Sfera-perm.ru

Сфера Пермь
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Реферат использование теплового действия электрического тока в теплицах

Специфика поражающего действия электротока

Поражающее действие электрического тока на живую ткань носит разносторонний и своеобразный характер. Проходя через организм че­ловека, электрический ток производит термическое, электролитическое, механическое и биологическое действие.

  • Термическое действие электротока проявляется в ожогах от­дельных участков тела, нагреве до высокой температуры кровеносных сосудов, нервов, сердца, мозга и других органов, находящихся на пути тока, что вызывает в них серьезные функциональные расстройства
  • Электролитическое действие тока выражается в разложении органической жидкости, в том числе крови, что сопровождается значительными нарушениями их физико-химического состава.
  • Механическое (динамическое) действие электротока выражается в расслоении, разрыве и других подобных повреждениях различных тканей организма, в том числе мышечной ткани, стенок кровеносных сосудов, сосудов легочной ткани и др., в результате электродинамического эффекта, а также мгновенного взрывоподобного образования пара от перегретой током тканевой жидкости и крови.
  • Биологическое действие электротока проявляется и раздражении и возбуждении живых тканей организма, а также в нарушении внутренних биоэлектрических процессов, протекающих в нормально действу­ющем организме и теснейшим образом связанных с его жизненными функциями.

Виды поражений электрическим током

Электротравма – травма, вызванная воздействием электрического тока или электрической дуги. Указанное многообразие действия электрического тока на организм нередко приводит к различным электротравмам, которые сводятся к двум видам:

  1. Местные электротравмы, когда возникает местное повреждение организма;
  2. Общие электротравмы, так называемым электрическим ударам, когда поражается весь организм из-за нарушения нормальной деятельности жизненно важных органов и систем.

Местная электротравма – ярко выраженное местное нарушение целостности тканей тела, вызванное воздействием электротока или электродуги. Опасность местных электротравм и сложность их лечения зависят от места, характера и степени повреждения тканей, а также от реакции организма на это повреждение. Как правило, местные электро­травмы излечиваются, и трудоспособность пострадавшего восстанавливается полностью или частично.

Характерные местные электротравмы – электрические ожоги, электрические знаки, металлизация кожи, механические повреждения и электроофтальмия.

  • Электрический ожог подразделяют на токовый (контактный) и дуговой.
  • Электрические знаки, именуемые также знаками тока или электрическими метками, представляют собой резко очерченные пятна серого или бледно-желтого цвета на поверхности тела человека, подвергшегося действию электротока.
  • Металлизация кожи – проникновение в верхние слои кожи мельчайших частичек металла, расплавившегося под действием электрической дуги.
  • Механические повреждения являются в большинстве случаев след­ствием резких непроизвольных судорожных сокращений мышц под действием тока, проходящего через тело человека. В результате могут произойти разрывы сухожилий, кожи, кровеносных сосудов и нервной ткани, вывихи суставов. Разумеется, что электротравмами не считаются травмы, вызванные падением с высоты, ушибами о предметы и т.п. в результате воздействия тока.
  • Электроофтальмия (от греч. ophthalmos – глаз) представляет собой воспаление наружных оболочек глаз – роговицы и конъюнктивы (слизистой оболочки, покрывающей глазное яблоко), возникающее в результате воздействия мощного потока ультрафиолетовых лучей, которые энергично поглощаются клетками организма и вызывают в них химические изменения. Такое облучение возможно при наличии электрической дуги, которая является источником интенсивного излучения не только видимого света, но и ультрафиолетовых и инфракрасных лучей.
  • Электрический удар – возбуждение живых тканей организма протекающим через него электрическим током, проявляющееся в непроизвольных судорожных сокращениях различных мышц тела.

Исход воздействия электротока на организм человека зависит от ряда факторов, в том числе от значения и длительности прохождения тока через тело, рода и частоты тока, а также от индивидуальных свойств человека. Электрический удар, даже если он не приводит к смерти, может вызвать серьезные расстройства в организме, которые проявляются сразу или через определенное время. В результате электрического удара могут возникнуть или обостриться сердечно-сосудистые заболевания (аритмия сердца, стенокардия, нарушения артериального давления и др.), а также нервные болезни (невроз, эндокринные нарушения и пр.).

Пороговые ощутимый, неотпускающий и фибрилляционный токи

Степень опасности действия на человека электрического тока зависит от его значения. Электрический ток, вызывающий при прохождении через организм человека ощутимые раздражения, называется ощутимым током, а наименьшее значение этого тока называется пороговым ощутимым током. Человек начинает ощущать воздействие проходящего через него малого тока: в среднем около 1,1 мА при переменном токе частотой 50 Гц и около 6 мА при постоянном токе. Это воздействие при переменном токе проявляется слабым зудом и легким пощипыванием (покалыванием), а при постоянном токе ощущением нагрева кожи на участке, касающемся токоведущей части.

Пороговый ощутимый ток не может вызвать поражения человека, однако длительное (в течение нескольких минут) прохождение этого тока через человека может отрицательно сказаться на состоянии его здоровья. Кроме того, ощутимый ток может стать косвенной причиной несчастного случая, поскольку человек, почувствовав воздействие электротока, теряет уверенность в своей безопасности и может произвести неправильные действия. Особенно опасно неожиданное воздействие ощутимого тока при работах вблизи токоведущих частей на высоте и в других аналогичных условиях.

Электрический ток, вызывающий при прохождении через человека непреодолимые судорожные сокращения мышц руки, в которой зажат проводник, называется неотпускающим током, а наименьшее его значение – пороговым неотпускающим током. Пороговые неотпускающие токи различны у мужчин, женщин и детей. Приближенные средние значения их составляют: для мужчин – 16 мА при 50 Гц и 80 мА при постоянном токе, для женщин – соответственно 11 и 50 мА, для де­тей – 8 и 40 мА.

Читайте так же:
Тепловоз с передачей переменно постоянного тока

Фибрилляционный ток – это электрический ток, вызывающий при прохождении через организм фибрилляцию сердца. Наименьшее его значение называется пороговым фибрилляционным током. Электроток 50 мА и более при 50 Гц, проходя через тело человека, рас­пространяет свое раздражающее действие на мышцы сердца, тем самым вызывая его хаотичное сокращение и остановку. При частоте 50 Гц фибрилляционными являются токи в пределах от 50 мА до 5 А, а среднее значение порогового фибрилляционного тока можно считать 300 мА. Ток больше 5 А как переменный, так и постоянный, вызывает немедленную остановку сердца, минуя состояние фибрилляции.

Основой организации безопасной эксплуатации электроустановок является высокая техническая грамотность и сознательная дисциплина обслуживающего персонала, который обязан строго соблюдать особые организационные и технические мероприятия, правила и нормы без­опасной работы в действующих электроустановках, а также приемы и очередность выполнения эксплуатационных операций.

Классификация помещений в отношении опасности поражения электротоком

В зависимости от тех или иных условий, повышающих опасность воздействия электротока на человека, разным помещениям присуща разная степень опасности поражения током – одним большая, другим меньшая. В соответствии с Правилами устройства электроустановок помещения в отношении опасности поражения людей электрическим током классифицируются следующим образом:

1. Помещения без повышенной опасности, в которых отсутствуют условия, создающие повышенную или особую опасность. В таких по­мещениях относительная влажность воздуха менее 60%, отсутствуют высокая температура, токопроводящая пыль, химически активная или органическая среда, токопроводящие полы, возможность одновременного прикосновения к металлоконструкциям зданий, аппаратов, механизмов и к металлическим корпусам электрооборудования.

2. Помещения с повышенной опасностью, характеризующиеся наличием одного из следующих условий, создающих повышенную опасность:

  • сырость (относительная влажность воздуха более 75%) или токопроводящая пыль;
  • токопроводящие полы (металлические, земляные, железо­бетонные, кирпичные и пр.);
  • высокая температура (температура постоянно или периодически (более одних суток) превышает 35°С);
  • возможность одновременного прикосновения человека к металлоконструкциям зданий, имеющим соединение с землей, к технологическим аппаратам, механизмам и пр., с одной стороны, и к металлическим корпусам электрооборудования (открытым проводящим частям) – с другой.

3. Особо опасные помещения, характеризующиеся наличием одного из следующих условий, создающих особую опасность:

  • особая сырость (относительная влажность воздуха близка к 100% – потолок, стены, пол и предметы, находящиеся в помещении, покрыты влагой);
  • химически активная или органическая среда (помещения, где содержатся агрессивные пары, газы, жидкости, образуются отложения и плесень, разрушающие изоляцию и токоведущие части электрооборудования);
  • одновременно два или более условий повышенной опасности.

Территория открытых электроустановок в отношении опасности поражения людей электрическим током приравнивается к особо опасным помещениям.

Применение теплового действия электрического тока

Разделы: Физика

I. Повторение изученного

1) В чем проявляется тепловое действие тока? При каких условиях оно наблюдается?

При прохождении тока по проводнику она нагревается и, удлинившись, слегка провисает. В электрических лампах тонкая вольфрамовая проволочка нагревается током до яркого свечения.

2) Почему при прохождении тока проводник нагревается?

– В проводнике при протекании тока происходит превращение электрической энергии во внутреннюю, и проводник нагревается.

3) Почему, когда по проводнику пропускают электрический ток, проводник удлиняется?

– При нагревании проводника увеличивается потенциальная энергия взаимодействия молекул тела; расстояние между молекулами возрастает, проводник удлиняется.

4) По какой формуле можно рассчитать кол-во теплоты, выделяемой проводником с током?

5) Как формулируется закон Джоуля-Ленца?

– Кол-во теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени.

6) Две проволоки одинаковой длины и сечения – железная и медная – соединены параллельно. В какой из них выделится наибольшее кол-во теплоты?

– Т.к. кол-во теплоты, выделяемое проводником, зависит от сопротивления, а сопротивление определяется удельным сопротивлением:

Проводники соединены параллельно, то U1 = U2
Q = , чем больше R1, тем меньше Q, следовательно, на медном проводнике выделяется больше теплоты.

II. История и развитие электрического тока

История электрического освещения началась в 1870 году с изобретения лампы накаливания, в которой свет вырабатывался в результате поступления электрического тока. Самые первые осветительные приборы, работающие на электрическом токе, появились в начале 19 века, когда было открыто электричество. Эти лампы были достаточно неудобны, но, тем не менее, их использовали при освещении улиц.

И, наконец, 12 декабря 1876 года русский инженер Павел Яблочков открыл так называемую «Электрическую свечу», в которой 2 угольные пластинки, разделенные фарфоровой вставкой, служили проводником электричества, накалявшего дугу, и служившую источником света. Лампа Яблочкова нашла широчайшее применение при освещении улиц крупных городов.

III. Потребители электрической энергии

Устройство лампы накаливания:

1) Спираль
2) Стеклянный баллон
3) Цоколь лампы
4) Основание цоколя
5) Пружинящий контакт патрона

Читайте так же:
Как определить ток уставки теплового реле

Газоразрядная лампочка светиться под действием коротковолнового излучения.

VI. Формулы расчета стоимости электрической энергии

Стоимость = А(кВт*ч) х Тариф
А – работа тока
Р – мощность тока
t – время работы потребителя

V. КЛЛ – компактная люминесцентная лампа

Я рассчитал экономию израсходованной электроэнергии и стоимость её при использование КЛЛ в своей комнате:

W = 150 * 12 * 30 = 54 кВт ч – за месяц
Ст. = 54 * 2,81 = 151,74 (руб.) – оплата в месяц за лампу накаливания
W = 20 * 12 * 30 = 7,2 кВт ч, если энергосберегающая лампа
Ст.= 7,2 * 2,81 = 20,23 (руб.) – оплата в месяц за энергосберегающую лампу
Ст.= 151,74 – 20,23 = 131,51 (руб.)
Ст.= 131,51 * 2 = 263,02 (руб.) – экономия, так как в моей комнате 2 КЛЛ

Таким образом, получается, что энергосберегающая компактная люминесцентная лампа, несмотря на высокую стоимость, экономичнее, чем дешевая лампа накаливания.

VI. Практическое исследование

P1 = 100Вт = 0,1кВт – лампа накаливания
P2 = 20Вт = 0,02 кВт – энергосберегающая лампа

За месяц (30 дней )

Ст1. = 0,1кВт*180 час*2,81 руб= 50,58 руб.
Ст2. = 0,02кВт*180час*2,81руб.=10,16 руб.
Экономия электроэнергии 18 кВт — 3,6кВт =14,4 кВт

Ст 1. = 0,1 кВт * 2190 час * 2,81 руб. = 615,39 руб.
Ст 2. = 0,02 кВт * 2190 час * 2,81 руб. = 123,08 руб.
Экономия электроэнергии: 219 кВт – 43,8 кВт = 175 кВт
Затраты с учётом стоимости лампочек :с энергосберегающей лампочкой экономия составила 492,3 руб.

VII. Энергосбережение – одна из приоритетных задач. Это связано с дефицитом основных энергоресурсов, возрастающей стоимостью их добычи, а также с экологическими проблемами.

23 ноября 2009 года президент Российской Федерации Д.А.Медведев подписал федеральный закон № 262-Ф3 «Об энергосбережении и о повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты РФ»

Что проходит в нашей школе по энергосбережению?

– В нашем лицее используются энергосберегающие люминесцентные лампы. На классных часах проводятся краткий инструктаж по энергосбережению. Нагревательные приборы используются рационально.

Возможности энергосбережения в школе (лицее)

  • Основные возможности энергосбережения зависящие от нас, учеников – это экономия электроэнергии и тепла
  • Пользоваться электрическим светом, только по необходимости
  • В кабинетах не «гонять» компьютер с утра до вечера
  • Сохранять тепло помогает оклейка и утепление окон.
  • Следить, чтобы двери и окна были плотно закрыты
  • Открыть жалюзи в кабинетах иначе лампочки в кабинетах горят целый день
  • В коридорах горит свет во время уроков

Возможности энергосбережения в своём доме

  • Заменить лампы накаливания на современные энергосберегающие лампы
  • Выключать неиспользуемые приборы из сети (телевизор, видеомагнитофон, музыкальный центр)
  • Стирать в стиральной машине при полной загрузки и правильно выбирать режим стирки
  • Своевременно удалять из электрочайника накипь
  • Не пересушивать бельё это даёт экономию при глажке
  • Чаще менять мешки для сбора пыли в пылесосе
  • Ставить холодильник в самое прохладное место на кухне
  • Использовать светлые шторы, обои
  • Чаще мыть окна, на подоконники ставить небольшое количество цветов
  • Не закрывать плотными шторами батареи отопления

VIII. Закрепление изученного материала

Обсудить решение нескольких задач:

  1. Спираль электрической плиты укоротили. Как измениться количество выделяемой в ней теплоты, если плитку включить в тоже напряжение.
  2. Какое количество теплоты выделится в течении часа в проводнике сопротивление 10 Ом при силе тока в 2 А?
  3. Определите количество теплоты которое дает электроприбор мощностью 2 кВт за 10 мин работы.

IX. Домашнее задание

§ 53, 54 учебника, вопросы к параграфу.
Выполнить задание из упр. 27

Приведите примеры использования теплового действия тока в быту технике

Тепловое действие электрического тока

Еще в девятнадцатом веке опыты по изучению проводимости свидетельствовали, что ток, проходящий по нагрузке, нагревает ее. Исследования показали, что нагревается не только нагрузка, но и проводники.

Рис. 1. Тепловое действие электрического тока.

Данный факт легко объясним, если вспомнить, что электрический ток – это перемещение зарядов в веществе нагрузки. При движении заряды взаимодействуют с ионами кристаллической решетки, и отдают им часть энергии, которая и переходит в тепло.

Где используется тепловое действие электрического тока в электроутюгах

Утюг, как известно, эго приспособление для глаженья белья. Он нагревается электрическим током. При движении по поверхности, которую нужно прогладить, ее нагревают, нагретый утюг устраняет складки.
Работа утюга с электрическим нагревом основана на выделении тепловой энергии при прохождении электрического тока через нагревательный элемент. Он расположен вблизи подошвы утюга. Температура нагревательного элемента сообщается подошве утюга, которая также нагревается. Нагревательный элемент — это металлический проводник с большим электрическим сопротивлением. А выделение тепла в проводнике тем больше, чем выше его сопротивление. На этом принципе основана работа всех электронагревательных приборов — устройств, в которых электрическая энергия, то есть энергия электрического тока, превращается в тепловую. К ним относятся, например, электрочайники, электроплиты, грили, тостеры и др.

Нагревания подошвы утюга с давних времен добивались разными способами. Первые упоминания об этих устройствах появились в XIV в. В это время утюги нагревались при помощи углей, засыпанных в нижнюю часть устройства. По бокам таких утюгов располагались маленькие отверстия, которые давали возможность попадать внутрь воздуху, необходимому для разгорания топлива. Затем появился спиртовой утюг, работавший на основе этого горючего вещества. Для того чтобы прибор нагрелся до температуры глажения, его было необходимо предварительно поджечь.

Читайте так же:
Чем отличается автоматический выключатель от теплового реле

Закон Джоуля-Ленца

Поскольку разность потенциалов (напряжение) на нагрузке равна работе, которую совершит единичный заряд, двигаясь по нагрузке, то для вычисления работы тока, необходимо напряжение умножить на заряд, прошедший через нагрузку. Заряд же равен произведению тока, проходящего по нагрузке, на время прохождения. Таким образом:

Детальным изучением теплового действия электрического тока в середине XIXв занимались независимо Д.Джоуль (Великобритания) и Э.Ленц (Россия).

Рис. 2. Джоуль и Ленц.

Было выяснено, что если нагрузка неподвижна, то вся работа электрического тока в этой нагрузке перейдет в тепло:

Как правило, напряжение на элементах электрической цепи различно, а ток в ней общий. Поэтому для определения теплового действия удобнее выразить напряжение через ток, учитывая сопротивление:

То есть, количество тепла, образующееся в нагрузке, равно произведению значения тока в квадрате, сопротивления и времени. Этот вывод носит название Закона Джоуля-Ленца.

Иногда ток нагрузки неизвестен, но известно ее сопротивление и подводимое напряжение. В этом случае удобнее выразить ток через известные величины:

и, подставив в формулу выше, получаем:

Из данной формулы можно видеть интересный факт – если в нагревательной плите сгорит часть спирали, и мы просто исключим сгоревшие места, то сопротивление спирали уменьшится, а поскольку напряжение сети останется прежним, то тепло, выделяемое плитой, возрастет. Мощность плитки увеличится.

Закон Джоуля-Ленца: определение, формулы

Мы ежедневно пользуемся электронагревательными приборами, не задумываясь, откуда берётся тепло. Разумеется, вы знаете, что тепловую энергию вырабатывает электричество. Но как это происходит, а тем более, как оценить количество выделяемого тепла, знают не все. На данный вопрос отвечает закон Джоуля-Ленца, обнародованный в позапрошлом столетии.

В 1841 году усилия английского физика Джоуля, а в 1842 г. исследования русского учёного Ленца увенчались открытием закона, применение которого позволяет количественно оценить результаты теплового действия электрического тока [ 1 ]. С тех пор изобретено множество приборов, в основе которых лежит тепловое действие тока. Некоторые из них, изображены на рис. 1.

Рис. 1. Тепловые приборы

Использование теплового действия электричества

Тепловое действие электрического тока находит широкое применение, в первую очередь, в нагревательных приборах.

Еще одним важным направлением использования теплового действия являются плавкие предохранители. Если необходимо отключить электрическую цепь при превышение допустимого тока, то в цепь можно включить плавкий предохранитель.

Рис. 3. Устройство плавкого предохранителя.

Это небольшая колба из негорючего материала, внутри которой проходит плавкая проволочка или лента, сопротивление которой рассчитано так, чтобы при превышении предельного тока она расплавилась, тем самым разорвав электрическую цепь.

Использование теплового действия электрического тока в устройстве теплиц и инкубаторов

Электрический ток
Использование теплового действия электрического тока в устройстве теплиц и инкубаторов.

2. Тепловое действие электрического тока. Закон Джоуля-Ленца.

3. Использование теплового действия электрического тока в устройстве теплиц.

4. Использование теплового действия электрического тока в устройстве инкубаторов.

Современный мир уже немыслимо представить без электричества. Электрический ток используется человеком повсеместно. Бытовые электроприборы прочно заняли свое место в жилище человека, в промышленности, на транспорте и различных учреждениях тоже нельзя обойтись без использования электричества.

Однако сельские жители, особенно пожилого возраста по-прежнему продолжают относиться осторожно к использованию электрического тока.

Цель доклада: Показать, как можно использовать электрический ток для нужд сельского хозяйства.

Подобрать литературу по теме доклада

Анализ и обобщение источников литературы

Выступление с докладом перед аудиторией.

Тепловое действие электрического тока. Закон Джоуля-Ленца.

При прохождении электрического тока по проводнику в результате столкновений свободных электронов с его атомами и ионами проводник нагревается. Количество тепла, выделяемого в проводнике при прохождении электрического тока, определяется законом Джоуля — Ленца. Его формулируют следующим образом. Количество выделенного тепла Q равно произведению квадрата силы тока I2, сопротивления проводника R и времени t прохождения тока через проводник:

Количество тепла, выделяющегося в проводе, пропорционально объему провода и приращению температуры, а скорость отдачи тепла в окружающее пространство пропорциональна разности температур провода и окружающей среды.

В первое время после включения цепи разность температур провода и окружающей среды мала. Только небольшая часть тепла, выделяемого током, рассеивается в окружающую среду, а большая часть тепла остается в проводе и идет на его нагревание. Этим объясняется быстрый рост температуры провода в начальной стадии нагрева.

По мере увеличения температуры провода растет разность температур провода и окружающей среды, увеличивается количество тепла, отдаваемое проводом. В связи с этим рост температуры провода все более замедляется. Наконец, при некоторой температуре устанавливается тепловое равновесие: за одинаковое время количество теплоты выделяющегося в проводе становится равным количеству теплоты выделяющемуся во внешнюю среду.

§ 14. Тепловое действие тока

Выделение тепла при прохождении электрического тока.

Читайте так же:
Тепловое действие тока опыт кратко

При прохождении электрического тока по проводнику в результате столкновений свободных электронов с его атомами и ионами проводник нагревается.

Количество тепла, выделяемого в проводнике при прохождении электрического тока, определяется законом Ленца — Джоуля. Его формулируют следующим образом. Количество выделенного тепла Q равно произведению квадрата силы тока I2, сопротивления проводника R и времени t прохождения тока через проводник:

Q = I2Rt (34)

Если в этой формуле силу тока брать в амперах, сопротивление в омах, а время в секундах, то получим количество выделенного тепла в джоулях. Из сравнения формул (29) и (34) следует, что количество выделенного тепла равно количеству электрической энергии, полученной данным проводником при прохождении по нему тока.

Допустимая сила и плотность тока.

Превращение электрической энергии в тепловую нашло широкое применение в технике. Оно происходит, например, в различных производственных и бытовых электронагревательных приборах (электрических печах, электроплитах, электрических паяльниках и пр.), в электрических лампах накаливания, аппаратах для электрической сварки и пр.

Однако во многих электрических устройствах, например в электрических машинах и аппаратах, электрических проводах и т. д., превращение электрической энергии в тепло вредно, так как это тепло не только не используется, а наоборот, ухудшает работу этих машин и аппаратов, а в некоторых случаях может вызвать повреждения и аварии.

Каждый проводник в зависимости от условий, в которых он находится, может пропускать, не перегреваясь, ток силой, не превышающей некоторое допустимое значение. Для определения токовой нагрузки проводов часто пользуются понятием допустимой плотности тока J (сила тока I, приходящаяся на 1 мм2 площади s поперечного сечения проводника):

J = I/s (35)

Допустимая плотность тока зависит от материала провода (медь или алюминий), вида применяемой изоляции, условий охлаждения, площади поперечного сечения и пр. Например, допустимая плотность тока в проводах обмоток электрических машин не должна превышать 3—6 А/мм2, в нити осветительной электрической лампы — 15 А/мм2.

В проводах силовых и осветительных сетей плотность тока может быть различной в зависимости от площади поперечного сечения провода и его изоляции. Например, для медных проводов с резиновой изоляцией и площадью поперечного сечения 4 мм2 допускается плотность тока 10,2 А/мм2, а 50 мм2 — только 4,3 А/мм2; для неизолированных проводов тех же площадей сечения — 12,5 и 5,6 А/мм2.

Уменьшение допустимой плотности тока при увеличении площади поперечного сечения провода объясняется тем, что в проводах с большей площадью сечения отвод тепла от внутренних слоев затруднен, так как сами они окружены нагретыми слоями. Для неизолированных проводов допускается большая температура нагрева, чем для изолированных.

Превышение допустимого значения силы тока в проводнике может вызвать чрезмерное повышение температуры, в результате этого изоляция проводов электродвигателей, генераторов и электрических сетей обугливается и даже горит, что может привести к короткому замыканию и пожару. Неизолированные же провода могут при высокой температуре расплавиться и оборваться.

Для того чтобы предотвратить недопустимое увеличение силы тока, во всех электрических установках должны приниматься меры для автоматического отключения от источников электрической энергии тех приемников или участков цепи, в которых имеет место перегрузка или короткое замыкание.

Для этой цели в технике широко используют плавкие предохранители, автоматические выключатели и другие устройства.

Нагрев в переходном сопротивлении.

Повышенный нагрев проводника, как следует из закона Ленца — Джоуля, может происходить г не только вследствие прохождения по нему тока большой силы, но и вследствие повышения сопротивления проводника. Поэтому для надежной работы электрических установок большое значение имеет значение сопротивления в месте соединения отдельных проводников.

При неплотном электрическом контакте и плохом соединении проводников (рис. 32) электрическое сопротивление в этих местах (так называемое переходное сопротивление электрического контакта) сильно возрастает, и здесь происходит усиленное выделение тепла.

В результате место неплотного соединения проводников будет представлять собой опасность в пожарном отношении, а значительный нагрев может привести к полному выгоранию плохо соединенных проводников. Во избежание этого при соединении проводов на э. п. с. и тепловозах концы их тщательно зачищают, облуживают и впаивают в кабельные наконечники, ко-

Рис. 32. Схемы выделения тепла и возникновения искрения при неплотном электрическом контакте

торые надежно прикрепляют болтами к зажимам электрических машин и аппаратов. Специальные меры принимают и для уменьшения переходного сопротивления между контактами электрических аппаратов, осуществляющих включение и выключение тока.

Примеры действия электрического тока

Как известно, увидеть движущиеся заряды (электроны, ионы) мы не можем, так как они очень малы. Но как тогда можно обнаружить электрический ток?

ДЕЙСТВИЯ ЭЛЕКТРИЧЕСКОГО ТОКА

При протекании электрического тока могут происходить различные явления, которые называются действиями электрического тока.

ТЕПЛОВОЕ ДЕЙСТВИЕ ТОКА

Электрический ток, протекая по проводам, вызывает их нагревание.

Присоединим к полюсам источника тока железную или никелевую проволоку. Замкнув ключ, можно наблюдать, как проволока провиснет, т. е. она нагреется и удлинится. Таким образом её можно даже раскалить докрасна.

Именно на тепловом действии тока основана работа различных бытовых нагревательных приборов, таких, как электрический чайник, электрические плитки, утюги и др. Нить лампочки раскаляется и начинает светиться.

Читайте так же:
Конспект количество теплоты выделяемое проводником с током

ХИМИЧЕСКОЕ ДЕЙСТВИЕ ТОКА

Как показывает опыт, на электродах, опущенных в раствор электролитов, происходит выделение чистого вещества. Этот процесс называется электролизом. Например, пропуская ток через раствор медного купороса, можно выделить чистую медь.

Электрический ток в металлах не вызывает никаких химических изменений. Химическое действие тока происходит только в растворах и расплавах электролитов.

МАГНИТНОЕ ДЕЙСТВИЕ ТОКА

На большой железный гвоздь намотаем тонкий изолированный провод. Концы провода через ключ соединим с источником тока.

Если замкнуть ключ, то гвоздь намагнитится и будет притягивать к себе гвоздики, железные стружки, опилки. С прекращением тока в проводнике магнитные свойства гвоздя исчезнут.

Явление взаимодействия катушки с током и магнита лежит в основе работы прибора, называемого гальванометром. С помощью гальванометра можно судить о наличии тока и его направлении. Стрелка прибора связана с подвижной катушкой. Когда в катушке появляется электрический ток, стрелка отклоняется.

МЕХАНИЧЕСКОЕ ДЕЙСТВИЕ ТОКА

Металлическую рамку соединим с источником тока. При пропускании электрического тока через рамку она остаётся висеть неподвижно. Но если эту рамку поместить между полюсами подковообразного магнита, то она начнёт поворачиваться.

В этом опыте мы наблюдали механическое действие электрического тока, которое заключается в том, что электрический ток при протекании по рамке, помещённой между полюсами магнита, вызывает её вращение.

Доклад на тему: использование теплового действия электрического тока в устройстве теплиц и инкубаторов. кратко ​

Ответы

Использование теплового действия электрического тока в устройстве теплиц и инкубаторов.

Современный мир уже немыслимо представить без электричества. Электрический ток используется человеком повсеместно. Бытовые электроприборы прочно заняли свое место в жилище человека, в промышленности, на транспорте и различных учреждениях тоже нельзя обойтись без использования электричества.

Однако сельские жители, особенно пожилого возраста по-прежнему продолжают относиться осторожно к использованию электрического тока.

Цель доклада: Показать, как можно использовать электрический ток для нужд сельского хозяйства.

АнАлиз и обобщение источников литературы

ВысТупление с докладом перед аудиторией.

Тепловое действие электрического тока. Закон Джоуля-Ленца.

При прохождении электрического тока по проводнику в результате столкновений свободных электронов с его атомами и ионами проводник нагревается.

Количество тепла, выделяемого в проводнике при прохождении электрического тока, определяется законом Джоуля — Ленца. Его формулируют следующим образом. Количество выделенного тепла Q равно произведению квадрата силы тока I2, сопротивления проводника R и времени t прохождения тока через проводник:

Количество тепла, выделяющегося в проводе, пропорционально объему провода и приращению температуры, а скорость отдачи тепла в окружающее пространство пропорциональна разности температур провода и окружающей среды.

В первое время после включения цепи разность температур провода и окружающей среды мала. Только небольшая часть тепла, выделяемого током, рассеивается в окружающую среду, а большая часть тепла остается в проводе и идет на его нагревание. Этим объясняется быстрый рост температуры провода в начальной стадии нагрева.

По мере увеличения температуры провода растет разность температур провода и окружающей среды, увеличивается количество тепла, отдаваемое проводом. В связи с этим рост температуры провода все более замедляется. Наконец, при некоторой температуре устанавливается тепловое равновесие: за одинаковое время количество теплоты выделяющегося в проводе становится равным количеству теплоты выделяющемуся во внешнюю среду.

При дальнейшем прохождении неизменяющегося тока температура провода не изменяется и называется установившейся температурой.

В зависимости от вида овощей оптимальная температура в теплице должна составлять днем 16-25°С, а ночью на 4-8°С меньше, чем днем. Высокая температура по ночам и в пасмурные дни провоцирует слишком быстрый рост зеленой массы растения, что приводит к снижению урожайности и качества плодов.

Наиболее простыми в использовании являются переносные тепловентиляторы (обогреватели). Некоторые типы электрических нагревателей для теплиц могут работать в режиме циркуляции: нагнетать воздух, не грея его. Эта функция полезна для улучшения микроклимата теплицы в жаркую погоду. Тепловентиляторы рекомендуется устанавливать под стеллажами с высаженными растениями.

Вторым из существующих обогрева теплиц, — кабельный обогрев грунта теплиц. Для обогрева грунта теплиц используется кабель с изоляцией из полипропилена, бронёй в виде оплётки из стальных оцинкованных проволок и оболочкой из изолирующего материала, диаметр наружный 6 мм, радиус изгиба 35 мм.

ДлЯ обеспечения оптимальной температуры Схемапочвы требуется мощность 75-100 Вт/м2. Мощность нагревательного кабеля или ленты не должна превышать 20 Вт/м. Для регулирования температуры нужно использовать терморегуляторы, так как оптимальная температура почвы для растений меняется от 15 до 250С, а для торфяных горшочков и грядок с рассадой — 300С.

Для теплиц подойдет и водяное отопление, работающее от электричества. Водяное отопление наиболее выгодно для обогрева теплиц. В бойлере нагревается вода, а затем циркуляционным насосом перекачивается в пластиковые трубы. Трубы водяного отопления можно проложить между растениями или вдоль внешних стенок теплицы.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector