Sfera-perm.ru

Сфера Пермь
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Расчет стабилизатора тока транзисторе

Расчет стабилизатора тока транзисторе

Ключевой режим работы характеризуется тем, что транзистор находится в одном из двух состояний: в полностью открытом (режим насыщения), или полностью закрытом (состояние отсечки).

Рассмотрим пример, где в качестве нагрузки выступает контактор типа КНЕ030 на напряжение 27В с катушкой сопротивлением 150 Ом. Индуктивным характером катушки в данном примере пренебрежем, считая, что реле будет включено раз и надолго.

Рассчитываем ток коллектора:

Ik =( UccU кэнас)/ R н , где

Ik –ток коллектора

Ucc — напряжение питания (27В)

U кэнас- напряжение насыщения биполярного транзистора (типично от 0.2 до 0.8В, хотя и может прилично различаться для разных транзисторов), в нашем случае примем 0.4В

R н- сопротивление нагрузки (150 Ом)

Ik = (27-0.4)/150 = 0.18 A = 180мА

На практике из соображений надежности элементы всегда необходимо выбирать с запасом. Возьмем коэффициент 1.5

Таким образом, нужен транзистор с допустимым током коллектора не менее 1.5*0.18=0.27А и максимальным напряжением коллектор-эмиттер не менее 1.5*27=40В.

Открываем справочник по биполярным транзисторам . По заданным параметрам подходит КТ815А ( Ik макс=1.5А U кэ=40В)

Следующим этапом рассчитываем ток базы, который нужно создать, чтобы обеспечить ток коллектора 0.18А.

Как известно, ток коллектора связан с током базы соотношением

Ik = I б* h 21э,

где h 21э – статический коэффициент передачи тока.

При отсутствии дополнительных данных можно взять табличное гарантированное минимальное значение для КТ815А (40). Но для КТ815 есть график зависимости h 21э от тока эмиттера. В нашем случае ток эмиттера 180мА, этому значению соответствует h 21э=60. Разница невелика, но для чистоты эксперимента возьмем графические данные.

Для расчета базового резистора R 1 смотрим второй график, где приведена зависимость напряжения насыщения база-эмиттер ( U бэнас) от тока коллектора. При токе коллектора 180мА напряжение насыщения базы будет 0.78В (При отсутствии такого графика можно использовать допущение, что ВАХ перехода база-эмиттер подобна ВАХ диода и в диапазоне рабочих токов напряжение база-эмиттер находится в пределах 0.6-0.8 В)

Следовательно, сопротивление резистора R 1 должно быть равно:

R 1=( U вх- U бэнас)/ I б = (5-0.78)/0.003 = 1407 Ом = 1.407 кОм.

Из стандартного ряда сопротивлений выбираем ближайшее в меньшую сторону (1.3 кОм)

Если к базе подключен шунтирующий резистор (вводится для более быстрого выключения транзистора или для повышения помехоустойчивости) нужно учитывать, что часть входного тока уйдет в этот резистор, и тогда формула примет вид:

R 1= ( U вх- U бэнас)/( I б+ IR 2) = ( U вх- U бэнас)/( I б+ U бэнас/ R 2)

Так, если R 2=1 кОм, то

R 1= (5-0.78)/(0.003+0.78/1000) = 1116 Ом = 1.1 кОм

Рассчитываем потери мощности на транзисторе:

P = Ik * U кэнас

U кэнас берем из графика: при 180мА оно составляет 0.07В

P = 0.07*0.18= 0.013 Вт

Мощность смешная, радиатора не потребуется.

Электроника

учебно-справочное пособие

  • Главная
  • Теория
  • Практика
  • Справочники
  • Схемы
  • Arduino
  • Тесты

Расчет усилительного каскада с ОЭ

Простая схема смещения транзистора (рис. 1) зависит от коэффициента бета, а он в свою очередь зависит от температуры. В результате на выходе схемы могут появиться искажения усиливаемого сигнала.

Рис. 1 — Простая схема смещения транзистора

Чтобы такого не произошло, в эту схему добавляют еще парочку резисторов и в результате получается схема с 4-мя резисторами (рис. 2).

Рис. 2 — Усовершенствованная схема смещения транзистора

Резистор между базой и эмиттером назовем Rбэ, а резистор, соединенный с эмиттером, назовем Rэ. Предположим, что по цепи +UпитRкколлекторэмиттерRэземля проходит электрический ток, с силой в несколько миллиампер (если не учитывать ток базы, так как Iэ = Iк + Iб ) (рис. 3).

Следовательно, на каждом резисторе у нас будет падать какое-то напряжение. Его величина будет зависеть от силы тока в цепи, а также от номинала самого резистора.

Упростим схему, заменив транзитор эквивалентным резистором Rкэ (рис. 4) . Rкэ — это сопротивление перехода коллектор-эмиттер. Сопротивление Rкэ в основном зависит от базового тока.

Рис. 4 — Делитель напряжения

В результате, у нас получается простой делитель напряжения (рис. 4), где

Мы видим, что на эмиттере уже НЕ БУДЕТ напряжения в ноль вольт, как это было в прошлой схеме. Напряжение на эмиттере уже будет равняться падению напряжения на резисторе Rэ .

А чему равняется падение напряжения на Rэ ? Вспоминаем закон Ома и высчитываем:

Как мы видим из формулы, напряжение на эмиттере будет равняться произведению силы тока в цепи на номинал сопротивления резистора Rэ .

Какую же функцию выполняют резисторы Rб и Rбэ ?

Именно эти два резистора представляют из себя опять же простой делитель напряжения. Они задают определенное напряжение на базу, которое будет меняться, если только поменяется +Uпит , что бывает крайне редко. В остальных случаях напряжение на базе будет стоять мертво.

Вернемся к Rэ. Оказывается, он выполняет самую главную роль в этой схеме (рис. 3).

Предположим, у нас из-за нагрева транзистора начинает увеличиваться ток в этой цепи.

Теперь разберем поэтапно, что происходит после этого.

а) если увеличивается ток в этой цепи, то следовательно увеличивается и падение напряжения на резисторе Rэ .

б) падение напряжения на резисторе Rэ — это и есть напряжение на эмиттере Uэ. Следовательно, из-за увеличения силы тока в цепи Uэ стало чуток больше.

в) на базе у нас фиксированное напряжение Uб , образованное делителем из резисторов Rб и Rбэ

г) напряжение между базой эмиттером высчитывается по формуле Uбэ = Uб — Uэ . Следовательно, Uбэ станет меньше, так как Uэ увеличилось из-за увеличенной силы тока, которая увеличилась из-за нагрева транзистора.

д) Раз Uбэ уменьшилось, значит и сила тока Iб , проходящая через базу-эмиттер тоже уменьшилась.

Следовательно, при уменьшении базового тока, уменьшается и коллекторный ток. Режим работы схемы приходит в изначальное состояние. В результате схема у нас получилась с отрицательной обратной связью, в роли которой выступил резистор Rэ . Забегая вперед, скажу, что Отрицательная Обратная Связь (ООС) стабилизирует схему, а положительная наоборот приводит к полному хаосу, но тоже иногда используется в электронике.

Пример:

Рассчитать каскад на биполярном транзисторе КТ315Б с коэффициентом усиления равным KU = 10, Uпит = 12 В.

Рис. 6 — Схема для расчета

1) Находим из справочника максимально допустимую рассеиваемую мощность, которую транзистор может рассеять на себе в окружающую среду. Для моего транзистора это значение равняется 150 мВт. Мы не будем выжимать из нашего транзистора все соки, поэтому уменьшим нашу рассеиваемую мощность, умножив на коэффициент 0,8:

2) Определим напряжение на Uкэ . Оно должно равняться половине напряжения Uпит.

3) Определяем ток коллектора:

4) Так как половина напряжения упала на коллекторе-эмиттере Uкэ , то еще половина должна упасть на резисторах. В нашем случае 6 В падают на резисторах Rк и Rэ . То есть получаем:

Rк + Rэ = (Uпит / 2) / Iк = 6 / 20х10 -3 = 300 Ом.

то составляем небольшое уравнение:

5) Определим ток базы Iбазы по формуле:

Коэффициент β мы замеряли в прошлом примере. Он у нас получился около 140.

Рис. 7 — Измерение коэффициента β

6) Ток делителя напряжения Iдел , образованный резисторами Rб и Rбэ , в основном выбирают так, чтобы он был в 10 раз больше, чем базовый ток Iб :

7) Находим напряжение на эмиттере по формуле:

8) Определяем напряжение на базе:

Давайте возьмем среднее значение падения напряжения на базе-эмиттер Uбэ = 0,66 В. Как вы помните — это падение напряжения на P-N переходе.

Именно такое напряжение будет теперь находиться у нас на базе.

9) Зная напряжение на базе (оно равняется 1,2 В), мы можем рассчитать номинал самих резисторов (рис. 8).

Из формулы закона Ома высчитываем значение каждого резистора.

Для удобства пусть у нас падение напряжения на Rб называется U1 , а падение напряжения на Rбэ будет U2 .

Используя закон Ома, находим значение сопротивлений каждого резистора.

Берем из ближайшего ряда 8,2 кОм

Берем из ряда 820 Ом.

Номиналы резисторов указываем на схеме (рис. 9).

Рис. 9 — Схема с номиналами резисторов

Собираем схему на макетной плате и проверяем ее (рис. 10).

Рис. 10 — Схема собранная на макетной плате

Цепляем щупы осциллографа на вход и выход схемы. Подаём синусоидальный сигнал с помощью генератора частоты (рис. 11).

Рис. 11 — Осциллограммы синусоидальных сигналов на входе и выходе усилительного каскада
Красная осциллограмма — входной сигнал, желтая осциллограмма — выходной сигнал.

Сигнал усилился почти в 10 раз, как и предполагалось, так как наш коэффициент усиления был равен 10. Усиленный сигнал по схеме с ОЭ находится в противофазе, то есть сдвинут на 180 градусов.

Подадим еще треугольный сигнал (рис. 12).

Рис. 12 — Осциллограммы треугольных сигналов на входе и выходе усилительного каскада с четыремя резисторами

Если присмотреться, то есть небольшие искажения. Если вспомнить осциллограмму схемы с двумя резисторами, то можно увидеть существенную разницу в усилении треугольного сигнала (рис. 13).

Рис. 13 — Осциллограммы треугольных сигналов на входе и выходе усилительного каскада с двумя резисторами

Выходное сопротивление схеме усилителя с ОЭ и с 4-мя резисторами в основном определяется номиналом резистора Rк . В данном случае это 270 Ом. Входное сопротивление Rвх примерно равняется:

В данном случае Rвх = 27·140=3780 Ом.

Схема с ОЭ во времена пика популярности биполярных транзисторов использовалась как самая ходовая. И этому есть свое объяснение:

Во-первых, эта схема усиливает как по току, так и по напряжению, а следовательно и по мощности, так как P=UI.

Во-вторых, ее входное сопротивление намного больше, чем выходное, что делает эту схему отличной малопотребляемой нагрузкой и отличным источником сигнала для следующих за ней нагрузок.

Ну а теперь немного минусов:

1) схема потребляет большой ток, пока находится в режиме ожидания. Это значит, питать ее долго от батареек не имеет смысла.

2) она уже морально устарела в наш век микроэлектроники. Для того, чтобы собрать усилитель, проще купить готовую микросхему и сделать на ее базе мощный и простой усилок.

Источники

Электроника © ЦДЮТТ • Марсель Арасланов • 2019

Биполярный транзистор.

Биполярный транзистор — электронный полупроводниковый прибор, один из типов транзисторов, предназначенный для усиления, генерирования и преобразования электрических сигналов. Транзистор называется биполярный, поскольку в работе прибора одновременно участвуют два типа носителей заряда – электроны и дырки. Этим он отличается от униполярного (полевого) транзистора, в работе которого участвует только один тип носителей заряда.

Принцип работы обоих типов транзисторов похож на работу водяного крана, который регулирует водяной поток, только через транзистор проходит поток электронов. У биполярных транзисторов через прибор проходят два тока — основной «большой» ток, и управляющий «маленький» ток. Мощность основного тока зависит от мощности управляющего. У полевых транзисторов через прибор проходит только один ток, мощность которого зависит от электромагнитного поля. В данной статье рассмотрим подробнее работу биполярного транзистора.

Устройство биполярного транзистора.

Биполярный транзистор состоит из трех слоев полупроводника и двух PN-переходов. Различают PNP и NPN транзисторы по типу чередования дырочной и электронной проводимостей. Это похоже на два диода, соединенных лицом к лицу или наоборот.

У биполярного транзистора три контакта (электрода). Контакт, выходящий из центрального слоя, называется база (base). Крайние электроды носят названия коллектор и эмиттер (collector и emitter). Прослойка базы очень тонкая относительно коллектора и эмиттера. В дополнение к этому, области полупроводников по краям транзистора несимметричны. Слой полупроводника со стороны коллектора немного толще, чем со стороны эмиттера. Это необходимо для правильной работы транзистора.

Работа биполярного транзистора.

Рассмотрим физические процессы, происходящие во время работы биполярного транзистора. Для примера возьмем модель NPN. Принцип работы транзистора PNP аналогичен, только полярность напряжения между коллектором и эмиттером будет противоположной.

Как уже говорилось в статье о типах проводимости в полупроводниках, в веществе P-типа находятся положительно заряженные ионы — дырки. Вещество N-типа насыщено отрицательно заряженными электронами. В транзисторе концентрация электронов в области N значительно превышает концентрацию дырок в области P.

Подключим источник напряжения между коллектором и эмиттером VКЭ (VCE). Под его действием, электроны из верхней N части начнут притягиваться к плюсу и собираться возле коллектора. Однако ток не сможет идти, потому что электрическое поле источника напряжения не достигает эмиттера. Этому мешает толстая прослойка полупроводника коллектора плюс прослойка полупроводника базы.

Теперь подключим напряжение между базой и эмиттером VBE, но значительно ниже чем VCE (для кремниевых транзисторов минимальное необходимое VBE — 0.6V). Поскольку прослойка P очень тонкая, плюс источника напряжения подключенного к базе, сможет «дотянуться» своим электрическим полем до N области эмиттера. Под его действием электроны направятся к базе. Часть из них начнет заполнять находящиеся там дырки (рекомбинировать). Другая часть не найдет себе свободную дырку, потому что концентрация дырок в базе гораздо ниже концентрации электронов в эмиттере.

В результате центральный слой базы обогащается свободными электронами. Большинство из них направится в сторону коллектора, поскольку там напряжение намного выше. Так же этому способствует очень маленькая толщина центрального слоя. Какая-то часть электронов, хоть гораздо меньшая, все равно потечет в сторону плюса базы.

В итоге мы получаем два тока: маленький — от базы к эмиттеру IBE, и большой — от коллектора к эмиттеру ICE.

Если увеличить напряжение на базе, то в прослойке P соберется еще больше электронов. В результате немного усилится ток базы, и значительно усилится ток коллектора. Таким образом, при небольшом изменении тока базы I B , сильно меняется ток коллектора I С. Так и происходит усиление сигнала в биполярном транзисторе. Cоотношение тока коллектора IС к току базы IB называется коэффициентом усиления по току. Обозначается β, hfe или h21e, в зависимости от специфики расчетов, проводимых с транзистором.

Простейший усилитель на биполярном транзисторе

Рассмотрим детальнее принцип усиления сигнала в электрической плоскости на примере схемы. Заранее оговорюсь, что такая схема не совсем правильная. Никто не подключает источник постоянного напряжения напрямую к источнику переменного. Но в данном случае, так будет проще и нагляднее для понимания самого механизма усиления с помощью биполярного транзистора. Так же, сама техника расчетов в приведенном ниже примере носит несколько упрощенный характер.

1.Описание основных элементов цепи

Итак, допустим в нашем распоряжении транзистор с коэффициентом усиления 200 (β = 200). Со стороны коллектора подключим относительно мощный источник питания в 20V, за счет энергии которого будет происходить усиление. Со стороны базы транзистора подсоединим слабый источник питания в 2V. К нему последовательно подсоединим источник переменного напряжения в форме синуса, с амплитудой колебаний в 0.1V. Это будет сигнал, который нужно усилить. Резистор Rb возле базы необходим для того, чтобы ограничить ток, идущий от источника сигнала, обычно обладающего слабой мощностью.

2. Расчет входного тока базы Ib

Теперь посчитаем ток базы Ib. Поскольку мы имеем дело с переменным напряжением, нужно посчитать два значения тока – при максимальном напряжении (Vmax) и минимальном (Vmin). Назовем эти значения тока соответственно — Ibmax и Ibmin.

Также, для того чтобы посчитать ток базы, необходимо знать напряжение база-эмиттер VBE. Между базой и эмиттером располагается один PN-переход. Получается, что ток базы «встречает» на своем пути полупроводниковый диод. Напряжение, при котором полупроводниковый диод начинает проводить — около 0.6V. Не будем вдаваться в подробности вольт-амперных характеристик диода, и для простоты расчетов возьмем приближенную модель, согласно которой напряжение на проводящем ток диоде всегда 0.6V. Значит, напряжение между базой и эмиттером VBE = 0.6V. А поскольку эмиттер подключен к земле (VE = 0), то напряжение от базы до земли тоже 0.6V (VB = 0.6V).

Посчитаем Ibmax и Ibmin с помощью закона Ома:

2. Расчет выходного тока коллектора IС

Теперь, зная коэффициент усиления (β = 200), можно с легкостью посчитать максимальное и минимальное значения тока коллектора ( Icmax и Icmin).

3. Расчет выходного напряжения Vout

Осталось посчитать напряжение на выходе нашего усилителя Vout. В данной цепи — это напряжение на коллекторе VC.

Через резистор Rc течет ток коллектора, который мы уже посчитали. Осталось подставить значения:

4. Анализ результатов

Как видно из результатов, VCmax получился меньше чем VCmin. Это произошло из-за того, что напряжение на резисторе VRc отнимается от напряжения питания VCC. Однако в большинстве случаев это не имеет значения, поскольку нас интересует переменная составляющая сигнала – амплитуда, которая увеличилась c 0.1V до 1V. Частота и синусоидальная форма сигнала не изменились. Конечно же, соотношение Vout/Vin в десять раз — далеко на самый лучший показатель для усилителя, однако для иллюстрации процесса усиления вполне подойдет.

Итак, подытожим принцип работы усилителя на биполярном транзисторе. Через базу течет ток Ib, несущий в себе постоянную и переменную составляющие. Постоянная составляющая нужна для того чтобы PN-переход между базой и эмиттером начал проводить – «открылся». Переменная составляющая – это, собственно, сам сигнал (полезная информация). Сила тока коллектор-эмиттер внутри транзистора – это результат умножения тока базы на коэффициент усиления β. В свою очередь, напряжение на резисторе Rc над коллектором – результат умножения усиленного тока коллектора на значение резистора.

Таким образом, на вывод Vout поступает сигнал с увеличенной амплитудой колебаний, но с сохранившейся формой и частотой. Важно подчеркнуть, что энергию для усиления транзистор берет у источника питания VCC. Если напряжения питания будет недостаточно, транзистор не сможет полноценно работать, и выходной сигнал может получится с искажениями.

Режимы работы биполярного транзистора

В соответствии уровням напряжения на электродах транзистора, различают четыре режима его работы:

  • Режим отсечки (cut off mode).
  • Активный режим (active mode).
  • Режим насыщения (saturation mode).
  • Инверсный ражим (reverse mode ).

Режим отсечки

Когда напряжение база-эмиттер ниже, чем 0.6V — 0.7V, PN-переход между базой и эмиттером закрыт. В таком состоянии у транзистора отсутствует ток базы. В результате тока коллектора тоже не будет, поскольку в базе нет свободных электронов, готовых двигаться в сторону напряжения на коллекторе. Получается, что транзистор как бы заперт, и говорят, что он находится в режиме отсечки.

Активный режим

В активном режиме напряжение на базе достаточное, для того чтобы PN-переход между базой и эмиттером открылся. В этом состоянии у транзистора присутствуют токи базы и коллектора. Ток коллектора равняется току базы, умноженном на коэффициент усиления. Т.е активным режимом называют нормальный рабочий режим транзистора, который используют для усиления.

Режим насыщения

Иногда ток базы может оказаться слишком большим. В результате мощности питания просто не хватит для обеспечения такой величины тока коллектора, которая бы соответствовала коэффициенту усиления транзистора. В режиме насыщения ток коллектора будет максимальным, который может обеспечить источник питания, и не будет зависеть от тока базы. В таком состоянии транзистор не способен усиливать сигнал, поскольку ток коллектора не реагирует на изменения тока базы.

В режиме насыщения проводимость транзистора максимальна, и он больше подходит для функции переключателя (ключа) в состоянии «включен». Аналогично, в режиме отсечки проводимость транзистора минимальна, и это соответствует переключателю в состоянии «выключен».

Инверсный режим

В данном режиме коллектор и эмиттер меняются ролями: коллекторный PN-переход смещен в прямом направлении, а эмиттерный – в обратном. В результате ток из базы течет в коллектор. Область полупроводника коллектора несимметрична эмиттеру, и коэффициент усиления в инверсном режиме получается ниже, чем в нормальном активном режиме. Конструкция транзистора выполнена таким образом, чтобы он максимально эффективно работал в активном режиме. Поэтому в инверсном режиме транзистор практически не используют.

Основные параметры биполярного транзистора.

Коэффициент усиления по току – соотношение тока коллектора IС к току базы IB. Обозначается β, hfe или h21e, в зависимости от специфики расчетов, проводимых с транзисторов.

β — величина постоянная для одного транзистора, и зависит от физического строения прибора. Высокий коэффициент усиления исчисляется в сотнях единиц, низкий — в десятках. Для двух отдельных транзисторов одного типа, даже если во время производства они были “соседями по конвейеру”, β может немного отличаться. Эта характеристика биполярного транзистора является, пожалуй, самой важной. Если другими параметрами прибора довольно часто можно пренебречь в расчетах, то коэффициентом усиления по току практически невозможно.

Входное сопротивление – сопротивление в транзисторе, которое «встречает» ток базы. Обозначается Rin (Rвх). Чем оно больше — тем лучше для усилительных характеристик прибора, поскольку со стороны базы обычно находиться источник слабого сигнала, у которого нужно потреблять как можно меньше тока. Идеальный вариант – это когда входное сопротивление равняется бесконечность.

Rвх для среднестатистического биполярного транзистора составляет несколько сотен КΩ (килоом). Здесь биполярный транзистор очень сильно проигрывает полевому транзистору, где входное сопротивление доходит до сотен ГΩ (гигаом).

Выходная проводимость — проводимость транзистора между коллектором и эмиттером. Чем больше выходная проводимость, тем больше тока коллектор-эмиттер сможет проходить через транзистор при меньшей мощности.

Также с увеличением выходной проводимости (или уменьшением выходного сопротивления) увеличивается максимальная нагрузка, которую может выдержать усилитель при незначительных потерях общего коэффициента усиления. Например, если транзистор с низкой выходной проводимостью усиливает сигнал в 100 раз без нагрузки, то при подсоединении нагрузки в 1 КΩ, он уже будет усиливать всего в 50 раз. У транзистора, с таким же коэффициентом усиления, но с большей выходной проводимостью, падение усиления будет меньше. Идеальный вариант – это когда выходная проводимость равняется бесконечность (или выходное сопротивление Rout = 0 (Rвых = 0)).

Частотная характеристика – зависимость коэффициента усиления транзистора от частоты входящего сигнала. С повышением частоты, способность транзистора усиливать сигнал постепенно падает. Причиной тому являются паразитные емкости, образовавшиеся в PN-переходах. На изменения входного сигнала в базе транзистор реагирует не мгновенно, а с определенным замедлением, обусловленным затратой времени на наполнение зарядом этих емкостей. Поэтому, при очень высоких частотах, транзистор просто не успевает среагировать и полностью усилить сигнал.

Расчет радиатора для КРЕНки

Во время своей работы интегральные стабилизаторы напряжения, особенно линейные, выделяют в окружающую среду определенное количество тепла. Если заранее не позаботиться об их охлаждении, то они могут выйти из строя, из-за перегрева рабочей структуры кристалла.

Радиатор для стабилизатора напряжения

Для обеспечения высокой точности и стабильности напряжения питания в современных электронных устройствах широкое распространение получили интегральные стабилизаторы напряжения (ИМС) серии хх78хх (отечественный аналог КР142) которые производят многие зарубежные фирмы. Параметры некоторых ИМС стабилизаторов напряжения согласно данным из [1], приведены в табл.1.

При мощности нагрузки более 1 Вт, ИМС линейного стабилизатора напряжения необходимо эксплуатировать с теплоотводом, к которому они крепятся болтовым соединением. Промышленность выпускает различные виды радиаторов на любой вкус: пластинчатые, ребристые, штыревые, игольчатые и др. Выбор теплоотвода сводится к определению его конструкции и размеров, которые обеспечат теплостойкость.

Охладитель в форме пластины конечно очень прост в изготовлении, имеет сравнительно небольшую стоимость. Площадь его поверхности равна сумме площадей двух сторон. Для изготовления пластинчатых охладителей следует использовать алюминиевые пластины с толщиной 1.5…3 мм. Такие радиаторы целесообразно применять при небольших мощностях рассеивания, т.к. иначе такой радиатор получается очень габаритным.

Для повышения эффективности теплоотвода и уменьшения габаритов целесообразно использовать ребристые и штыревые охладители. Ребристый радиатор обычно бывает или цельнолитой, либо фрезерованный, а также может быть с одно или двухсторонним оребрением. Двухстороннее оребрение позволяет увеличить площадь поверхности. Самым эффективным является штыревой (игольчатый) теплоотвод, который не требует строгой пространственной ориентации в электронном устройстве.

При минимальном объеме такой радиатор имеет эффективную максимальную площадь рассеивания. Площадь поверхности у такого радиатора равна сумме площадей каждого штырька плюс площадь основания. Материалом для радиаторов обычно служит алюминий и его сплавы. Лучшей эффективностью отвода тепла обладают охладители, выполненные из меди, однако вес и стоимость у таких радиаторов больше, чем у алюминиевых теплоотводов.

Пример расчета

Расчет будем производить на примере стабилизатора напряжения LM7805 (аналог КР142ЕН5В). Для расчета нужны следующие данные:

  1. Максимальное напряжение питания, подаваемое на стабилизатор Umax = 15В; напряжение на выходе стабилизатора Uвыx= 5В;
  2. Максимальный ток нагрузки Iн = 1А;
  3. Допустимую температуру радиатора примем равной Т = 50°C.

Максимальное падение напряжения ΔU на стабилизаторе напряжения определяется согласно формуле (1):

ΔU = Umax — Uвых = 15 — 5 = 10В (1)

Тогда мощность, рассеиваемая на стабилизаторе, составит:

Ррас = ΔU*Iн= 10*1 = 10 Вт; (2)

Из справочных данных известно, что стабилизаторы серии КР142 могут рассеивать мощность без теплоотвода до 1 Вт. В нашем же случае это условие не выполняется, так как Ррас = 10 Вт, это означает, что нужно проводить расчет далее. Существует такой параметр как тепловое сопротивление Q, к сожалению, в справочной литературе приводиться крайне редко.

Показывает он на сколько °С нагревается радиоэлемент, если в нем выделяется мощность в 1 Вт. Однако, его можно определить двумя способами: или по формуле, или исходя из типа корпуса интегрального стабилизатора напряжения. Т. к. ИМС серии КР142 выпускаются в корпусе ТО220, то из [2] следует, что тепловое сопротивление этого стабилизатора напряжения будет 2…5 °С / Вт.

Мы можем рассчитать тепловое сопротивление Q, помня, что Т = 50°С

Q = T / Pрас = 50 / 10 = 5°С / Вт (3)

Полученный результат совпадает с цифрами, приведенными в [2].

Площадь радиатора S определяется согласно формуле:

S = (T/Q)² = (50 /5)²= 100 см² (4)

Из приведенного расчета можно сделать небольшой вывод, что на 1 Вт рассеиваемой мощности стабилизатора напряжения необходим радиатор площадью 10 см². Чтобы теплоотвод занял как можно меньше места на плате проектируемого устройства, целесообразно применить ребристый охладитель, эскиз которого показан на рисунке.

Определение площади ребристого радиатор

Определим площадь теплоотвода на примере все того же ребристого радиатора, но не на основании предельно допустимых параметров работы интегрального стабилизатора напряжения, а на основании габаритных размеров теплоотвода.

На рисунке условно показаны размеры необходимые для данного расчета. Из [2] воспользуемся формулами для расчета площади радиатора:

S = [2*(H-d) + D] * (n-1) * L+ L* [В + 2 * Н + (d* n)] (5)

S = 2 * L (B = H) + 2 * В * Н (6)

где n количество ребер радиатора.

Производить расчет ребристого радиатора можно по одной из двух формул (5) или (6). При расчете по формуле (6) задаемся условием, что в процессе охлаждения участвует в основном наружная поверхность теплоотвода так называемый теплообмен излучением, и зависит в основном от коэффициента излучения (степени черноты) материала радиатора. При расчете по формуле (5) в процессе охлаждения участвует как наружная, так и внутренняя поверхность (межреберное пространство) это так называемый конвективный способ передачи тепла.

Однако не стоит забывать о том, что не все ребра охладителя могут одинаково отводить выделяемое тепло, так как часть их поверхности, может соприкасаться с другими деталями и узлами находящиеся на плате. Этот факт следует также учитывать, при разработке какого-либо электронного устройства с применением стабилизатора напряжения.

Хотелось бы также отметить, что при естественном воздушном теплоотводе примерно 70% тепла отводиться конвекцией, а 30% приходиться на излучение. Следует также помнить, что при монтаже стабилизатора напряжения, теплоотвод установленный на нем будет иметь электрическую связь со средним выводом микросхемы серии хх78хх (КР142).

голоса
Рейтинг статьи
Читайте так же:
Ен18а стабилизатор тока схема включения
Ссылка на основную публикацию
Adblock
detector