоих счетчиков). Полученная разность показаний и увеличенная в ф раз определяет расход реактивной электрической энергии в этой сети.

Схема с использованием 3-однофазных счетчиков (рис. 6) может быть использована в трехфазных трехпроводных и четырехпроводных сетях низкого напряжения при простой асимметрии.

Частота вращения дисков однофазных счетчиков пропорциональна мощностям где

Сумма показаний трех счетчиков будет пропорциональна сумме мощностей

где фазные реактивной мощности фаз А, В, С.

Из последнего выражения следует — реактивная энергия в трехфазной сети равна сумме показаний 3-х однофазных счетчиков деленной на . Учет реактивной энергии с помощью трехфазного двухэлементного реактивного счетчика с 90-градусным сдвигом фаз магнитных потоков можно осуществить в симметричной или с простой асимметрией трехфазной сети напряжением свыше 1 кВ. Электрическая схема представлена на рис. 7.

Отсчет реактивной энергии в этой схеме производится непосредственно по счетному механизму с учетом коэффициента трансформации трансформаторов тока и напряжения.

Наибольшее распространение для 3-фазных трехпроводных сетей (симметричных и с простой асимметрией) получим схему учета реактивной энергии со счетчиком с 60-градусным сдвигом фаз магнитных потоков (рис.8). Для обеспечения 60-градусного сдвига между и в параллельную цепь каждого элемента счетчика включено добавочное активное сопротивление Rд.

Результирующая скорость вращения диска счетчика пропорциональна сумме реактивных мощностей 3-х фаз, т.е. и, следовательно, показания счетчика учитывают расход реактивной энергии в трёхфазной системе без введения каких-либо поправочных коэффициентов.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Большая Энциклопедия Нефти и Газа

Расход — реактивная энергия

Расход реактивной энергии определяется путем умножения на 1 3 разности значений энергии, учтенной счетчиками, если показания обоих счетчиков увеличились за учитываемый период. [1]

Учет расхода реактивной энергии производится специальными электрическими счетчиками — счетчиками реактивной энергии. [2]

Измерение расхода реактивной энергии и мощности производится как активными ваттметрами и счетчиками, включенными по определенным схемам, так и специальными реактивными ваттметрами и счетчиками. В трехфазных цепях для обеспечения этого требования часто применяются специальные схемы, учитывающие существующие сдвиги между векторами различных линейных и фазных напряжений. [3]

Для этого расход реактивной энергии в кВАр — ч заданный месяц делят на расход активной энергии в кВт ч за то же время. [4]

Для учета расхода реактивной энергии в сетях трехфазного тока применяются также специальные трехфазные счетчики реактивной энергии. [6]

Для учета расхода реактивной энергии можно использовать обычные однофазные счетчики, вклю — — чая их по принципиальным схемам рис. 8 — 30 и 8 — 34, по которым включаются ваттметры для измерения реактивной мощности. Вычисление расхода реактивной энергии по показаниям счетчиков, включенных по указанным схемам, производится по тем же формулам, которые были выведены для вычисления реактивной мощности по показаниям ваттметров при соответствующих схемах. [8]

Читайте так же:
Однофазный счетчик ф 442

Значения коэффициента мощности системы для отдельных нагрузок и величина расхода реактивной энергии при переходных процессах для различных режимов работы системы в течение одного цикла не могут характеризовать рассматриваемую систему как потребителя реактивной энергии. [9]

При значительных мощностях ДП ( 10 — 20 кВт) расход реактивной энергии из сети дополнительным контуром относительно невелик. [10]

За — годовой расход активной энергии; Ps0 — получасовая активная нагрузка; 3 г-годовой расход реактивной энергии ; Q30 — получасовая реактивная нагрузка. [11]

На предприятиях должен вестись ( записями или автоматизирован-но) учет: ежесуточного и ежемесячного расхода активной энергии, ежесуточного расхода реактивной энергии ( мощности), расхода активной энергии ( мощности) каждые 30 мин во время прохождения максимума нагрузки энергосистемы. Рекомендуется составление энергобаланса по предприятию в целом, по производствам, цехам и наиболее энергоемким агрегатам. [12]

В соответствии с подразделением мощности, развиваемой переменным током, на мощности активную и реактивную, работа тока, или иначе расход энергии в цепях переменного тока, также подразделяется на расход активной энергии и расход реактивной энергии . [13]

Для учета расхода реактивной энергии можно использовать обычные однофазные счетчики, вклю — — чая их по принципиальным схемам рис. 8 — 30 и 8 — 34, по которым включаются ваттметры для измерения реактивной мощности. Вычисление расхода реактивной энергии по показаниям счетчиков, включенных по указанным схемам, производится по тем же формулам, которые были выведены для вычисления реактивной мощности по показаниям ваттметров при соответствующих схемах. [14]

В условиях, когда коэффициент мощности потребителя практически мало зависит от напряжения, это уменьшение угла сдвига фаз будет невелико. Еще меньше оно будет при питании таких устройств, как нерегулируемые трансформаторы и асинхронные двигатели, у которых и увеличением напряжения растет расход реактивной энергии . [15]

Что такое активная и реактивная электроэнергия?

При этом выделяются два показателя, отражающие затраты полной мощности при обслуживании потребителя. Эти показатели называются активная и реактивная энергия. Полная мощность представляет собой сумму этих двух показателей.

Полная мощность.
По сложившейся практике потребители оплачивают не полезную мощность, которая непосредственно используется в хозяйстве, а полную, которую отпускает предприятие-поставщик. Различают эти показатели по единицам измерения – полная мощность измеряется в вольт-амперах (ВА), а полезная – в киловаттах. Активная и реактивная электроэнергия используется всеми запитанными от сети электроприборами.

Активная электроэнергия.
Активная составляющая полной мощности совершает полезную работу и преобразовывается в те виды энергии, которые нужны потребителю. У части бытовых и промышленных электроприборов в расчетах активная и полная мощность совпадают. Среди таких устройств – электроплиты, лампы накаливания, электропечи, обогреватели, утюги и гладильные прессы и прочее. Если в паспорте указана активная мощность 1 кВт, то полная мощность такого прибора будет составлять 1 кВА.

Понятие реактивной электроэнергии.
Этот вид электроэнергии присущ цепям, в составе которых имеются реактивные элементы. Реактивная электроэнергия — это часть полной поступаемой мощности, которая не расходуется на полезную работу. В электроцепях постоянного тока понятие реактивной мощности отсутствует. В цепях переменного тока реактивная составляющая возникает только в том случае, когда присутствует индуктивная или емкостная нагрузка. В таком случае наблюдается несоответствие фазы тока с фазой напряжения. Данный сдвиг фаз между напряжением и током обозначается символом «φ». При индуктивной нагрузке в цепи наблюдается отставание фазы, при емкостной – ее опережение. Поэтому потребителю приходит только часть полной мощности, а основные потери происходят из-за бесполезного нагревания устройств и приборов в процессе эксплуатации. Потери мощности происходят из-за наличия в электрических устройствах индуктивных катушек и конденсаторов. Из-за них в цепи в течение некоторого времени происходит накопление электроэнергии. После этого запасенная энергия поступает обратно в цепь. К приборам, в составе потребляемой мощности которых имеется реактивная составляющая электроэнергии, относятся переносные электроинструменты, электродвигатели и различная бытовая техника. Эта величина рассчитывается с учетом особого коэффициента мощности, который обозначается как cos φ.

Читайте так же:
Электронный счетчик схемы своими руками

Расчет реактивной электроэнергии.
Коэффициент мощности лежит в пределах от 0,5 до 0,9; точное значение этого параметра можно узнать из паспорта электроприбора. Полная мощность должна быть определена как частное от деления активной мощности на коэффициент. Например, если в паспорте электрической дрели указана мощность в 600 Вт и значение 0,6, тогда потребляемая устройством полная мощность будет равна 600/06, то есть 1000 ВА. При отсутствии паспортов для вычисления полной мощности прибора коэффициент можно брать равным 0,7. Поскольку одной из основных задач действующих систем электроснабжения является доставка полезной мощности конечному потребителю, реактивные потери электроэнергии считаются негативным фактором, и возрастание этого показателя ставит под сомнение эффективность электроцепи в целом.

Значение коэффициента при учете потерь.
Чем выше значение коэффициента мощности, тем меньше будут потери активной электроэнергии – а значит конечному потребителю потребляемая электрическая энергия обойдется немного дешевле. Для того чтобы повысить значение этого коэффициента, в электротехнике используются различные приемы компенсации нецелевых потерь электроэнергии. Компенсирующие устройства представляют собой генераторы опережающего тока, сглаживающие угол сдвига фаз между током и напряжением. Для этой же цели иногда используются батареи конденсаторов. Они подключаются параллельно к рабочей цепи и используются как синхронные компенсаторы.

Расчет стоимости электроэнергии для частных клиентов.
Для индивидуального пользования активная и реактивная электроэнергия в счетах не разделяется – в масштабах потребления доля реактивной энергии невелика. Поэтому частные клиенты при потреблении мощности до 63 А оплачивают один счет, в котором вся потребляемая электроэнергия считается активной. Дополнительные потери в цепи на реактивную электроэнергию отдельно не выделяются и не оплачиваются. Учет реактивной электроэнергии для предприятий Другое дело – предприятия и организации. В производственных помещениях и промышленных цехах установлено огромное число электрооборудования, и в общей поступаемой электроэнергии имеется значительная часть энергии реактивной, которая необходима для работы блоков питания и электродвигателей. Активная и реактивная электроэнергия, поставляемая предприятиям и организациям, нуждается в четком разделении и ином способе оплаты за нее. Основанием для регуляции отношений предприятия-поставщика электроэнергии и конечных потребителей в этом случае выступает типовой договор. Согласно правилам, установленным в этом документе, организации, потребляющие электроэнергию свыше 63 А, нуждаются в особом устройстве, предоставляющем показания реактивной энергии для учета и оплаты. Сетевое предприятие устанавливает счетчик реактивной электроэнергии и начисляет оплату согласно его показаниям.

Коэффициент реактивной энергии.
Как говорилось ранее, активная и реактивная электроэнергия в счетах на оплату выделяются отдельными строками. Если соотношение объемов реактивной и потребленной электроэнергии не превышает установленной нормы, то плата за реактивную энергию не начисляется. Коэффициент соотношения бывает прописан по-разному, его среднее значение составляет 0,15. При превышении данного порогового значения предприятию-потребителю рекомендуют установить компенсаторные устройства.

Реактивная энергия в многоквартирных домах.
Типичным потребителем электроэнергии является многоквартирный дом с главным предохранителем, потребляющий электроэнергию свыше 63 А. Если в таком доме имеются исключительно жилые помещения, плата за реактивную электроэнергию не взимается. Таким образом, жильцы многоквартирного дома видят в начислениях оплату только за полную электроэнергию, поставленную в дом предприятием-поставщиком. Та же норма касается жилищных кооперативов.

Частные случаи учета реактивной мощности.
Бывают случаи, когда в многоэтажном здании имеются и коммерческие организации, и квартиры. Поставка электроэнергии в такие дома регулируется отдельными Актами. Например, разделением могут служить размеры полезной площади. Если в многоквартирном доме коммерческие организации занимают менее половины полезной площади, то оплата за реактивную энергию не начисляется. Если пороговый процент был превышен, то возникают обязательства оплаты за реактивную электроэнергию. В ряде случаев жилые дома не освобождаются от оплаты за реактивную энергию. Например, если в доме установлены пункты подключения лифтов для квартир, начисление за использование реактивной электроэнергии происходит отдельно, лишь для этого оборудования. Владельцы квартир по-прежнему оплачивают лишь активную электроэнергию.

Читайте так же:
Квитанция за однотарифный электросчетчик

Компенсация реактивной мощности в квартире, быту и на производстве

Определение

Нагрузка электрической цепи определяет, какой ток через неё проходит. Если ток постоянный, то эквивалентом нагрузки в большинстве случаев можно определить резистор определённого сопротивления. Тогда мощность рассчитывают по одной из формул:

По этой же формуле определяется полная мощность в цепи переменного тока.

Нагрузку разделяют на два основных типа:

  • Активную – это резистивная нагрузка, типа – ТЭНов, ламп накаливания и подобного.
  • Реактивную – она бывает индуктивной (двигатели, катушки пускателей, соленоиды) и емкостной (конденсаторные установки и прочее).

Последняя бывает только при переменном токе, например, в цепи синусоидального тока, именно такой есть у вас в розетках. В чем разница между активной и реактивной энергией мы расскажем далее простым языком, чтобы информация стала понятной для начинающих электриков.

Компенсаторы реактивной мощности в квартире

Многие промышленные предприятия, особенно крупные, применяют в целях экономии устройства компенсации реактивной мощности. Однако этот трюк не пройдёт в обычной квартире. Вытекает это из ряда причин:

  1. Бытовые однофазные счётчики электроэнергии, используемые в жилых домах, не способны вычислять реактивную мощность. Соответственно, никто не сможет взыскать за неё оплату. Особенно это относится к старым индукционным счётчикам.
  2. Организации, поставляющие электроэнергию, ведут учёт реактивной мощности только для крупных промышленных предприятий. Установка подобных устройств в жилых домах не является требованием ПУЭ.
  3. С технической точки зрения, проблематично и дорого будет рассчитать УКРМ для каждой квартиры или тем более поставить автоматические системы на микропроцессоре, ведь данные приборы стоят внушительных денег.


Cosф бытовых потребителей

Важно! По интернету гуляют предложения купить мошенническую чудо-коробочку. Она подключается к розетке и тем самым избавляет квартиру от излишков реактивной мощности. Как показывают обзоры, внутри этого прибора не содержится ничего, кроме светодиода. Соответственно, такое устройство никак не поможет сэкономить.

Смысл реактивной нагрузки

В электрической цепи с реактивной нагрузки фаза тока и фаза напряжения не совпадают во времени. В зависимости от характера подключенного оборудования напряжение либо опережает ток (в индуктивности), либо отстаёт от него (в ёмкости). Для описания вопросов используют векторные диаграммы. Здесь одинаковое направление вектора напряжения и тока указывает на совпадение фаз. А если вектора изображены под некоторым углом, то это и есть опережение или отставание фазы соответствующего вектора (напряжения или тока). Давайте рассмотрим каждый из них.

В индуктивности напряжение всегда опережает ток. «Расстояние» между фазами измеряется в градусах, что наглядно иллюстрируется на векторных диаграммах. Угол между векторами обозначается греческой буквой «Фи».

В идеализированной индуктивности угол сдвига фаз равен 90 градусов. Но в реальности это определяется полной нагрузкой в цепи, а в реальности не обходится без резистивной (активной) составляющей и паразитной (в этом случае) емкостной.

В ёмкости ситуация противоположна – ток опережает напряжение, потому что индуктивность заряжаясь потребляет большой ток, который уменьшается по мере заряда. Хотя чаще говорят, что напряжение отстаёт от тока.

Если сказать кратко и понятно, то эти сдвиги можно объяснить законами коммутации, согласно которым в ёмкости напряжение не может изменится мгновенно, а в индуктивности – ток.

Треугольник мощностей и косинус Фи

Если взять всю цепь, проанализировать её состав, фазы токов и напряжений, затем построить векторную диаграмму. После этого изобразить активную по горизонтальной оси, а реактивную – по вертикальной и соединить результирующим вектором концы этих векторов – получится треугольник мощностей.

Он выражает отношение активной и реактивной мощности, а вектор, соединяющий концы двух предыдущих векторов – будет выражать полную мощность. Всё это звучит слишком сухо и запутано, поэтому посмотрите на рисунок ниже:

Буквой P – обозначена активная мощность, Q – реактивная, S – полная.

Читайте так же:
Срок межповерочного интервала электросчетчика что это такое

Формула полной мощности имеет вид:

Самые внимательные читатели наверняка заметили подобие формулы теореме Пифагора.

  • P – Вт, кВт (Ватты);
  • Q – ВАр, кВАр (Вольт-амперы реактивные);
  • S – ВА (Вольт-амперы);

Конденсаторные установки

Для уменьшения реактивной мощности в сетях промышленных предприятий получили распространение конденсаторные установки.

Конденсаторная установка (КУ, или УКРМ — установка компенсации реактивной мощности) — согласно действующему ГОСТ 27389-87, это электроустановка, состоящая из конденсаторов и относящегося к ней вспомогательного электрооборудования (регулятора реактивной мощности, контакторов, предохранителей и т. д.).

Выбрать необходимую конденсаторную установку (калькулятор)

Выбор режима компенсации

По месту установки КУ различают следующие виды компенсации: централизованная на высокой стороне (а), централизованная на низкой стороне (б), групповая (в) и индивидуальная (г) (см. рисунок ниже).

  • При централизованной компенсации на стороне высокого напряжения , когда конденсаторная установка присоединяется к шинам 6-10 кВ трансформаторной подстанции, получается хорошее использование конденсаторов, их требуется меньше и стоимость 1 квар установленной мощности получается минимальной по сравнению с другими способами. При компенсации по этой схеме разгружаются от реактивной мощности только расположенные выше звенья энергосистемы, а внутризаводские распределительные сети и даже трансформаторы подстанции остаются не разгруженными от реактивной мощности, а следовательно, потери энергии в них не уменьшаются и мощности трансформаторов на подстанции не могут быть уменьшены.
  • При централизованной компенсации на стороне низкого напряжения, когда конденсаторная установка присоединяется к шинам 0,4 кВ трансформаторной подстанции, от реактивной мощности разгружаются не только вышерасположенные сети 6—10 кВ, но и трансформаторы на подстанции, однако внутризаводские распределительные сети 0,4 кВ остаются неразгруженными.
  • При групповой компенсации, когда конденсаторные установки устанавливаются в цехах и присоединяются непосредственно к цеховым распределительным пунктам (РП) или шинам 0,4 кВ, разгружаются от реактивной мощности и трансформаторы на подстанции и питательные сети 0,4 кВ Неразгруженными остаются только распределительные сети к отдельным электроприемникам. В целях равномерного распределения компенсирующих устройств целесообразно подключать конденсаторную установку к шинам РП таким образом, чтобы реактивная нагрузка этого РП составляла более половины мощности подключаемой конденсаторной установки.
  • При индивидуальной компенсации, когда конденсаторная установка подключается непосредственно к зажимам потребляющего реактивную мощность электроприемннка, что является основным требованием создания реактивной мощности по возможности ближе к месту ее потребления, такой способ будет наиболее эффективным в отношении разгрузки от реактивной мощности питательной и распределительной сетей, трансформаторов и сетей высшего напряжения. При индивидуальной компенсации происходит саморегулирование выработки реактивной мощности, так как конденсаторные установки включаются и отключаются одновременно с приводными электродвигателями машин и механизмов.

Практически распространенными способами компенсации реактивной мощности электроснабжения промышленных предприятий является групповая компенсация, возможны также варианты комбинированного размещения конденсаторных установок. Определение наивыгоднейших решений выбора способа компенсации реактивной мощности производится на основании технико-экономических расчетов тщательных исследований производственных условий, факторов конструктивного характера и т. д.. При выборе места размещения конденсаторной установки в распределительной сети необходимо учитывать ее влияние на режим напряжения и величину потерь энергии в сети. Как правило, компенсация реактивной мощности должна производиться в той же сети (на том же напряжении), где она потребляется, при этом будут минимальные потери энергии, а следовательно, и меньшие мощности трансформаторов.

Выбор типа компенсации

В зависимости от требований к характеристикам оборудования и сложности управления, КРМ может быть следующих типов:

  • нерегулируемой – путем подключения конденсаторной батареи фиксированной емкости;
  • автоматической – путем включения различного количества ступеней регулирования для подачи требуемой реактивной энергии;
  • динамической – для компенсации быстро изменяющихся нагрузок.
Нерегулируемая компенсация

В схеме используется один или несколько конденсаторов, обеспечивающих постоянный уровень компенсации. Управление может быть:

  • ручным: с помощью автоматического выключателя или выключателя нагрузки;
  • полуавтоматическим: с помощью кнопок и контактора;
  • прямое подсоединение к нагрузке и включение/отключение вместе с ней.
  • к вводным зажимам индуктивных нагрузок (в основном, электродвигателей);
  • к шинам, питающим группы небольших электродвигателей или индуктивных нагрузок, для которых индивидуальная компенсация может быть довольно дорогостоящей;
  • в случаях, когда коэффициент нагрузки должен быть постоянным.
Читайте так же:
Счетчик трехфазный цэ6803в 5 60а
Автоматическая компенсация

Данный тип компенсации предусматривает автоматическое поддержание заданного cos φ путем регулирования количества вырабатываемой реактивной энергии в соответствии с изменениями нагрузки. Оборудование КРМ устанавливается и подключается к тем местам электроустановки, где изменения активной и реактивной мощности относительно велики, например:

  • к сборным шинам главного распределительного щита;
  • к зажимам кабеля, питающего мощную нагрузку.

Нерегулируемая компенсация применяется там, где требуется компенсировать реактивную мощность, не превышающую 15% номинальной мощности трансформаторного источника питания. Если требуется компенсировать более 15%, рекомендуется устанавливать конденсаторную батарею с автоматическим регулированием. Управление обычно осуществляется электронным устройством (контроллером реактивной мощности), которое отслеживает фактический коэффициент мощности и выдает команды на подключение или отключение конденсаторов для достижения заданного коэффициента. Таким образом, реактивная энергия регулируется ступенчато. Кроме того, регулятор реактивной мощности выдает информацию о характеристиках электросети (амплитуда напряжения, уровень искажений, коэффициент мощности, фактическая активная и реактивная мощность) и состоянии оборудования. В случае неисправности подаются аварийные сигналы. Подключение обычно обеспечивается контакторами. Для быстрой и частой коммутации конденсаторов при компенсации сильно изменяющихся нагрузок следует использовать полупроводниковые ключи.

Динамическая компенсация

Данный тип КРМ используется для предотвращения колебаний напряжения в сетях с изменяющимися нагрузками. Принцип динамической компенсации заключается в том, что вместе с нерегулируемой конденсаторной батареей используется электронный компенсатор реактивной мощности, обеспечивающий опережение или запаздывание реактивных токов относительно напряжения. В результате получается быстродействующая изменяющаяся компенсация, хорошо подходящая для таких нагрузок, как лифты, дробилки, аппараты точечной сварки и т. д.

Учет условий эксплуатации и содержания гармоник в сети

Конденсаторные установки следует выбирать с учетом условий эксплуатации на протяжении всего срока службы комплектующих, в первую очередь конденсаторов и контакторов.

Учет условий эксплуатации

Условия эксплуатации оказывают значительное влияние на срок службы конденсаторов. Следует учитывать следующие параметры:

  • температура окружающей среды (°C);
  • ожидаемые повышенные токи, связанные с искажением формы напряжения, включая максимальное непрерывное перенапряжение;
  • максимальное количество коммутационных операций в год;
  • требуемый срок службы.
Учет воздействия гармоник

В зависимости от амплитуды гармоник в электросети применяются различные конфигурации устройств КРМ:

  • Стандартные конденсаторы: при отсутствии значительных нелинейных нагрузок.
  • Конденсаторы увеличенного номинала: при наличии незначительных нелинейных нагрузок. Номинальный ток конденсаторов должен быть увеличен, чтобы они могли выдерживать циркуляцию токов гармоник.
  • Конденсаторы увеличенного номинала с антирезонансными дросселями применяются при наличии многочисленных нелинейных нагрузок. Дроссели необходимы для подавления циркуляции токов гармоник и предотвращения резонанса.
  • Фильтры высших гармоник: в сетях с преобладанием нелинейных нагрузок, где требуется подавление гармоник. Обычно фильтры конструируются для конкретной электроустановки, исходя из результатов измерений на месте и компьютерной модели электросети.

Расчёты

Для вычисления полной мощности используют формулу в комплексной форме. Например, для генератора расчет имеет вид:

А для потребителя:

Но применим знания на практике и разберемся как рассчитать потребляемую мощность. Как известно мы, обычные потребители, оплачиваем только за потребление активной составляющей электроэнергии:

Здесь мы видим, новую величину cosФ. Это коэффициент мощности, где Ф – это угол между активной и полной составляющей из треугольника. Тогда:

В свою очередь реактивная мощность рассчитывается по формуле:

Для закрепления информации, ознакомьтесь с видео лекцией:

Всё вышесказанное справедливо и для трёхфазной цепи, отличаться будут только формулы.

Для чего компенсация реактивной мощности

кВа в кВт — как правильно перевести мощность

Компенсировать реактивную составляющую мощности необходимо для повышения эффективности энергосистемы и снижения нагрузки на питающие кабеля и коммутирующие аппараты.

На производстве в основном преобладают потребители индуктивного характера. Для компенсации реактивной мощности, возникающей из-за их работы, чаще всего применяют конденсаторные установки. Их использование позволяет добиться следующих положительных эффектов:

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector