Sfera-perm.ru

Сфера Пермь
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Счетчик для измерения оборотов

Тахометрические счетчики и расходомеры. Устройство, принцип действия, типы и виды тахометрических счетчиков и расходомеров.

Тахометрическими называются расходомеры , в которых скорость движения рабочего тела пропорциональна объемному расходу измеряемой среды. В большинстве случаев рабочее тело — преобразователь расхода (крыльчатка, турбинка, шарик и т.п.) — под воздействием потока вращается. В зависимости от устройства рабочего тела тахометрические расходомеры подразделяются на крыльчатые, турбинные, шариковые, камерные, кольцевые и др.

Тахометрические преобразователи расхода могут использоваться как в счетчиках количества, так и в расходомерах. В первом случае преобразователь расхода (например, турбинка) связан со счетным механизмом. Тахометрические расходомеры содержат электрические тахометрические преобразователи частоты вращения чувствительного элемента в электрический сигнал, измеряемый затем вторичным прибором. Электрические преобразователи скорости оказывают незначительное тормозящее действие на подвижный элемент (по сравнению с механической передачей в счетчиках), в силу чего точность тахометрических расходомеров выше точности счетчиков с механическим редуктором. Тахометрические приборы измеряют объемные расходы. При необходимости измерения массовых расходов они должны снабжаться либо измерителями температуры и давления, либо плотномерами, вычислительными устройствами.

Тахометрические расходомеры применяются для измерения расхода различных жидкостей (реже газов), причем некоторые их разновидности могут использоваться на загрязненных жидкостях. Наиболее широко эти расходомеры используются в коммунальном хозяйстве для учета индивидуального потребления горячей и холодной воды, газа.

Тахометрические расходомеры обладают следующими положительными чертами: широкий динамический диапазон, достигающий 25; высокая точность, получаемая за счет индивидуальной градуировки приборов; простота получения и съема показаний. К числу их недостатков относятся значительная потеря давления, требования к длинам линейных участков до (свыше 10D) и после (более 3D) счетчика, износ подшипников при наличии загрязнений в воде и газах, ограничения по диаметру трубопровода.

В соответствии с ГОСТ 14167-83 в технической документации водосчетчиков указывается четыре значения объемного расхода: максимальный G o.max , на котором допускается кратковременная работа счетчика и для которого определяется потеря давления; эксплуатационный G 0.э = (24.. .46) % от G o.max , при котором рекомендуется длительная работа счетчика; переходной G 0.пер и минимальный G 0.min . В диапазоне G 0.пер — G o.max счетчик имеет минимальный предел относительной погрешности, составляющей, например ± 2 %, в области G 0.min — G 0.пер нормируется большее значение погрешности, достигающее, например ±4 %.

Тахометрические расходомеры разных типов: для горячей и холодной воды, нефтепродуктов, газа выпускаются многими отечественными и зарубежными фирмами и заводами: з-дом «Водо- прибор», «Ценнер водоприбор», «Тепловодомер», «Саяны» (Москва), «Промприбор» (г. Ливны), Арзамасским приборостроительным заводом, «Промприбор» (г. Ивано-Франковск), концерном ABB, фирмами Siemens, Invensys Metering Systems, Brooks Instrument и др.

Крыльчатые и турбинные расходомеры применяются для измерения расхода различных жидкостей за исключением очень вязких и загрязненных, поскольку для них важной является смазывающая способность измеряемой среды. Для измерения расхода газа турбинные расходомеры применяются реже. Это связано с тем, что из-за малой плотности газа достаточно большой вращающий момент получается только при больших расходах, что уменьшает диапазон измерения расходомера и повышает порог чувствительности. Кроме того, в газовой среде ускоряется износ подшипников.

При диаметрах трубопроводов от 15 до 40 мм применяются крыльчатые расходомеры, а от 50 до 250 мм — турбинные. На рис. 1, а схематично показано устройство турбинного преобразователя расхода жидкости.

Рис. 1. Устройство турбинных преобразователей расхода :

а — четырехлопастная турбина ; б — турбина одноструйных водосчетчиков; 1 — корпус; 2,3 — струевыпрямители; 4 — турбинка; 5 — тахометрический преобразователь

Корпус преобразователя 1 представляет собой отрезок трубы с двумя фланцами для присоединения его к трубопроводу. Внутри корпуса установлены струевыпрямители 2 и 3, соединенные осью, на которой расположена турбинка 4. В расходомерах частота вращения турбинки, пропорциональная объемному расходу, с помощью тахометрического преобразователя 5 преобразуется в частоту импульсов выходного сигнала. При известной цене импульса их суммарное число определяет объемный расход на интервале времени. Импульсный сигнал с помощью специальной схемы преобразуется в аналоговый выходной сигнал. В счетчиках количества число оборотов турбины, пропорциональное количеству протекшего вещества, измеряется счетным механизмом, соединенным с осью турбинки шестеренчатым редуктором и магнитной муфтой. Если редуктор находится в воде, то счетчик называется мокроходным, если редуктор вынесен из воды, то счетчик является судоходным. В основном используются последние. Счетчики могут давать импульсный сигнал, пропорциональный числу оборотов, для чего на стрелке отсчетного устройства устанавливается постоянный магнит, который вызывает срабатывание герконового реле. Цена импульса зависит от того, на стрелке какой декады счетчика установлен магнит.

Читайте так же:
Счетчик километров для смартфона

Турбинки тахометрических расходомеров подразделяются на аксиальные и тангенциальные . У первых — ось совпадает с направлением потока, у вторых — она перпендикулярна потоку.

Аксиальные турбинки имеют лопасти винтовой формы (рис. 1, а). При малом диаметре турбинок число лопастей мало (4 — 6), но они имеют большую длину. При больших диаметрах турбинки число лопастей велико (до 20), но их высота и длина невелики (относительно диаметра).

Конструкции тангенциальных турбинок разнообразны. В качестве примера на рис. 1, б показана турбинка серийно выпускаемых одноструйных водосчетчиков.

При незначительных нагрузках на турбинку ее частота вращения пропорциональна объемному расходу. Однако на характер этой зависимости влияют вязкость и плотность измеряемой среды, момент сопротивления от трения в опорах и реакции тахометрического преобразователя частоты вращения (см. рис. 1, а поз. 5) или механического счетчика, конструктивные параметры турбинки.

В расходомерах для возможности бесконтактного измерения скорости вращения турбинки ее лопасти либо изготавливаются из ферромагнитного материала, либо на крыльчатке устанавливаются отметчики из этого материала. Среди бесконтактных преобразователей (см. рис. 1, а поз. 5), преобразующих скорость вращения турбинки в электрический сигнал, наибольшее распространение получили магнитоиндукционные типы.

Рис. 2. Схема электрических бесконтактных преобразователей турбинных расходомеров :

а — магнитоиндукционного: 1 — катушка; 2 — магнит; 3 — немагнитная труба; 4 — ферромагнитные лопасти; б — дифференциально-трансформаторного; 1,2 — первичная и вторичная обмотан; 3 — подвижный сердечник; 4 — сердечник

Такой преобразователь (рис. 2, а) представляет собой катушку 1 с большим числом витков, внутрь которой вставлен магнит 2. Оси катушки и магнита располагаются перпендикулярно к оси немагнитной трубы 3. При прохождении ферромагнитной лопасти 4 турбинки (или отметчика) мимо магнита происходит изменение магнитного поля, что вызывает появление импульса ЭДС (меандра) в обмотке. Очевидно, что частота следования этих импульсов будет равна числу оборотов турбинки, умноженному на число лопастей. Частотно-импульсный сигнал по линиям связи поступает на вход измерительного блока, преобразующего этот сигнал в токовый, изменяющийся пропорционально расходу. Магнитоиндукционные преобразователи используются в расходомерах с турбинками больших диаметров, имеющих значительный крутящий момент. Это связано с тем, что такие преобразователи создают большой тормозящий момент.

Расходомеры малых расходов (см. рис. 2, б) оснащаются дифференциально-трансформаторными преобразователями, тормозящий момент которых значительно меньше, чем у магнитоиндукционных. Дифференциально-трансформаторный преобразователь состоит из первичной обмотки 1, питаемой от генератора напряжением с частотой 3. 6 кГц, двух встречно включенных секций вторичной обмотки 2 и двух сердечников 3 и 4. При отсутствии лопасти турбинки под сердечником 4 ЭДС, наводимые в обеих секциях должны быть равными, при этом U вых = 0. Если присутствует начальный небаланс, то он устраняется с помощью подвижного сердечника 3.

При прохождении лопасти турбинки под сердечником 4 нарушается равенство магнитных потоков в секциях вторичной обмотки (увеличивается поток в нижней обмотке и уменьшается в верхней), в силу чего на выходе вторичной обмотки появляется сигнал U вых . Этот сигнал имеет частоту питающего напряжения, модулированного по амплитуде частотой, равной частоте вращения турбинки, умноженной на число лопастей. Измерительный преобразователь, на вход которого поступает U вых , выделяет частоту модуляции и преобразует ее в выходной токовый сигнал. Серийно выпускаются турбинные расходомеры для измерения расхода воды от 0,07 до 500 м3/ч в трубопроводах диаметром от 20 до 150 мм при температурах среды до 120 °С и давлении до 1,6 МПа с пределом основной относительной погрешности ±(2. 5) %. Расходомеры газа выпускаются с верхними пределами от 100 до 1600 м3/ч при диаметрах 65. 200 мм, температуре газа до 50 °С и давлении до 0,6 МПа. Достоинством турбинных расходомеров является возможность их использования в широком интервале расходов, диаметров трубопроводов и параметров контролируемой среды. У отдельных типов расходомеров при больших скоростях и диаметрах труб динамический диапазон измерения достигает 15. 20. Такие расходомеры имеют малую инерционность.

Читайте так же:
Установка поверка квартирных счетчиков

В настоящее время турбинные тахометрические расходомеры являются одними из наиболее точных. Существуют серийно выпускаемые расходомеры с основной погрешностью 0,5 %, которая может быть уменьшена индивидуальной градуировкой.

Однако тахометрические турбинные расходомеры имеют и недостатки, ограничивающие их применение: влияние вязкости контролируемой среды, износ опор (нельзя, например, измерять расход сред, содержащих взвешенные частицы, особенно если они обладают абразивными свойствами).

Шариковыми называются тахометрические расходомеры, подвижным элементом которых служит шарик, непрерывно движущийся в одной плоскости по внутренней поверхности трубы под воздействием предварительно закрученного потока. Скорость движения шарика по окружности трубы пропорциональна объемному расходу жидкости. Схема шарикового преобразователя для средних и больших расходов представлена на рис. 3, а.

Рис. 3. Схема шариковых преобразователей расхода :

а, б — для больших и малых расходов; 1 — формирователь потока; 2— шарик; 3 — ограничительное кольцо; 4 — струевыпрямитель; 5 — тахометрический преобразователь?

Поток жидкости, закрученный формирователем 1 в винтовом направлении, вызывает движение шарика 2 по окружности. От перемещения вдоль трубы шарик удерживается ограничительным кольцом 3, за которым располагается струевыпрямитель 4 для выпрямления закрученного потока. На внешней стороне немагнитного корпуса располагается тахометрический преобразователь 5 для преобразования частоты вращения шарика в частотный электрический сигнал.

Для небольших расходов применяется конструкция, представленная на рис. 3, б. Здесь нет специального формирователя для закручивания потока, а движение шарика по окружности вызывается тангенциальным подводом жидкости. В шариковых расходомерах применяются тахометрические преобразователи скорости, аналогичные преобразователям турбинных расходомеров. Шар под действием центробежной силы прижимается к внутренней поверхности трубы, а под действием осевой составляющей скорости потока — к ограничительному кольцу, т.е. шару, кроме сил вязкого трения жидкости, необходимо преодолевать силы трения о поверхности трубы и ограничительного кольца (см. рис. 3, а).

Выпускаемые промышленностью шариковые расходомеры, изображенные на рис. 3, используются для измерения расхода жидкостей от 0,025 до 600 м 3 /ч, при температуре до 285 °С и давлении до 10 МПа. Плотность среды должна находиться в пределах 700. 1400 кг/м 3 и кинематическая вязкость в пределах (0,3. 12)* 10 -6 м 2 /с. Из-за отсутствия опор у подвижного элемента расходомеры могут использоваться на жидкостях с твердыми включениями ограниченного размера и агрессивных.

На АЭС используются шариковые расходомеры ШТОРМ двух модификаций: ШТОРМ-32М (верхний предел измерения 50 м 3 /ч) и ШТОРМ-8А (верхний предел измерения 8 м 3 /ч), их основная погрешность составляет ±(1,5. 2,5) %.

Камерными называются тахометрические расходомеры и счетчики, имеющие один или несколько подвижных элементов, которые при движении отмеривают определенные объемы жидкости. Обычно эти подвижные элементы движутся непрерывно со скоростью, пропорциональной объемному расходу. В промышленности в большинстве случаев для измерения расхода газа и нефтепродуктов применяются камерные счетчики. Достоинствами их является высокая точность измерения, составляющая ±(0,2. 1) % для жидкостей и ±(1. 1,5) % для газов, достаточно большой диапазон измерения и слабое влияние вязкости среды. Последнее обстоятельство позволяет применять камерные счетчики для жидкостей вязкостью до 3 * 10 -4 м 2 /с.

Один из приборов камерного типа — счетчик жидкости с овальными шестернями. Такой счетчик предназначен для измерения количества жидкостей, имеющих вязкость от 55 * 10 -6 до 3 * 10 -4 м 2 /с (0,55. 300 сСт), температуру от -40 до 120 °С и давление до 64 кгс/см 2 в трубах диаметром до 100 мм. Такой счетчик имеет основную погрешность ± 0,5 %. Схема преобразователя с овальными шестернями показана на рис. 4.

Читайте так же:
Торможение диска счетчика это

Рис. 4. Схема счетчика с овальными шестернями

В положении шестерен по рис. 4, а под действием разности давлений р1—р2 возникает момент, вращающий левую шестерню против часовой стрелки. При этом правая шестерня будет ведомой и за счет зубчатого сцепления будет поворачиваться по часовой стрелке. Через половину оборота шестерни установятся в положение рис. 4, б. Тогда вращающий момент будет создаваться на правой шестерне, левая становится ведомой. За полный оборот измерительные камеры (на рис. 4 заштрихованы) дважды наполняются и опорожняются, т.е. за один оборот объем пропускаемой жидкости равен четырем объемам одной измерительной камеры. На счетный механизм передается движение одной из шестерен посредством магнитной муфты или тахометрического дифференциально-трансформаторного преобразователя скорости. Изменение вязкости жидкости может увеличить погрешность счетчика.

Energy
education

сайт для тех, кто хочет изучать энергетику

Метрология и автоматизация

Измерение расхода

Расход — объём вещества, проходящего через поперечное сечение потока за единицу времени.

2. Механические счётчики расхода

Скоростные счетчики

Принцип действия скоростных счетчиков состоит в том, что протекающий через прибор поток измеряемой жидкости приводит во вращение крыльчатку или вертушку, скорость вращения которых при этом пропорциональна средней скорости протекающей жидкости, а следовательно, и расходу. Скорость вращения пропорциональна расходу. В действительности коэффициент пропорциональности остается постоянным на всем диапазоне измерения прибора.

Скоростные счетчики устанавливаются в закрытых трубопроводах таким образом, чтобы весь поток измеряемой жидкости проходил через прибор. Протекающая жидкость может подводиться к крыльчатке или вертушке аксиально или тангенциально, причем во втором случае жидкость может подводиться как одной, так и несколькими струями. Счетчики с аксиальным подводом жидкости применяются для измерения больших расходов жидкости, с тангенциальным подводом — для измерения малых расходов.

С осью крыльчатки или вертушки связывается механизм для подсчета числа оборотов и, таким образом, количества жидкости; Счетный механизм может быть помещен непосредственно в измеряемой жидкости или защищен от нее сальником.

Для обеспечения правильной работы счетчиков необходимо их устанавливать таким образом, чтобы все сечение счетчика было полностью заполнено жидкостью. Несмотря на то, что все счетчики имеют струевыпрямители, поток перед счетчиком должен быть выровнен; для этого их нужно устанавливать так, чтобы перед ними был прямой участок трубопровода, равный 8—10D (D — диаметр трубопровода!). Установка скоростных счетчиков на трубопроводах часто производится без обводных линий, так как их повреждение не вызывает прекращения подачи жидкости у счетчиков с аксиальным подводом жидкости и подъемом и опусканием вертушки у счетчиков с тангенциальным подводом жидкости.

Объемные счетчики

Принцип действия объемных счетчиков основан на непосредственном отмеривании объемов измеряемой среды с помощью мерных камер известного объема и подсчета числа порций, прошедших через счетчик. Объемные счетчики подразделяют на опорожняющиеся и вытесняющие. Опорожняющиеся объемные счетчики имеют жесткие камеры, из которых измеряемая среда свободно вытекает. Счетчики этого типа непригодны для измерения количества газа. Простейшим объемным счетчиком с жесткой камерой является мерный бак или мерник. К этому же типу объемных счетчиков относятся барабанные и опрокидывающиеся счетчики. Вытесняющие объемные счетчики имеют мерные камеры с перемещающимися стенками, которые вытесняют измеряемую фазу, освобождая камеру для следующей порции.

Ролико-лопастные расходомеры

В корпусе расходомера вращается ротор с лопастями. Измерительная камера образована между корпусом с одной стороны и бочкой ротора с соседними лопастями – с другой. Измеряемая среда может протекать по расходомеру только с одной стороны ротора. Это обеспечивается с помощью роликов-замыкателей которые поочередно перекрывают путь обхода измерительной камеры. Расположение продольных осей отверстий каналов входа и выхода в плоскостях с осью вращения ротора значительно уменьшает динамические потери.

Читайте так же:
Как устанавливают счетчики с импульсным выходом

Синхронизация вращающихся элементов ролико-лопастной машины выполнена по средством зубчатого зацепления. Такая конструкция обеспечивает ролико-лопастной расходомер-счетчик жидкости и газа высокими метрологическими характеристиками. А именно ничтожной погрешностью и широким диапазоном измерения. Очень важной особенностью ролико-лопастной конструкции является отсутствие соприкасающихся частей внутри расходомера . Это обеспечивает не только отсутствие трения и шума, но и возможность работы с не смазывающими жидкостями такими как бензин, спирты и тп.. Отсутствие контакта между элементами прибора препятствует износу, тем самым обеспечивает высокую метрологическую надежность расходомера. Чувствительность расходомера ограничена лишь ничтожно малым сопротивлением подшипникового узла.

Шестерёнчатые расходомеры

Овально-шестерёнчатый расходомер — это один из обычных типов расходомеров с непосредственным отсчетом, работа которого основана на принципе положительного накопления.

Внутри расходомера находятся две шестерни овальной формы или два ротора. Шестерни захватывают движущуюся среду, и среда заполняет пространство между этими шестернями и корпусом расходомера. Эти пространства часто называют камерами. Когда среда начинает свое движение по трубопроводу, она попадает в расходомер через входное отверстие. Попав в расходомер, поток среды оказывает давление на овальные шестерни и приводит их в движение. Каждому полному обороту (повороту на 360°) овальной шестерни соответствует некоторое определенное количество жидкости, газа или пара, захваченное и вытолкнутое шестернями в камеры, а затем покинутое расходомер через выходное отверстие.

При повышении скорости потока жидкости, газа или пара, количество оборотов овальных шестерен тоже повышается. Однако, независимо от скорости потока количество жидкости, газа или пара, захваченное овальными шестернями и сделавшее вместе с ними один оборот, всегда остается одинаковым. Поскольку количество захваченной и выведенной среды остается постоянным, определение параметра общего расхода может быть осуществлено посредством подсчета числа оборотов шестерён. Для подсчета числа оборотов шестерен с последующим показанием общего расхода в овально-шестеренчатых расходомерах установлен счетный механизм. К одной из овальных шестерен подсоединяется шпиндель. Вместе с каждым оборотом шестерни происходит один соответствующий ему оборот шпинделя. Шпиндель подсоединен к механизму, который считает количество полных оборотов шестерни.

Администратор сайта: Колосов Михаил
email:
Copyright © 2011-2021. All rights reserved.

Механический счётчик

Механические счётчики применяются повсеместно, когда источником сигнала служит механическое перемещение. Счётчики ходов считают возвратно-поступательные движения приводного рычага. Счётчики длины (в метрах) работают, как правило, совместно с мерным колесом, которое катится по измеряемой поверхности.

Счётчики количества оборотов, как правило, реверсивные с прямым приводом. При этом у двух последних типов счетчиков можно применять различные коэффициенты масштабирования, чтобы достичь необходимую пропорциональность показаний. Счетчики с предустановкой выдают сигнал (переключение контакта) при достижении предустановленного значения.

Содержание

Основные типы счётчиков

  • счётчики ходов
  • счётчики длины (в метрах)
  • счётчики количества оборотов
  • счётчики с предустановкой
  • суммирующие и вычитающие счётчики
  • реверсивные счётчики
  • установочные и ручные счётчики
  • счетчик времени наработки (счетчик часов)

Производители

  • Baumer IVO
  • Line Seiki
  • Iskra Mehanizmi

См. также

  • Электромеханический счётчик
  • Электронный счетчик импульсов
  • Ручной механический счётчик

Ссылки

  • Источник статьи
ГОСТ
ISO

Wikimedia Foundation . 2010 .

  • The BOBs
  • Мурино (платформа)

Полезное

Смотреть что такое «Механический счётчик» в других словарях:

Ручной механический счётчик — Ручной механический счётчик ручной механизм, для подсчитывания повторяющихся событий нажатием кнопки на счётчике, чтобы не использовать ручку и бумагу для их записи или чтобы не держать эти числа в уме. Максимальное значение цифр может… … Википедия

Механический углеподатчик — Стокер С 1 паровозов ФД и ИС Механический углеподатчик (стокер) механизм автоматической подачи угля из бункера тендера в топку котла паровоза и равномерного распределения е … Википедия

Читайте так же:
Соединение штуцеров со счетчиком

Механический счетчик — Механические счётчики применяются повсеместно, когда источником сигнала служит механическое перемещение. Счётчики ходов считают возвратно поступательные движения приводного рычага. Счётчики длины (в метрах) работают, как правило, совместно с… … Википедия

Счётчик — Счётчик устройство для счёта чего либо. Счётчик (электроника) устройство для подсчета количества событий, следующих друг за другом (напр. импульсов) с помощью непрерывного суммирования, или для определения степени накопления какой… … Википедия

Электромеханический счётчик — Электромеханические счётчики предназначены в основном для контроля производства серийной продукции или других процессов, связанных с перемещением подсчитываемых объектов. Как правило, в качестве датчика применяется механический прерыватель или… … Википедия

Счётчик моточасов — устройство, регистрирующее время работы двигателя (машины, механизма) для контроля и учёта выработки ресурса. Основные узлы индикатор режима работы двигателя (фиксирует, например, частоту вращения вала, температуру выпускаемых газов,… … Большая советская энциклопедия

Счётчик гектаров — Электронный счётчик гектаров СГ 1 Счётчик гектаров (акров) механический или электронный прибор, предназначенный для приблизительной оценки площади, обработанной сельскохозяйственной машиной. Счётчики гектаров могут быть установлены на… … Википедия

счётчик — СЧЁТЧИК, а, м Прибор (механический или электронный), служащий для подсчета, определения количества чего л. Счетчик воды. Ревизоры из энергосбыта считали показания счетчика … Толковый словарь русских существительных

Педометр — Механический шагомер Электронный шагомер Шагомер механическое[1], электро механическое или электронно механическое устройство для подсчёта количества сделанных шагов (или пар шагов) при ходьбе или беге[2]. Первоначально использовавшийся… … Википедия

Полезное приложение — акустический тахометр для смартфона

#1 Мефодьич

Рулевой 1-го класса

  • Основной экипаж
  • 649 сообщений
    • Из: Нижний Новгород
    • Судно: inflatable
    • Название: Сплав

    Недавно мне понадобилось измерить частоту вращения КВ двигателей на Стрекозе Лайт 480. Поскольку никаких специализированных тахометров под рукой не оказалось, пришлось во второй раз обратиться к приложению для смартфона. Первый опыт, осуществленный лет несколько тому назад, оказался неудачным. Но и приложение, проверенное тогда, не было именно тахометром, а было измерителем частоты акустических колебаний. В общем, тогда не прошло.

    В этот раз установил бесплатное приложение Acoustic Tachometer (RPM)

    Результат применения оказался вполне правдоподобным. Измерял, в основном, максимальную частоту вращения двигателя нагнетателя и маршевого двигателя. Оба двигателя китайские четырехтактники воздушного охлаждения, одноцилиндровый и двухцилиндровый, соответственно.

    Потребовалась настройка программы (выставление параметров), с подбором результата на «похожесть». Измерения показывали стабильные результаты на выставленных оборотах, отображаемые показания периодически менялись в пределах примерно заявленной погрешности измерений (+ — 40 об/мин), резких скачков не было https://youtu.be/yDHMjnhZwGc?t=385

    Замеры проходили достаточно дистанционно, причем на разном расстоянии от двигателей и при разном взаимном положении двигателей и смартфона. Проведение измерений очень простое и не требует каких-либо дополнительных телодвижений (типа наклеивания светоотражающих меток, установки датчиков и прочих шаманских плясок), нет привязки к месту расположения датчиков, меток, приборов и т.д., а результаты замеров наглядны и их легко тут же сохранить прямо в телефон. Покупать и таскать с собой лишние приборы не требуется, смартфон всегда под рукой.

    В общем, приложение оказалось просто бесценной находкой для проведения таких замеров!

    Однако, поскольку сверять показания было абсолютно не с чем, кроме как с представлением о том, какой примерно должен получиться результат, абсолютной уверенности, все же, пока нет. И если у кого то есть возможность сверить результат измерения в данном приложении с показаниями, одновременно измеряемыми специализированными приборами, очень интересно было бы увидеть здесь результаты таких сравнений.

    голоса
    Рейтинг статьи
    Ссылка на основную публикацию
    Adblock
    detector