Sfera-perm.ru

Сфера Пермь
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Регулируемый стабилизатор тока для зарядного устройства 1

Схема зарядного устройства на микросхеме LM317

Еще одна простая, но очень эффективная схема зарядного устройства на интегральном стабилизаторе напряжения LM317. Устройство может быть использована для зарядки 12 вольтовый кислотных батарей, в том числе и автомобильных аккумуляторов. Первый вывод микросборки применяется для контроля напряжения на выходе схемы, то есть зарядного потенциала. Второй контакт является управляющим. На третий пин поступает входное напряжение питания.

Зарядный ток и потенциал на выходе контролируется биполярным транзистором Q1, резистором R1 и переменным сопротивлением R5. Когда батарея только подсоединена к клемам ЗУ, ток через резистор R1 увеличивается. Это, увеличивает проходящий ток и от LM317. Когда аккумулятор полностью заряжен, радиолюбительская конструкция снижает ток заряда, и АКБ заряжется в режиме непрерывной подзарядки низким током.

Микросборку необходимо разместить на радиаторе. LM317 стабильно работает при разности входного и выходного потенциала на 3 вольта. С помощью сопротивления R5 можно изменять напряжение зарядки.

Сопротивление R1 обладает нестандартным номиналом, его можно собрать использовав параллельное соединение резисторов, в количестве двух штук номиналом 1 Ом. Вторичная обмотка должна свободно попускать ток в 1,5 ампера.

Напряжение на схему ЗУ подается на клеммы Х1 и Х2 от внешнего блока питания постоянного напряжения 12-20 вольт. Зарядный ток поступает на индикатор светодиод HL1, транзистор VТ1 и стабилизатор напряжения LM317. Стабилизированное напряжение выводится на клеммы Х3 и Х4, которые подсоединяются к свинцово-кислотному аккумулятору.

Величина падения напряжения, необходимая для отпирания транзистора VT1, задается резистивным делителем на резисторах R3 и R4. Если ток зарядки ниже установленного уровня тока (ограничение тока задается подстроечным сопротивлением R4), светодиод HL1 не горит. С ростом тока заряда, свечение светодиода плавно возрастает.

Переменным сопротивлением R5 устанавливаем выходное напряжение на выходе. Для аккумуляторов с номинальным напряжением 6 В выходное напряжение заряда должно быть 6,8…6,9 В, для типовых автомобильных аккумуляторов 12 В на выходе следует установить 13,6…13,8 В.

Устройство рассчитано для зарядки аккумуляторных батарей ёмкостью около 1,2 Ампер-часа. В конструкции предусмотрен регулятор напряжения и тока. Схема состоит из понижающего трансформатора, а блока выпрямителя на диодах Д1 и Д2. Электролитическая емкость С1 используется в роли входного фильтра для снижения пульсаций выпрямленного напряжения. Стабилизатор ДLM317, регулирует ток заряда и напряжение. Диод Д3 защищает конструкцию от вероятного обратного броска тока от аккумулятора. Микросхему требуется обязательно установить на радиатор.

Трансформатор, должен быть по мощности не ниже 25 ватт, с вторичной обмоткой со средней точкой, на ток 1.5 А и напряжение 14 вольт. Схему рекомендуется дополнить амперметром. Учтите в этом ЗУ отсутствует защита от короткого замыкания.

Что такое зарядное устройство

Что такое зарядное устройство LM317 для зарядки аккумуляторов

Что такое зарядное устройство LM317 предназначено для заряда щелочных и обыкновенных аккумуляторных батарей емкостью до 10-15 А⋅ч. Ток заряжающего процесса имеет зафиксированное значение, а по завершению зарядки он снижается в ноль. Имеется встроенная светодиодная индикация для визуального определения степени заряженности аккумулятора и момента его окончания.

Заданное техническое условие

Один хороший товарищ попросил меня, что-то придумать такое, чтобы он мог на даче подзаряжать аккумулятор от шуроруповерта. По его описанию батарея содержит десять аккумуляторов с общей емкостью 1400 мА⋅ч. Итак, батарею необходимо заряжать от источника 12v. Аккумуляторные батареи являются никель-кадмиевыми, поэтому для их зарядки существует как минимум три варианта:

  • а) замедленный режим, с номинальным током 0,1 от емкости, полный процесс зарядки составит примерно 15 часов;
  • б) ультра быстрый с током зарядки от 1,1 до 3,9 от емкости, здесь полный цикл составит около часа;
  • в) форсированный режим с зарядным током около 0,24 от емкости продлится в пределах шести часов.

    Исходя из таких данных можно определится, что способ а) уж очень долгий, тем более на даче, где каждый час хочется провести с пользой. А здесь такое время ждать пока он зарядится, то уже надо будет и домой собираться ехать. Воспользоваться вариантом б), то он тоже не совсем оптимален и с долей риска, при таком раскладе существует большая вероятность разрыва банок либо прихода в негодность всей аккумуляторной батареи.

    Чтобы исключить такую возможность, необходимо постоянно контролировать температуру каждой емкости, к тому же сама схема получится непростой, как минимум реализована на микроконтроллере. Потом для контроллера нужно будет подготовить программу и настроить ее. И еще необходимо учитывать то, что каждый аккумулятор способен справиться с таким режимом зарядки, в частности это касается герметичных. Оставшийся режим в) вполне устраивает, если с вечера поставить батарею заряжаться, то к утру она будет абсолютно заряжена, то есть полный заряд и отсутствие каких либо проблем.

    Исходя из этого, с токовым режимом определились, дальнейший и на мой взгляд довольно непростой этап — это подбор отметки уровня, при котором будет происходить размыкание цепи зарядки. Как правило, применяется вариант отключения с помощью таймера, когда напряжение достигает своего порогового значения по совсем незначительному спаду с полной зарядкой, по температурной составляющей. Но и здесь создается некая проблема, дело в том, что в некоторых моментах реализация данного варианта схематически представляет определенную сложность, в других является рискованным и малонадежным.

    Одним из наиболее подходящих способов — пороговое напряжение, но и в таком случае напряжение может вовсе не дотянуть до порогового значения, если какой-либо из элементов является бракованным. В связи с этим настоятельно советую в случае первичной зарядки внимательно контролировать напряжение определенной аккумуляторной батареи. В справочных изданиях дается пояснение — необходимое напряжение для полного заряда каждого элемента находится в пределах 1,46-1,49v.

    Как в любом современном электронном устройстве такого типа имеется блок индикации для визуального наблюдения за состоянием работы прибора. Я решил использовать самые необходимые функции контроля схемы. Поэтому в этой конструкции я реализовал контроль подключения к сети, работоспособность прибора, контроль зарядного тракта, существующее состояния аккумулятора. Подача сигнала звуком я посчитал не нужной, так как есть вероятность ее включения среди ночи. К тому же если знаешь что такое зарядное устройство, то оно должно работать таким образом, чтобы аккумуляторная батарея смогла находиться в состоянии заряда без ущерба для нее.

    Читайте так же:
    Стабилизатор постоянного тока что это

    Учитывая такое обстоятельство — решил, что таймер в схеме не нужен или по крайней мере можно обойтись без него. При тестировании аналогичных приборов промышленного изготовления немного удивил такой фактор. В их конструкции не предусмотрен стабилизатор тока, а в качестве ограничителя выступает внутреннее сопротивление вторичной обмотки трансформатора. Напрашивается такой вывод, что при изменении напряжения в сети, либо не будет происходить полного заряда батареи либо конкретно увеличится ток.

    Принципиальная схема и ее компоненты


    Для тех кто занимается конструированием различных электронных устройств, как я считаю, важным фактором является:

  • — простая по исполнению схема,
  • — доступная в денежном выражении,
  • — из имеющихся в свободной продаже элементов,
  • — печатная плата должна быть разведена с достаточной простотой.

    Конечно в радиолюбительской практике лучше всего пользоваться теми деталями, которые найдутся в ваших закромах и из них пробовать собрать ту или иную конструкцию. Для изготовления зарядных устройств имеется в продаже специально для этих целей интегральная микросхема L200c — это не что иное, как стабилизатор тока и напряжения с возможностью его регулирования. Но для меня было принципиально установить в схему регулируемый стабилизатор положительного напряжения КР142ЕН12 он аналогичен LM317. У себя в загашнике отыскал трансформатор с напряжением вторичной обмотки 18v, чтобы полностью удостоверится в его работоспособности, я замерил действующее напряжение на нагрузке около 320 мА, и выяснилось что оно имеет значение ровно 16v.

    Учитывая падение в районе 10%, то это вполне нормально. Постоянные резисторы использованные в схеме выполнены в SMD-корпусе, вместо транзистора КТ503 можно ставить любой с n-p-n переходом. Сверхъяркие светодиоды у меня также были в наличии, правда их марку я установить не смог, но зато они прекрасно работают на токе 1 мА. Светодиоды можно устанавливать практически любые, но с обязательным подбором номинала постоянных резисторов R6-R9, это даст возможность установить необходимую яркость свечения светодиодов.

    Что такое зарядное устройство LM317 — настройка

    Не подключая пока нагрузки, подстроечным резистором R5 немного вращая его удостоверится, что выходное напряжение плавно изменяется в пределах 14v. Подбором номинала R7 R8 установить момент включения светодиода D6 при этом напряжение должно составлять примерно 14,1v. Печатная плата выполнена с учетом возможности параллельно резисторам R7 R8 установки SMD-резисторов для точной подгонки их номинала. Если знать что такое зарядное устройство и использовать приведенные на принципиальной схеме номинальные значения, то подстраивать ничего не придется.

    Далее, опять же подстроечным резистором выставить выходное напряжение около 14,6v. Теперь можно подключить нагрузку 20 Ом и удостоверится в том, что значение тока в цепи нагрузки составляет около 290 мА. Затем коротнуть на секунду выход и посмотреть гасятся ли пара светодиодов, а плавкий предохранитель остается целым. Если нагрузка отсутствует, то светится должны оба светодиода, а кода подключается в цепь аккумулятор светодиод красного свечения погасает. В случае обрыва цепи заряда либо батарея оказалась не полностью заряжена, красный светодиод продолжает светиться.

    На следующем этапе нужно подключить аккумулятор и удостовериться, что светодиод красного свечения перестает светится, а зарядка выполняется как положено. Когда состояние заряда подходит к своему полному значению красный диод начинает светиться. Далее необходимо проверить значение напряжения на заряженном аккумуляторе, а в случае необходимости, подрегулировать переменным резистором R5 напряжение на выходе устройства. Опять же при обнаружении напряжения существенно отличающегося от заданного, значит в аккумуляторной батареи неисправен какой-то элемент. Нужно отыскать какой именно и поменять его на заведомо исправный.

    Заключительная информация

    Что такое зарядное устройство LM317, которое имеет возможность изменять значение тока зарядки до полутора ампер, но при этом нужно постоянно отслеживать температуру на КР142ЕН12, чтобы не было больше оптимальной. Напряжение аккумулятора может составлять 6v, 12v, 18v, 24v. Но учитывая разные напряжения, то и придется провести дополнительные настроечные работы, в частности нужно будет заменить в схеме несколько постоянных резисторов. Чтобы изменить значение тока заряда согласно одному напряжению, то эффективнее всего будет параллельно резистору R2 включить шунтирующие сопротивления.

    Габариты радиаторов охлаждения будут определяться разницей входного и выходного напряжения, а также номинального тока стабилизации. А посему не стоит фанатично увеличивать переменное напряжение на вторичной обмотке трансформатора, которое неизбежно спровоцирует перегрев. На данную конструкцию зарядки корпус я не делал, так как заказчик изъявил желание изготовить его самостоятельно. Но нужно помнить, что для такого устройства необходима высокоэффективная вентиляция. На фотографии это теплоотвод установлен временно, пока идет настройка, потом я его заменю.

    Во время тестирования и настроечных моментов зарядке подверглась аккумуляторная батарея с набором в 10 никель-кадмиевых элементов с емкостью 7 А⋅ч. Время затраченное на зарядку такой батареи соразмерно повышалось, тем не менее, аккумулятор зарядился полностью.

    Микросхема UC3842 (ШИМ) или изготавливаем Зарядное устройство для автомобильных аккумуляторов

    Схема импульсного зарядного устройства для автомобильного аккумулятора своими руками

    Тема автомобильных зарядных устройств интересна очень многим. Из статьи вы узнаете, как переделать компьютерный блок питания в полноценное зарядное устройство для автомобильных аккумуляторов. Оно будет представлять собой импульсное зарядное устройство для аккумуляторов с емкостью до 120 А·ч, то есть зарядка будет довольно мощной.

    Собирать практически ничего не нужно – просто переделывается блок питания. К нему добавится всего один компонент.

    Компьютерный блок питания имеет несколько выходных напряжений. Основные силовые шины имеют напряжение 3,3, 5 и 12 В. Таким образом, для работы устройства понадобится 12-вольтовая шина (желтый провод).

    Для зарядки автомобильных аккумуляторов напряжение на выходе должно быть в районе 14,5-15 В, следовательно, 12 В от компьютерного блока питания явно маловато. Поэтому первым делом необходимо поднять напряжение на 12-вольтовой шине до уровня 14,5-15 В.

    Читайте так же:
    Микросхема стабилизатор тока для аккумулятора

    Затем, нужно собрать регулируемый стабилизатор тока или ограничитель, чтобы была возможность выставить необходимый ток заряда.

    Зарядник, можно сказать, получится автоматическим. Аккумулятор будет заряжаться до заданного напряжения стабильным током. По мере заряда сила тока будет падать, а в самом конце процесса сравняется с нулем.

    Приступая к изготовлению устройства необходимо найти подходящий блок питания. Для этих целей подойдут блоки, в которых стоит ШИМ-контроллер TL494 либо его полноценный аналог K7500.

    Когда нужный блок питания найден, необходимо его проверить. Для запуска блока нужно соединить зеленый провод с любым из черных проводов.

    Если блок запустился, нужно проверить напряжение на всех шинах. Если все в порядке, то нужно извлечь плату из жестяного корпуса.

    После извлечения платы, необходимо удалить все провода, кроме двух черных, двух зеленого и идет для запуска блока. Остальные провода рекомендуется отпаять мощным паяльником, к примеру, на 100 Вт.

    На этом этапе потребуется все ваше внимание, поскольку это самый важный момент во всей переделке. Нужно найти первый вывод микросхемы (в примере стоит микросхема 7500), и отыскать первый резистор, который применен от этого вывода к шине 12 В.

    На первом выводе расположено много резисторов, но найти нужный — не составит труда, если прозвонить все мультиметром.

    После нахождения резистора (в примере он на 27 кОм), необходимо отпаять только один вывод. Чтобы в дальнейшем не запутаться, резистор будет называться Rx.

    Теперь необходимо найти переменный резистор, скажем, на 10 кОм. Его мощность не важна. Нужно подключить 2 провода длиной порядка 10 см каждый таким образом:

    Один из проводов необходимо соединить с отпаянным выводом резистора Rx, а второй припаять к плате в том месте, откуда был выпаян вывод резистора Rx. Благодаря этому регулируемому резистору можно будет выставлять необходимое выходное напряжение.

    Стабилизатор или ограничитель тока заряда очень важное дополнение, которое должно иметься в каждом зарядном устройстве. Этот узел изготавливается на базе операционного усилителя. Тут подойдут практически любые «операционники». В примере задействован бюджетный LM358. В корпусе этой микросхемы два элемента, но необходим только один из них.

    Пару слов о работе ограничителя тока. В этой схеме операционный усилитель применяется в качестве компаратора, который сравнивает напряжение на резисторе с низким сопротивлением с опорным напряжением. Последнее задается при помощи стабилитрона. А регулируемый резистор теперь меняет это напряжение.

    При изменении величины напряжения операционный усилитель постарается сгладить напряжение на входах и сделает это путем уменьшения или увеличения выходного напряжения. Тем самым «операционник» будет управлять полевым транзистором. Последний регулирует выходную нагрузку.

    Полевой транзистор нужен мощный, поскольку через него будет проходить весь ток заряда. В примере используется IRFZ44, хотя можно использовать любой другой соответствующих параметров.

    Транзистор обязательно устанавливается на теплоотвод, ведь при больших токах он будет хорошенько нагреваться. В этом примере транзистор просто прикреплен к корпусу блока питания.

    Печатная плата была разведена на скорую руку, но получилось довольно неплохо.

    Теперь остается соединить все по картинке и приступить к монтажу.

    Напряжение выставлено в районе 14,5 В. Регулятор напряжения можно не выводить наружу. Для управления на передней панели имеется только регулятор тока заряда, да и вольтметр тоже не нужен, поскольку амперметр покажет все, что надо видеть при зарядке.

    Амперметр можно взять советский аналоговый или цифровой.

    Также на переднюю панель был выведен тумблер для запуска устройства и выходные клеммы. Теперь можно считать проект завершенным.

    Получилось несложное в изготовлении и недорогое зарядное устройство, которое вы можете смело повторить сами.

    Автор: АКА КАСЬЯН.

    Рекомендуем:

    Характеристика прибора

    Приборы для зарядки аккумулятора могут быть трансформаторными либо импульсными. Первые сегодня практически неактуальны из-за их больших размеров и веса, а также недостатков, соответственно, востребованность импульсных ЗУ для АКБ только растет.

    Устройство и принцип работы

    Предназначение такого прибора заключается в восстановлении заряда батареи.

    Устройство девайса следующее:

    • трансформаторный импульсный механизм;
    • выпрямительный узел;
    • стабилизатор;
    • устройства индикации заряда;
    • управляющий модуль, осуществляющий контроль за работой ЗУ.

    ИЗУ для автомобильной АКБ от производителя BOSCH

    Если вы сравните импульсное зарядное устройство с трансформаторным, то увидите, что все компоненты, которые входят в состав первого, значительно меньше по размерам и весу. Именно поэтому приборы такого типа получили популярность среди соотечественников, тем более, что их вполне можно соорудить в домашних условиях.

    Если говорить о принципе действия, то непосредственно сам процесс заряда может осуществляться:

    • напряжением постоянным током;
    • напряжением с неизменными параметрами;
    • еще один способ — комбинированный.

    Наиболее оптимальным, а также правильным с точки зрения теории является второй вариант, поскольку именно он позволяет полностью контролировать процесс заряда. В том случае, если вы планируете добиться максимального уровня заряда, в ходе процесса также следует учитывать и значение разряда аккумулятора. Метод постоянного тока — не самый лучший способ, поскольку в данном случае речь идет о быстром процессе заряда. При таком напряжении через пластины батареи проходит высокий ток, в результате чего есть вероятность разрушения пластин АКБ. А это, в свою очередь, приведет к ее неработоспособности, ведь восстановить пластины не получится (автор видео — канал deonich tex).

    Что касается последнего способа — комбинированного, то он считается одним из самых щадящих для конструкции аккумулятора. В данном случае через батарею в первую очередь проходит постоянный ток, который впоследствии меняется на переменный, когда батарея будет практически заряжена. После этого ток постепенно снижается, его значение уменьшается почти до нуля, что способствует стабилизации напряжения в целом. По утверждению многих электриков, этот вариант дает возможность если не предотвратить, то как минимуму снизить вероятность выкипания раствора электролита в банках батареи. Соответственно, это способствует и предотвращению возможности выделения газов.

    Особенности подбора оборудования

    Есть несколько особенностей подбора девайса:

    1. Во-первых, большинство наших соотечественников при покупке рассчитывают на то, что зарядный прибор при необходимости сможет восстановить работоспособность полностью севшего аккумулятора. Несмотря на то, то импульсное зарядное устройство — это довольно технологичный прибор, не факт, что оно сможет выполнить эту функцию. Покупая девайс в магазине, обязательно нужно уточнить, сможет ли ЗУ справиться с задачей восстановления полностью разряженной батареи.
    2. Во-вторых, необходимо учитывать значение максимального тока, который будет проходит через аккумуляторную батарею во время зарядки. Здесь же необходимо брать во внимание и уровень напряжения, с которым будет осуществляться зарядка АКБ. Покупая импульсное зарядное устройство, желательно, чтобы прибор имел функцию автоматического отключения либо поддержки, она будет активироваться в том случае, когда АКБ зарядится (автор видеообзора импульсной зарядки — канал Oops of ZikValera).
    Читайте так же:
    Стабилизатор тока или частоты



    Схема зарядного на тиристоре 15 А

    Вся ЗУ питается трансформатором 400 ВА с вторичной вторичной обмоткой 24 В, чтобы получить 19 В после выпрямления и падения. Трансформатор имеет вспомогательную обмотку 12 В. Исполнительный тиристор — BT152. Диодный мост выпрямителя состоит из двух мостов по 50 А, соединенных параллельно (каждый мост соединен в полумост, чтобы обеспечить наилучшую тепловую связь между диодами).

    Изначально предполагалось поставить диоды от генератора, но пришлось использовать в итоге именно такое включение. Предохранитель на вторичной стороне — это автомат B10, только сняли с него защиту от перегрузки, присутствует лишь защита от короткого замыкания, он легко выдерживает ток 15–18 А и немедленно отключается при коротком замыкании, отлично защищая тиристор.

    Тем кто будет собирать схему, посоветуем заменить тиристор на более сильный. Всё-таки тиристор BT152 неспособен противостоять более высоким токам чем 1 А, несмотря даже на солидный радиатор. После замены на другой тиристор на ток около 40 А, всё работает надежно и радиатор намного холоднее.

    Полезное: Блок питания собственной конструкции на 12 В 15 А

    Действительно, ток 15 А может быть немного выше в импульсах. Не забывайте про термопроводящую пасту под тиристор и диодный мост. В качестве лучшего аналога рекомендуем BTA41-600B. При непрерывной мощности 1 кВт после теста 12 часов он едва нагревается. Ещё одно его преимущество — малая цена и изоляция касательной поверхности с радиатором.



    Регулируемый стабилизатор тока для зарядного устройства 1

    Бесплатная техническая библиотека:
    ▪ Все статьи А-Я
    ▪ Энциклопедия радиоэлектроники и электротехники
    ▪ Новости науки и техники
    ▪ Архив статей и поиск
    ▪ Ваши истории из жизни
    ▪ На досуге
    ▪ Случайные статьи
    ▪ Отзывы о сайте

    Справочник:
    ▪ Большая энциклопедия для детей и взрослых
    ▪ Биографии великих ученых
    ▪ Важнейшие научные открытия
    ▪ Детская научная лаборатория
    ▪ Должностные инструкции
    ▪ Домашняя мастерская
    ▪ Жизнь замечательных физиков
    ▪ Заводские технологии на дому
    ▪ Загадки, ребусы, вопросы с подвохом
    ▪ Инструменты и механизмы для сельского хозяйства
    ▪ Искусство аудио
    ▪ Искусство видео
    ▪ История техники, технологии, предметов вокруг нас
    ▪ И тут появился изобретатель (ТРИЗ)
    ▪ Конспекты лекций, шпаргалки
    ▪ Крылатые слова, фразеологизмы
    ▪ Личный транспорт: наземный, водный, воздушный
    ▪ Любителям путешествовать — советы туристу
    ▪ Моделирование
    ▪ Нормативная документация по охране труда
    ▪ Опыты по физике
    ▪ Опыты по химии
    ▪ Основы безопасной жизнедеятельности (ОБЖД)
    ▪ Основы первой медицинской помощи (ОПМП)
    ▪ Охрана труда
    ▪ Радиоэлектроника и электротехника
    ▪ Строителю, домашнему мастеру
    ▪ Типовые инструкции по охране труда (ТОИ)
    ▪ Чудеса природы
    ▪ Шпионские штучки
    ▪ Электрик в доме
    ▪ Эффектные фокусы и их разгадки

    Техническая документация:
    ▪ Схемы и сервис-мануалы
    ▪ Книги, журналы, сборники
    ▪ Справочники
    ▪ Параметры радиодеталей
    ▪ Прошивки
    ▪ Инструкции по эксплуатации
    ▪ Энциклопедия радиоэлектроники и электротехники

    Бесплатный архив статей
    (500000 статей в Архиве)

    Алфавитный указатель статей в книгах и журналах

    Бонусы:
    ▪ Ваши истории
    ▪ Викторина онлайн
    ▪ Загадки для взрослых и детей
    ▪ Знаете ли Вы, что.
    ▪ Зрительные иллюзии
    ▪ Веселые задачки
    ▪ Каталог Вивасан
    ▪ Палиндромы
    ▪ Сборка кубика Рубика
    ▪ Форумы
    ▪ Голосования
    ▪ Карта сайта

    Дизайн и поддержка:
    Александр Кузнецов

    Техническое обеспечение:
    Михаил Булах

    Программирование:
    Данил Мончукин

    Маркетинг:
    Татьяна Анастасьева

    Перевод:
    Наталья Кузнецова

    При использовании материалов сайта обязательна ссылка на https://www.diagram.com.ua


    сделано в Украине

    Регулируемый стабилизатор зарядного тока

    В качестве регулирующего элемента зарядного устройства часто используют мощный транзистор. На этом транзисторе, работающем в линейном режиме, рассеивается большая тепловая мощность, из-за чего его приходится устанавливать на громоздкий теплоотвод. КПД таких устройств, как правило, невысок.

    Предлагаю устройство, в котором применен импульсный способ регулирования зарядного тока, и тринистор в роли регулирующего элемента, позволяющие существенно снизить энергетические потери.

    Основные технические характеристики

    Максимальный зарядный ток, А . 6
    Максимальное выходное
    напряжение, В . 16
    КПД, %, не менее . 80


    Рис. 1

    Принципиальная схема стабилизатора тока показана на рис. 1. Устройство состоит из сетевого помехоподавляю-щего фильтра, образованного двуобмоточным дросселем L1 и конденсаторами С1- C3, сетевого трансформатора Т1, мощного выпрямителя на диодах VD3-VD6, маломощного выпрямителя VD2 с двуполярным параметрическим стабилизатором VD7R2VD8R3, узла установки тока — переменного резистора R4, датчика тока R14 с двузвенным RC-фильтром R12C14R11C13, усилителя сигнала рассогласования на ОУ DA1, датчика напряжения на транзисторе VT1, необходимого для определения моментов перехода сетевого напряжения через «нуль», регулируемого одновибратора на триггере DD1.1 и одновибратора на триггере DD1.2 с усилителем тока на транзисторе VT2, формирующих импульсы управления тринистором VS1, который в конечном счете и регулирует зарядный ток.

    С движка переменного резистора R4 через резистор R6 на инвертирующий вход ОУ поступает отрицательное напряжение. Параметры цепи резистивного делителя R4R5 рассчитаны таким образом, что оно более отрицательно, чем на неинвертирующем входе ОУ, поэтому на выходе ОУ образуется положительный сигнал, пропорциональный разности входных значений напряжения. Этот сигнал через резистор R13 поступает во времязадающую цепь управляемого одновибратора, собранного на D-триггере DD1.1 [1]. Особенность этого одновибратора — пропорциональное уменьшение длительности импульса, вырабатываемого одновибратором, при увеличении уровня входного сигнала.

    Начало импульса одновибратора «привязано» к началу полупериода сетевого напряжения с помощью датчика напряжения, выполненного на транзисторе VT1. На базу этого транзистора через резистор R8 поступает пульсирующее напряжение с выпрямительного моста VD2. Диод VD1 «развязывает» эту цепь от сглаживающего конденсатора С8.

    Читайте так же:
    Датчика тока в стабилизаторах тока

    Сопротивление резисторов делителя в цепи базы транзистора рассчитано таким образом, что большую часть времени транзистор открыт, и только в моменты, когда выходное напряжение моста снижается почти до нуля, транзистор закрывается и короткий положительный импульс с его коллектора передается на вход S триггера DD1.1. Триггер переключается в единичное состояние, конденсатор С15 начинает заряжаться, и когда напряжение на нем, а значит, и на входе R триггера достигнет порога переключения, триггер вернется в нулевое состояние.

    Зарядный ток этого конденсатора имеет две составляющие: через цепь R17R16VD10 от источника стабильного напряжения (+12,5 В) и цепь R13VD9 от источника меняющегося напряжения (с выхода ОУ). Чем больше выходное напряжение ОУ, тем больше вторая составляющая зарядного тока, тем быстрее заряжается конденсатор и тем короче импульс высокого уровня на прямом выходе триггера.
    А на инверсном выходе триггера формируется импульс низкого уровня, длительность которого также обратно пропорциональна напряжению на выходе ОУ. По спаду этого импульса одновибратор, построенный на триггере DD1.2 [2], вырабатывает короткий импульс высокого уровня, который после усиления транзистором VT2 открывает тринистop VS1.

    Таким образом, в зависимости от длительности импульса управляемого одновибратора тринистор будет включаться с разной задержкой от начала полупериода. Соответственно станет меняться и ток, поступающий от мощного выпрямителя. То есть положение движка резистора R4 задает среднее значение зарядного тока.

    Напряжение ОС, снятое с резистора R14 и пропорциональное току нагрузки, после сглаживания двузвенным фильтром R12C14 R11C13 оказывается приложенным в отрицательной полярности к неинвертирующему входу ОУ.

    Если зарядный ток уменьшится, например, вследствие повышения ЭДС заряжаемой батареи, напряжение на неинвертирующем входе станет менее отрицательным, выходное напряжение ОУ повысится, что приведет к уменьшению длительности импульса регулируемого одновибратора, а значит, к уменьшению задержки включения тринистора VS1 — ток увеличится.

    Коэффициент усиления ОУ равен отношению значений сопротивления резисторов R7 и R6:1 МОм : 2 кОм = 500 Поэтому стабилизатор реагирует на самые незначительные изменения тока.

    Лампы HL1, HL2 подсвечивают шкалу амперметра РА1 и одновременно служат индикатором включения устройства. Резистор R1 подбирают таким, чтобы напряжение на лампах было на 5. 6 % ниже номинального. Конденсаторы С4- С7, шунтирующие диоды мощного выпрямителя, уменьшают уровень высокочастотных помех, проникающих в сеть. Конденсатор С12 устраняет самовозбуждение ОУ (его устанавливают, если в этом есть необходимость).

    ОУ К140УД1Б можно заменить на К140УД6, К140УД7, а диод КД510А — на КД509А, КД513А. В мощном выпрямителе можно использовать диоды КД2999А, КД2999Б, а также Д242, Д243 (с увеличением эффективной площади теплоотводов). Стабилитроны Д814Д заменимы на Д814Г. Вместо тринистора КУ202Н подойдут КУ202Л, КУ202И.

    Конденсаторы С1-С7 — К73-16, К78-2; С8-СЮ, С13, С14 — К50-35; С11, С12, С15, С16 — КЛС, КМ-6. Резистор R4 — ППЗ-12, a R5, R17 — СП5-ЗВ; R14 — 2 резистора С5-16МВ сопротивлением 0,1 Ом, соединенные параллельно (каждый из них можно заменить отрезком длиной 72 мм нихро-мового провода диаметром 1 мм). Лампы HL1, HL2 -СМН10-55 (СМН10-55-2).

    Амперметр РА1 — М4205 с внешним шунтом на 10 А.

    Дроссель L1 намотан на кольцевом магнитопроводе типоразмера К20х10х5 из феррита 2000НМ сложенным вдвое проводом МГТФ 0,5, число витков — 24. Образовавшиеся две обмотки включают так, как показано на схеме. Трансформатор Т1 выполнен на стальном магнитопроводе ШЛ25х40, обмотка I содержит 1012 витков провода ПЭВ-2 0,5; обмотка II — 144 витка провода ПЭВ-2 0,2 с отводом от середины; обмотка III — 104 витка провода ПЭВ-2 1,6. Диоды VD3-VD6 установлены на четырех медных пластинах-теплоотводах площадью 60 см2 каждая. Теплоотвод тринистора VS1 имеет площадь 100 см2.


    Рис. 2

    Большая часть деталей устройства смонтирована на печатной плате из фольгированного с одной стороны стеклотекстолита толщиной 1,5 мм. На рис. 2 представлены чертеж печатной платы и расположение деталей на ней. Два отверстия, вблизи середины платы, предназначены для фиксации подстроечных резисторов R5 и R17. Корпусы этих резисторов устанавливают на плату, вплотную один к другому, регулировочными винтами в сторону края платы и притягивают планкой и винтами с гайками.

    Налаживание устройства следует начинать с проверки двуполярного напряжения питания ОУ Если необходимо, подбирают стабилитроны и их балластные резисторы.

    Далее с помощью осциллографа проверяют наличие на выводе коллектора транзистора VT1 коротких импульсов высокого уровня с периодом 10 мс. Желательно добиться минимальной длительности этих импульсов подборкой резистора R8.

    Осциллограф необходим и для проверки длительности импульсов низкого уровня на инверсном выходе регулируемого одновибратора DD1.1 (вывод 2). Это делают при отключенной системе стабилизации зарядного тока, для чего достаточно временно соединить с общим проводом неинвертирующий вход ОУ. Движок подстроечного резистора R5 устанавливают в такое положение, чтобы изменению длительности импульса на инверсном выходе триггера DD1.1 от 0 до 10 мс соответствовал полный поворот вала переменного резистора R4. При этом может потребоваться корректировка положения вала резистора R17.

    Следует отметить в заключение, что тем, кто возьмется за изготовление описанного выше устройства, будет полезно ознакомиться с публикациями [3; 4].

    1. Самойленко А. Управляемый одновибратор. — Радио, 1999, № 5, с. 38, 39.
    2. Зельдин Е. Импульсные устройства на микросхемах. — М.: Радио и связь, 1991.
    3. Леонтьев А., Лукаш С. Регулятор напряжения с фазоимпульсным управлением. — Радио, 1992, № 9, с. 43, 44.
    4. Приймак Д. Низковольтный тринисторный регулятор напряжения. — Радио, 1989, №5, с. 78-80.

    Смотрите другие статьи раздела Автомобиль. Аккумуляторы, зарядные устройства .

    Читайте и пишите полезные комментарии к этой статье.

    Схемы самодельных ЗУ для автомобильных АКБ на TL494

    Ранее мы опубликовали схемы зарядных устройств для автомобильного аккумулятора.

    Сегодня рассмотрим несколько схем с использованием широко распространённой специализированной мс TL494.

    Зарядное устройство, рассматриваемое ниже собрано по схеме ключевого стабилизатора тока с узлом контроля достигнутого напряжения на аккумуляторе для обеспечения его отключения по окончании зарядки.

    Для управления ключевым транзистором используется микросхема TL494 (KIA494, KA7500B, К1114УЕ4). Её можно часто встретить в компьютерных БП. Устройство обеспечивает регулировку тока заряда в пределах 1 … 6 А (10А max) и выходного напряжения 2 … 20 В.

    Читайте так же:
    Микросхема стабилизатор тока схема

    Ключевой транзистор VT1, диод VD5 и силовые диоды VD1 — VD4 через слюдяные прокладки необходимо установить на общий радиатор площадью 200 … 400 см2. Наиболее важным элементом в схеме является дроссель L1. От качества его изготовления зависит КПД схемы.

    Так как в процессе работы происходит намагничивание магнитопровода постоянным током — из-за насыщения индуктивность его сильно зависит от протекающего тока. С целью уменьшения влияния подмагничивания на индуктивность, предпочтительней использовать альсиферовые магнитопроводы с малой магнитной проницаемостью, насыщение которых происходит при значительно больших магнитных полях, чем у ферритов.

    В качестве сердечника можно использовать импульсный трансформатор от блока питания телевизоров 3УСЦТ или аналогичный. Очень важно, чтобы магнитопровод имел щелевой зазор примерно 0,2 … 1,0 мм для предотвращения насыщения при больших токах. Количество витков зависит от конкретного магнитопровода и может быть в пределах 15 … 100 витков провода ПЭВ-2 2,0 мм. Если количество витков избыточно, то при работе схемы в режиме номинальной нагрузки будет слышен негромкий свистящий звук. Как правило, свистящий звук бывает только при средних токах, а при большой нагрузке индуктивность дросселя за счёт подмагничивания сердечника падает и свист прекращается. Если свистящий звук прекращается при небольших токах и при дальнейшем увеличении тока нагрузки резко начинает греться выходной транзистор, значит площадь сердечника магнитопровода недостаточна для работы на выбранной частоте генерации — необходимо увеличить частоту работы микросхемы подбором резистора R4 или конденсатора C3 или установить дроссель большего типоразмера.

    При отсутствии силового транзистора структуры p-n-p в схеме можно использовать мощные транзисторы структуры n-p-n, как показано на рисунке, ниже.

    В качестве диода VD5 перед дросселем L1 можно использовать любые доступные диоды с барьером Шоттки, рассчитанными на ток не менее 10А и напряжение 50В. Для выпрямителя можно использовать любые мощные диоды на ток 10А или диодный мост, например KBPC3506, MP3508 или подобные. Сопротивление шунта в схеме желательно подогнать под требуемое. Диапазон регулировки выходного тока зависит от соотношения сопротивлений резисторов в цепи вывода 15 микросхемы.

    Настройка схемы зарядного устройства

    В нижнем по схеме положении движка переменного резистора регулировки тока напряжение на выводе 15 микросхемы должно совпадать с напряжением на шунте при протекании через него максимального тока. Переменный резистор регулировки тока R3 можно установить с любым номинальным сопротивлением, но потребуется подобрать смежный с ним постоянный резистор R2 для получения необходимого напряжения на выводе 15 микросхемы.

    Переменный резистор регулировки выходного напряжения R9 также может иметь большой разброс номинального сопротивления 2 … 100 кОм.

    Подбором сопротивления резистора R10 устанавливают верхнюю границу выходного напряжения. Нижняя граница определяется соотношением сопротивлений резисторов R6 и R7, но её нежелательно устанавливать меньше 1 В.

    Монтаж ЗУ

    Микросхема установлена на небольшой печатной плате 45 х 40 мм, остальные элементы схемы установлены на основание устройства и радиатор. Монтажная схема подключения печатной платы приведена на рисунке справа. В схеме использовался перемотанный силовой трансформатор ТС180, но в зависимости от величины требуемых выходных напряжений и тока мощность трансформатора можно изменить. Если достаточно выходного напряжения 15 В и тока 6А, то достаточно силового трансформатора мощностью 100 Вт. Площадь радиатора также можно уменьшить до 100 .. 200 см2.

    Это зарядное устройство можно использовать также и как лабораторный блок питания с регулируемым ограничением выходного тока. При исправных элементах схема начинает работать сразу.

    Схема ЗУ на мс TL494 с нормализацией напряжения шунта

    Ниже, представлен вариант схемы зарядного устройства для автомобильных аккумуляторов, который, несмотря на большую сложность, проще в настройке благодаря использованию операционного усилителя для нормализации напряжения токоизмерительного шунта.

    В этой схеме в качестве шунта R13 можно использовать практически любой проволочный резистор сопротивлением 0,01 … 0,1 Ом и мощностью 1 … 5 Вт. Требуемое для нормальной регулировки тока в нагрузке напряжение 0 … 0,6 В на выводе 1 микросхемы DA1 достигается соотношением сопротивлений резисторов R9 и R11. Сопротивления резисторов R11 и R12 должны быть одинаковыми и быть в пределах 0,5 … 100 кОм. Сопротивление резистора R9 подсчитывают по формуле: R9 (Ом)= 0,1* I вых.max (A) * R11 (Ом) / I вых.max (А) * R13 (Ом). Переменный резистор R2 может быть любым подходящим, с сопротивлением 1 … 100 кОм. После выбора R2 рассчитывают требуемое значение сопротивления резистора R4, которое определяется по формуле: R4(кОм) = R2 (кОм) * (5 В- 0,1 * I вых. max (A)) / 0,1 * I вых. max (A). Переменный резистор R14 также может быть любым подходящим с сопротивлением 1 … 100 кОм. Сопротивление резистора R15 определяет верхнюю границу регулировки выходного напряжения. Номинал этого резистора должен быть таким, чтобы при максимальном выходном напряжении на движке резистора, в нижнем по схеме положении, напряжение составляло 5,00В. На рисунке показаны номиналы для максимального выходного тока 6А и максимального напряжения 15 В, но предельные значения этих параметров легко пересчитать согласно выше приведённым формулам.

    Конструкция и монтаж

    Конструктивно основная часть схемы выполнена на печатной плате размером 45 х 58 мм. Остальные элементы: силовой трансформатор, диодный мост VD2, транзистор VT1, диод VD5, дроссель Др1, электролитические конденсаторы С2, С7, переменные резисторы и предохранители размещены методом объёмного монтажа в корпусе зарядного устройства. Такой подход позволил использовать в схеме разные по габаритам элементы и был вызван необходимостью тиражирования конструкции.

    Требования к элементной базе описаны выше. Правильно собранная схема начинает работать сразу и, практически, не требует наладки.

    Эта схема также, как и предыдущая, может использоваться не только в качестве зарядного устройства , но и лабораторного блока питания с регулируемым ограничением выходного тока.

    Автор: Кравцов В. (сайт:Автоматика в быту)

    голоса
    Рейтинг статьи
  • Ссылка на основную публикацию
    Adblock
    detector