Sfera-perm.ru

Сфера Пермь
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Счетчик оборотов шагового двигателя

«Плавный» ход шагового двигателя

Стандартный шаговый двигатель от 5-дюймового дисковода
можно заставить вращаться плавно и использовать, например, для привода секундной стрелки в часах.
Тока, отдаваемого микросхемой PSoC, оказывается достаточно для прямого подключения обмоток двигателя к выводам микросхемы.

Для «плавного» вращения шагового (синхронного) двигателя обычно используется микрошаговый режим. Это означает, что токи в обмотках по мере их переключения меняются не скачком, а достаточно плавно – ток в одной обмотке постепенно замещается током в другой. Ротор, следуя за магнитным полем, проходит при этом все промежуточные положения. Приставка «микро-» отражает невозможность получения в цифровых системах бесконечно малых приращений. Конечная величина дробления шага задает лишь иллюзию «плавности».

В двигателях, специально «заточенных» под промежуточные положения ротора, приняты меры по обеспечению точного профилирования магнитного поля. В результате этого нарастающий и ниспадающий по закону синуса ток в обмотках приводит к строго пропорциональному перемещению ротора между крайними точками. Крутящий момент на валу при этом остается постоянным.

В обычных шаговых двигателях (которые можно встретить в принтерах и дисководах) линейность перемещения и постоянство момента внутри шага не нормируется, поэтому мне было интересно оценить их возможности. Свои эксперименты я ставил с двигателями от приводов 5-дюймовых дисков (уже ушедших в Небытие).

Такой двигатель имеет 6 проводов (две обмотки с отводами от середин, хотя попадаются экземпляры и с 5 проводами, у которых средние точки соединены внутри), и на нем написано: 1.8 deg./step, 0.16A/phase. Это означает, что подавая последовательно на каждую полуобмотку ток (в данном случае 0,16 А максимум, а средние точки обычно подключаются к «+» питания), мы заставим его каждый раз поворачиваться на угол 1,8 о . Сопротивления полуобмоток составляют 75 ом и легко «вызваниваются» мультиметром. Обычно средним точкам соответствуют провода красного цвета. Чтобы совершить полный оборот, надо сделать цепочку из 50 х 4 = 200 переключений.

Если при отсоединенных обмотках попробовать вручную провернуть вал, то рука почувствует едва ощутимое сопротивление в виде дрожи. Это – так называемое «магнитное залипание», явление, обусловленное неоднородностью взаимодействия магнитных систем ротора и статора, а также наличием остаточной намагниченности статора (магнитопровода, на котором расположены обмотки). Это «залипание» не только ухудшает линейность перемещения внутри шага, но и создает определенный порог по току, ниже которого двигатель не удается привести во вращение даже на холостом ходу.

Ставя эксперименты, мне хотелось решить два вопроса:
1. Хватит ли тока, генерируемого микроконтроллером, чтобы вращать вал на малой нагрузке или, хотя бы, на холостом ходу?
2. Так ли уж необходим классический закон синуса-косинуса для равномерного вращения?

Для экспериментов была собрана схема, показанная на рисунке. Собственно «собираться» было нечему, т.к. была использована плата Программатора микросхем PSoC, имеющая панельку под микросхему в корпусе DIP8 и 6-контактный разъем для макетирования простейших устройств. Ввиду отсутствия на плате кварца, отладка производилась без него, с использованием внутреннего тактового генератора микросхемы. Следует отметить, что цепи возбуждения кварца у микросхем PSoC очень капризные, и следует руководствоваться рекомендациями AN2027 «Using the PSoC Microcontroller External Crystal Oscillator» (использовать несимметричную схему включения и подключение конденсаторов к «плюсу» питания). Также учтите, что при так называемом «программировании в устройстве» емкость С4 может оказаться чересчур большой для программатора (для 8-выводных чипов используется специальный режим программирования – «по подаче питания»), и потребуется ее временное отключение.

В схеме не используются отводы от середин, и полуобмотки работают как единая обмотка. Это сделано по двум соображениям. Во-первых – для универсальности (двигатели от 3-дюймовых дисководов отводов не имеют). Второе – уменьшить до приемлемых величин управляющий ток (сопротивление возрастает вдвое). Импульсы самоиндукции (шаговый двигатель – индуктивная нагрузка) гасятся встроенными в микросхему диодами.

При 3-вольтовом питании через обмотку сопротивлением 150 ом потечет ток 20 мА, что ниже максимально допустимых 25 мА для цифровых выходов PSoC. При питании от 5 вольт ток не достигнет ожидаемых 33 мА и ограничится на уровне 25 мА. У выходов же, сконфигурированных как аналоговые, допустимый ток составляет 50 мА, и они будут работать в штатном режиме во всем диапазоне питающих напряжений.

Читайте так же:
Перепрограммирование счетчика меркурий 234

Вначале была создана Конфигурация 1 (см. рисунок). Ток через обмотки задается с помощью ШИМ (широтно-импульсной модуляции), которую вырабатывает единственный модуль PWM8_1. Частота ШИМ постоянна и составляет 7,8 кГц, а вот скважность меняется от 0 до 100% по линейной зависимости программным путем (прямой записью в соответствующий регистр модуля). Выход модуля через блоки LUT0. LUT3 («LookUp Table» – блоки с программируемой передаточной функцией) распределяется по ножкам микросхемы в соответствии с приведенной диаграммой. Смена функций LUT также осуществляется программно. Учтите, что на диаграммах показано не текущее значение счетного регистра PWM8_1, а то, как относительно медленно меняется скважность (т.е. ток через обмотки) на разных фазах вращения ротора.

Технические подробности. Каждые 1/512 секунды (используются прерывания от «спящего таймера») значение регистра ШИМ увеличивается в среднем на 1,666 (цель – получить требуемый темп вращения 1 оборот за 60 сек). «В среднем» означает, что использован некий трюк («Dithering») для реализации дробного исчисления, заключающийся в варьировании приращения (1 или 2) в зависимости от состояния вспомогательной переменной [cnt], циклически меняющей значения от 1 до 3. Сделать именно так мне показалось проще.

И начальная инициализация, и тело обработчика прерывания находятся в файле main.asm. Сам проект находится в папке /TestSMotor-lin/ прилагаемого архива (ссылка дана в конце статьи). Готовый файл прошивки testsmotor.hex находится в папке /output/ этого проекта. Порог срабатывания встроенного в микросхему «детектора напряжения» выставлен 2,92 В, что соответствует минимально возможному снижению напряжению питания.

Визуальные впечатления: стрелка, прикрепленная к валу двигателя, вращается достаточно равномерно. Рывки, конечно, заметны, если на них акцентировать внимание. Посмотрим, что даст классическое управление с помощью синуса-косинуса.

Для этого была создана Конфигурация 2 (см. рисунок). Ток через обмотки задается с помощью двух модулей ЦАП DAC9_1 и DAC9_2 (оба модуля имеют разрядность 9 бит). 8-битное значение выбирается из таблицы размером 256 байт, в которой содержатся значения синуса за 1/4 периода. Остальные значения вычисляются путем зеркальных переворотов этой «четвертинки» относительно осей X и Y, причем к 8-битовому значению добавляется 9-ый знаковый бит. Выходные аналоговые буферы микросхемы, в отличие от внутренних аналоговых блоков, не являются «rail-to-rail» узлами (т.е. работающими «от края до края» питающих напряжений). Чтобы предотвратить связанное с этим ограничение выходного сигнала, размах табличного синуса взят не на полную шкалу, а с некоторым запасом. В качестве опорного напряжения для ЦАП выбрана опция «1/2 от питающего напряжения» (при снижении напряжения питания, выходные напряжения будут также пропорционально снижаться). Проект находится в папке /TestSMotor-sin/.

Визуальные впечатления: Практически то же самое. Вышеупомянутые эффекты не позволяют ротору совершать идеальное равномерное движение. Возможно, если немного «подправить» синус, результат будет лучше, но это требует дополнительной исследовательской работы и привяжет «прошивку» к конкретному экземпляру двигателя (между прочим, хорошая тема для курсовой работы!).

В заключение приведу средние токи потребления привода в зависимости от питающих напряжений (в скобках даны токи, потребляемые только микросхемой). Видно, что вовлечение в работу аналоговых блоков увеличивает токопотребление микросхемы. Сам шаговый двигатель в конфигурации «Sin-Cos» также потребляет больше, поскольку в момент равенства токов через обмотки их суммарное значение в корень из двух раз больше, чем в конфигурации «Линейный режим» (хотя это и сказывается положительно на крутящем моменте), а сам ток потребления из-за этого становится пульсирующим.

Счетчик оборотов шагового двигателя

Advanced Member

Коротко о шаговых двигателях для самодельщиков

Самодельщиков — энтузиастов ЧПУ все больше. Возможно это краткое изложение принципа работы и особенностей шаговых двигателей немного поможет в работе над ЧПУ станками.
Написано по разным источникам, рискну не забивать их списком тему.

Шаговые электродвигатели.

Читайте так же:
Штрафы за самовольное подключение счетчика

Определение :
Шаговый электродвигатель — электромеханическое устройство, выходной вал которого совершает дискретное угловое или линейное перемещение с фиксацией конечного положения.
В отличие от синхронных двигателей шаговые должны сохранять синхронизм как при вращении, так и при пуске, торможении или реверсе и, кроме того, допускать длительную фиксированную остановку ротора. При последней по обмоткам управления проходит постоянный ток.
Принцип действия :
Как и в любом синхронном двигателе, при прохождении по обмоткам статора токов, на роторе возникает синхронизирующий момент, стремящийся переместить его в положение максимального сцепления магнитных потоков возбужденных обмоток.

Особенности шаговых двигателей определяются частотным регулированием скорости.
В частности от него зависит характер движения ротора. Частота импульсов может быть изменена по произвольному закону. Напряжение питания так же может отличаться от прямоугольного. Оно может быть ступенчатым.

Различаются четыре режима:
1. Статический.
2. Квазистатический
3. Установившиеся режимы.
4. переходные режимы.

Статический :
Реализуется, когда по обмоткам протекает постоянный ток, создающий неподвижное поле.
Характеризуется статическим синхронизирующим моментом стремящимся возвратить ротор в первоначальное положение. ( Режим удержания ).

Квазистатический :
Режим отработки единичных шагов. Характерен тем что все переходные, обычно колебательные, процессы заканчиваются перед началом следующего шага. Частота шагов в этом режиме ограничена временем затухания колебаний. Повысить её можно введением дополнительных устройств.
Применяется там, где подобные колебания недопустимы.

Установившиеся режимы :
Работа при постоянной частоте управляющих импульсов. При частоте импульсов меньшей, чем частота свободных колебаний (F1), шаги сопровождаются этими колебаниями.
При частоте управляющих импульсов, равной (F1) или меньшей в целое число раз, возникает электромеханический резонанс. При слабом демпфировании он может привести к потере синхронизма и нарушению периодичности движения.
При частоте выше (F1) движение сопровождается вынужденными колебаниями с частотой управляющих импульсов.

Вывод :
Достаточное демпфирование не будет лишним в устройстве.

Переходные режимы :
Сопровождают практически все действия двигателя, порождая нежелательные эффекты.
Например: скорость движения при совершении шага далеко не постоянна. Конструкция имеет инерцию. Напряжение же управления нарастает скачкообразно от нуля до рабочего.
В результате ротор, в пошаговом режиме, в первый момент отстает от поля. За тем, ускоряясь, достигает его скорости и обгоняет его, поскольку оно зафиксировалось в новом положении. Возникший синхронизирующий момент тормозит его и разгоняет в обратном направлении. Процесс повторяется по затухающей.

Волнующая тема для любителей быстрой обработки.
Частота управляющих импульсов, при которой еще возможен пуск ротора из неподвижного положения без выпадения из синхронизма. То есть — без потери шагов.
Это частота приемистости .
Растет она с увеличением синхронизирующего момента, уменьшением углового шага, величины нагрузки и момента инерции нагрузки.
От нее пляшем:

Торможение. Осуществляется скачкообразным снижением частоты управления до нуля.
Предельная частота управляющих импульсов, при которых ротор затормозится без потери синхронизма, то есть, без выбега, как правило, выше частоты приемистости.
При торможении без выбега в неустановившемся режиме, мгновенная скорость может быть в 1,5 — 2 раза выше средней скорости. Тогда предельная частота управления может быть ниже частоты приемистости.
Реверс достигается изменением направления вращения поля статора. Предельная частота
управления при этом, всегда меньше частоты приемистости. Достигнуть ее значения возможно только при большой величине нагрузки и внутреннего демпфирования.
Та же картина при работе короткими импульсами с произвольными паузами.

Характеристики и параметры :
Рабочие характеристики шагового двигателя зависят как от их собственных параметров, характера нагрузки, так и от особенностей коммутации. В частности от формы напряжения управления, фронтов тока управления, определяющих коммутационные перенапряжения.
1. Статические характеристики.
2. Предельные динамические и динамические.
3. Устойчивости в резонансных областях.

Зависимости статического синхронизующего момента от угла поворота ротора, величины тока в обмотках при разных сочетаниях включения. Величину угловой погрешности при работе в квазистатическом режиме. На холостом ходу или под нагрузкой.

Зависимости частоты приемистости, предельной частоты управления при торможении или реверсе от величины момента сопротивления нагрузки и ее момента инерции, определенные для заданных условий коммутации, составляют семейство предельных характеристик. Соответственно — пуска, торможения или реверса.

Читайте так же:
Счетчик элемент управления формы

Предельная механическая характеристика определяет зависимость частоты управления от величины момента сопротивления нагрузки, при плавном увеличении которой ротор выпадает из синхронизма.

Самая частая ошибка в том, что мы делаем не так как надо, а так как умеем.

Гремучая змея — очень милое и дружелюбное существо. Надо только знать, как с ней обращаться.

Вопрос не может быть глупым, ибо есть свидетельство работы ума. Что глупости не свойственно.

Шаговый двигатель. диагностика, ремонт, описание. статья переработана

статья приведена в приличный вид, ввиду вчерашней переборки ШД — добавлено.

копипаст моей статьи. изначально делал ее для вингроад.ру, после того как осознал всю систему управления холостым ходом и шаговый двигатель в частности.


Шаговый двигатель:
принцип работы, разборка, ремонт.

для поиска: iacv КПХХ ХХ холостой ход шаговый двигатель ремонт разборка

сокращения:
ШД — шаговый двигатель
КХХ — клапан холостого хода
ХХ — холостой ход
ДЗ — дроссельная заслонка

принцип работы ШД, ютуб

возможные неисправности ШД

— замыкание обмоток. обычно проявляется после протекания прокладки КХХ.
— выгорание микросхем в ECU — опять же после протекания прокладки КХХ. Антифриз попадает на двигатель, коротит его, а он, с свою очередь, выжигает мозги.
-отсутствие контакта.
-подклинивание штока.
-физическое разрушение пластмассовых внутренностей ШД.
-закисание подшипника.

зачастую проблема проявляется после замены прокладки КХХ, чистки ШД, либо на пробегах за 200 000 км.
итак- заводится машина нормально. при нажатии на газ может заглохнуть, при включении электропотребителей обороты проседают, начинается вибрация.

ПРОВЕРКА, СНЯТИЕ РАЗБОРКА.

демонтаж шагового двигателя.

0. — схема расположения элементов КХХ

1. снимаем гофру воздушного фильтра.
2. откручиваем 2 болтика ШД.
3. отсоединяем разъем. (закисает, снимать аккуратно, подцепив отверткой. ломается на ура)

проверка шагового двигателя

1. включить зажигание, ШД должен зажужжать, позиционируя свое положение.
2. выключить зажигание, вытащить щаговый двигатель, включить зажигание — «игла» ШД должна двигаться.

3. проверить сопротивление обмоток
5 шд
берем цешку и проверяем

при комнатной температуре между контактами 1-2, 2-3, 4-5, 5-6 должно быть сопротивление около 20-24 ом.
при комнатной температуре между контактами 2-1, 2-3 и 5-4, 5-6 должно быть сопротивление около 20-30 ом

так же можно подать 4-6 вольт на обмотки. игла должна двигаться. 12в не надо! есть риск его сжечь.

диагностика

если ШД не жужжит и игла не двигается — проверить провода на разрыв.
если ШД не работает после протечки прокладки — скорее всего у вас выгорела микросхема ST509A в блоке ECU.
подробнее в самом низу статьи

если ШД жужжит, но игла не двигается, скорее всего внутренности шагового двигателя загрязнены или сломаны пластамассовые детальки. возможно закисание подшипника.

ШД типа не разборный, но только не в России.

разборка шагового двигателя

понадобится:
маленькие плоскогубцы, кусачки, отвертка.
1. кладем ШД перед собой иглой вверх.

2. берем маленькие плоскогубцы и начинаем аккуратно отгибать завальцовку. отгибать нужно не сильно, за пару проходов — что бы не порвать фальц.
когда будет готово — окончательно разворачиваем завальцовку отверткой

после чего, двигая иглу из стороны в сторону и вверх, вытаскиваем ее вместе с ротором из корпуса

вытаскиваем ротор из корпуса

вид разобранного узла. грязища прилагается.

разобрав корпус, видим что ШД — электромагнит с 4 обмотками. игла — это ротор, который выдвигается на необходимое количество шагов.

разбираем ротор, открутив иглу ШД.

чистим внутренности. я чистил очистителем карбюратора, потом опустил в изопропиловый спирт. твердые отложение можно отковырять отверткой или зубочисткой.

проверяем целостность пластиковых деталек. если сломано — суперклей в помощь. нагрузки в нем минимальны.

также надо проверить легкость вращения подшипника. если крутится плохо — отверткой отковыриваем пыльник, вычищаем всю гадость изнутри подшипника (у меня там были антифризные сопли и твердые отложения). сам подшипник — в бензин или растворитель. потом смазываем и ставим пыльник обратно.

Читайте так же:
Счетчики просмотров статей для wordpress

после чего смазываем все, кроме статора и ротора.

сборка шагового двигателя
порядок сборки такой:
на иглу надеваем пружинку, затем крышку, под крышку — упор, под упор — подшипник. иглу закручиваем в магнит. собранный ротор с крышкой — в корпус ШД. прижимаем пальцами, и начинаем завальцовывать.
так же, как и открывали — аккуратно, в несколько проходов. можно для верности легонько постучать по завальцовке и по краю пройтись герметиком. лишь бы он во внутрь не попал.

вид заново завальцованного шд

ставится в отверствие в КХХ, прикручиваются 2 болтика, надевается гофра со всеми трубочками[/spoiler]

ПОСЛЕ УСТАНОВКИ ОБУЧИТЬ ХХ!
Удостовертесь, что все следующие условия удовлетворены.
«Обучение КХХ» будет отменено, если любое из следующих условий будет пропущено:
+Напряжение АКБ больше чем 12.9V (при неработающем двигателе).
+Температура антифриза: 70 — 99°C (158 — 210°F).
+Выключатель PNP: on (т.е. парк или нейтраль)
+Потребители электричества: off
(кондиционер, фары, стеклоподъемники)
+Двигатель вентилятора: не работает.
+Руль: нейтральный (прямое положение).
+ Скорость автомобиля: полная остановка.
+Трансмиссия: прогрето.

Обучения для моделей с трансмиссией A/T без сканера CONSULT-II:
1. Включить зажигание и ждать по-крайней мере 1 секунду.
2. Выключить зажигание и ждать по-крайней мере 10 секунд.
3. Прогреть двигатель до нормальной рабочей температуры.
4. Проверить, что все пункты перечисленные выше удовлетворены.
5. Выключить зажигание и ждать по крайней мере 9 секунд.
6. Завести двигатель и дать ему поработать в течение по-крайней мере 28 секунд.
7. Разъединить верхний контакт датчика (коричневый цвет), соединить в течение 5 секунд.
8. Ждать 20 секунд.
9. Удостоверьтесь, что ХХ — в пределах нормы. В противном случае найдите причину
проблемы (см. ниже).
10. Увеличить обороты двигателя в два или три раза. Удостоверьтесь, что обороты приведенные ниже в пределах нормы.

ХХ M/T: 700 плюс-минус 50 оборотов в минуту
ХХ АТ: 800 плюс-минус 50 оборотов в минуту (в положении селектора в положении «P» или «N»)

Неофициальный алгоритм (как писал один с вингроад.ру, говорит, что получилось):
Двигатель должен быть прогрет, все потребители выключены. Глушим двигатель и отсчитываем 10 секунд. Включаем зажигание (но не заводим), отсчитываем 10 секунд. Выключаем, вытаскиваем ключ, отсчитываем 10 секунд. Включаем зажигание (но не заводим), идем к двигателю, по пути отсчитываем 30 секунд. Под капотом слышно жужжание. Сдергиваем верхнюю фишку, ждем пока жужжание не прекратится. Одеваем фишку, отсчитываем 20 секунд. Не выключая зажигание заводим двигатель. Едем![/spoiler]

кто осилил до конца — ставьте лайки) надеюсь всем винговодам пригодится инфа.

Как подобрать и рассчитать шаговый двигатель для ЧПУ

Шаговые двигатели для ЧПУ – один из видов промышленных комплектующих, которые Вы можете найти в компании Антриб. Г де купить, на что ориентироваться и по каким параметрам подбирать шаговые двигатели для ЧПУ — мы расскажем Вам об этом в нашей статье.

Выбирайте шаговые двигатели ЧПУ в компании Антриб

Мы рекомендуем Вам промышленные комплектующие приобретать в одном месте – в компании Антриб. Почему?

  • Во-первых, в нашем каталоге представлены двигатели от надёжных и проверенных на собственном опыте производителей. Их качество могут подтвердить сотни наших клиентов.
  • Во-вторых, вся представленная продукция есть на складе компании Антриб.
  • В-третьих, в списке предложений Антриб Вы сможете найти и шаговые двигатели, и комплектующие к ним: специализированные драйверы, многочисленные датчики, соединяющие муфты и многое другое.
  • В-четвертых, сотрудники Антриб дадут Вам профессиональную консультацию по подбору ШД для ЧПУ и сориентируют в расчетах, которые необходимо произвести. О них читайте далее.

Выбираем шаговый двигатель для современных ЧПУ. На что обратить внимание?

При подборе шагового двигателя для числового программного управления, прежде всего, важно определить планируемую сферу для применения станка. Отсюда станут понятными предъявляемые к ШД требования и необходимые технические характеристики.

Параметры для выбора шаговых двигателей

  • Индуктивность.

Рассчитайте квадратный корень из индуктивности обмотки, а потом умножьте его значение на цифру 32. Полученные данные сравните с максимальным показанием напряжения непосредственного источника питания для имеющегося драйвера. Между этими данными не должно быть большого различия. Важно понимать, что если напряжение питания превышает полученное значение более чем на 30%, то в результате мотор будет шуметь и перегреваться. Если показание меньше 30%, то крутящий момент станет быстро убывать вместе со скоростью. Запомните, что большая индуктивность в перспективе обеспечивает условия для большего крутящего момента. Отметим, что для этого необходим драйвер с увеличенным напряжением питания.

Читайте так же:
Как сделали счетчик населения

Зависимость крутящего момента и скорости.

Данный параметр позволяет определить, подходит ли подобранный двигатель условиям, прописанным в тех. задании.

Геометрические параметры.

Обязательно изучите, какое значение имеет длина двигателя, фланец и диаметр вала.

Рекомендация №1.

Помимо изучения вышеперечисленных параметров, важно обратить внимание на омическое сопротивление фаз, а также номинальный ток в фазе, момент инерции ротора и MAX статический синхронизирующий момент.

Типы двигателей

Существует несколько типов ШД для ЧПУ станка. Остановимся на самых распространенных:

  • Биполярные.
    Данные модели встречаются чаще всего. Их выбирают за простой подбор новых дайверов и высокое удельное сопротивление на малых оборотах.
  • Трехфазные.
    По сравнению с биполярными двигателями, трехфазные выдают большую скорость вращение.
  • Униполярные.
    Эти модели представляют собой микс из нескольких биполярных ШД.

Рекомендация №2.

Универсальный способ подбора двигателя для ЧПУ – проанализируйте готовые станки, которые по размерам и тех. характеристикам близки к тому, что разрабатываете Вы, и проверьте себя.

Стандартные примеры расчетов ШД для ЧПУ

Алгоритм определения силы системы

Допустим, что Вам нужно узнать силу трения в направляющих, зависящих от используемых материалов. Например, коэффициент трения равен 0.4, вес детали – 200 кгс, вес стола – 120 кгс, необходимое ускорение – 2 м/с 2 , а сила резания составляет 4 000 Н.

  1. Для расчета силы трения умножьте коэффициент трения на совокупный вес движущейся системы: 0.4 x 9.81 (120 кгс+200 кгс) = 1256. Сила трения равна 1256 Н
  2. Для расчета силы инерции умножьте массу стола с деталью на желаемое ускорение: 320 x 2 = 640. Сила инерции равна 640 Н.
  3. Для расчета полной силы сопротивления сложите все имеющиеся данные: показатель силы трения, инерции и резания: 1256 + 640 + 4 000 = 4896. Сила сопротивления равна 4 896 Н.

Алгоритм определения мощности

Мы представляем Вашему вниманию универсальные формулы. Все они представлены без учета инерции вала ШД, а также других механизмов вращения. В связи с этим, для большей точности рекомендуем увеличить или, напротив, убавить требования по ускорению на 10%.

Итак, расчет мощность производится по формуле F=ma, где:

  • F – сила, необходимая для приведения тела в движение (в Н);
  • m – масса тела (в кг);
  • а – необходимое ускорение m/c 2 .

Для определения механической мощности умножьте силу сопротивления движения на скорость.

Отметим, что для всех приводимых в пример расчетов существуют бесплатные автоматические калькуляторы.

Алгоритм расчета редукции оборотов

Редукция оборотов определяется за счет номинальных оборотов сервопривода и MAX скорости перемещения стола. Допустим, что скорость перемещения равна 2 000 мм/мин, шаг винта шариковой винтовой передачи составляет 20 мм. Тогда скорость вращения винта ШВП должна быть 100 оборотов в минуту (2000/20 = 100)

Для определения коэффициента редукции необходимо учесть номинальные обороты сервопривода. Если они равны 6 000 об/мин, то редукция составит 60 (6000/100= 60).

Классификация ШД для ЧПУ

В настоящее время выделяются несколько основных классов шаговых двигателей. Все они представлены в каталоге компании Антриб.

  • Советские модели
    В современных станках очень часто используются ШД индукторного типа, созданные в СССР.
  • Китайские модели
    Модели шаговых двигателей ЧПУ отличаются маленьким весом и вариациями показателей тока питания в фазе.

По вопросам выбора шаговых двигателей для ЧПУ и покупки комплектующих для станков в Москве звоните +7 (495) 514-03-33 или закажите обратный звонок на нашем сайте.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector