Sfera-perm.ru

Сфера Пермь
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Простой стабилизатор тока для зарядки аккумуляторов

Простое зарядное устройство для аккумулятора своими руками

Зарядное устройство неотъемлемый атрибут любого владельца авто. Аккумуляторная батарея (сокращенно АКБ) имеет тенденцию разряжаться с течением времени. После долгой стоянки автомобиля в гараже, особенно в зимнее время, ключом зажигания заставить машину работать бывает невозможно. Наличие зарядного устройства поможет решить проблему.

Дорогие устройства с большим количеством дополнительных опций можно купить в магазине. Однако некоторые автолюбители, имеющие общие понятия в электротехнике и владеющие паяльником реализуют зарядное устройство своими руками. Самодельная конструкция отличается несложной схемой, и как раз в силу простоты обладает большей надежностью. Кроме этого экономия на финансовых затратах добавляет мотивации в получении результата.

Схема простейшего зарядного устройства

По принципу работы зарядники могут быть трансформаторными и импульсными (электронными). Если импульсные сложны для самостоятельной сборки, имеют дорогостоящие комплектующие, то другие устройства имеют в основе лишь два компонента — трансформатор и выпрямитель. Принцип работы этих зарядников состоит в преобразовании напряжения бытовой сети 220 В, в напряжение необходимое для зарядки, например, 12 вольтовых АКБ, установленных на легковом автомобиле.

Простое трансформаторное зарядное устройство для аккумулятора изготовить своими руками можно по следующим вариантам.

Схема с одним выпрямляющим диодом

Диод устанавливается после трансформатора. Выпрямленный с его помощью переменный ток представляет пульсации с резким нарастанием до максимальной величины. Схема и график пульсирующего тока представлены на изображении:

Схема с диодным мостом

С помощью диодного моста выпрямленный ток будет оставаться пульсирующим, но резкого биения происходить не будет. Эта схема наиболее часто применяется для самодеятельного творчества. Ниже по тексту в качестве примера на ее основе приведен вариант практической реализации своими руками зарядного устройства.

Схема с диодным мостом и сглаживающим конденсатором

На выходе получается постоянный ток, что является лучшим вариантом для зарядки аккумуляторной батареи. Несмотря, что зарядка будет процессом достаточно долгим, эксплуатационный срок службы батареи останется достаточно большим.

Как сделать своими руками

Сделать зарядное устройство с диодным мостом самому по вышеприведенной схеме не составит особого труда. Достаточно руководствоваться следующими рекомендациями.

Подготовить необходимые комплектующие и инструменты

  • Трансформатор. Если зарядник изготавливается для АКБ легкового автомобиля «Жигули» емкостью 60 А×ч, то автомобильные характеристики трансформатора должны иметь следующие параметры:
    • мощность не менее 150 Вт, чтобы обеспечить зарядный ток величиной 6 А (оптимальная зарядка по времени с обеспечением стойкости пластин аккумулятора достигается на режиме 10 % от емкости АКБ);
    • напряжение на вторичной обмотке должно быть выше 12 Вольт для нормального прохождения тока через разряженную батарею — в районе 14.4 Вольт.

    Трансформатор с такими характеристиками можно найти в старых электроламповых телевизорах или потертых временем музыкальных центрах, вышедших из строя микроволновых печах и источниках бесперебойного питания. В конце концов в специализированных магазинах можно купить такое устройство за небольшие деньги.

    Старые трансформаторы используют в обмотках алюминиевый провод в отличие от медного он сильнее нагревается. Поэтому возникает необходимость борьбы с перегревом таких трансформаторов. Кулер от неисправного источника питания компьютера поможет решить проблему:

  • Выпрямитель. Для диодного моста следует использовать достаточно мощные диоды, работающие на токе около 10 А. Такими параметрами обладают электронные элементы типа Д246. Возможно найти и другие подобные варианты. Наличие меток с указанием полярности диодов облегчает сборку моста.
  • При работе мощные диоды выделяют большое количество тепла. Монтировать диодный мостик рекомендуется на радиаторе охлаждения, например, имеющихся в старых запасных частях от системного блока компьютера. В случае невозможности найти промышленный радиатор охлаждения можно воспользоваться алюминиевым профилем, как показано на изображении:
  • Для подключения зарядника к бытовой сети необходима сетевая вилка.
  • Монтаж лучше производить на текстолитовой пластине, подходящей по габаритам.
  • Необходим кусок нихромовой проволоки.
  • Амперметр, вольтметр.
  • Диэлектрическая бумага, изолента.
  • Кроме слесарного, основным рабочим инструментом будет паяльник с материалами необходимыми в технологии пайки.

Порядок выполнения работ

  1. Так как трансформатор для самодельного зарядника обычно берется с другого электротехнического устройства, то весьма редко напряжение и сила тока на вторичной обмотке соответствуют требованиям. Следует в таком случае полностью удалить вторичную обмотку, оставив первичную. Выполнить расчеты из школьного курса физики для определения количества витков и диаметра проволоки, подходящими для необходимого напряжения и силы тока. Аккуратно уложить проволоку виток к витку не составит труда. Не стоит забывать делать изоляцию (диэлектрической бумагой, изолентой) между слоями. Концы проволоки вывести и закрепить на корпусе. Для уменьшения вибраций следует пропитать обмотку парафином.
  2. На текстолитовой пластине разместить радиатор охлаждения с установленными на нем четырьмя диодами Д246. Собрать диодный мостик с выводами к клеммам аккумулятора. Зачистить концы выводов.
  3. В разрыв между диодным мостом и аккумулятором подключается амперметр и устанавливается кусок нихромовой проволоки. Один конец ее жестко закрепляется, а второй остается подвижным, чтобы была возможность менять длину нихромовой проволоки и варьировать величиной сопротивления. Такой самодельный переменный резистор позволит производить регулирование тока подаваемого на аккумулятор.
  4. Все соединения необходимо заизолировать изолентой. Готовое устройство для обеспечения электробезопасности следует поместить в подходящий корпус.
  5. Амперметр будет отслеживать процесс зарядки. Когда показания силы тока на нем будут в районе 1 А, можно сделать вывод, что аккумулятор зарядился.
  6. Контролировать зарядку можно и с помощью вольтметра, однако при подключенном зарядном устройстве его показания будут немного выше.

Рекомендации по применению самодельного зарядника

Простота конструкции требует определенных правил во время эксплуатации, чтобы не оказывать негативного влияния на функциональные качества самой батареи. Так, например, амперметр и вольтметр нужны для контроля процесса зарядки — автоматического выключения по окончании зарядки происходить не будет. Следует соблюдать и некоторые другие правила.

  • Отсутствие защиты от переполюсовки требует при подключении строго соблюдать полярность. Неправильно подсоединенные клеммы могут вывести АКБ из строя. Важно: плюс зарядника всегда соединять с плюсовым контактом батареи, минус — с отрицательным контактом.
  • Категорически запрещается проверять величину зарядки коротким замыканием плюсовой клеммы на минусовую, или как принято говорить в обиходе «на искру». Вывести из строя диодный мостик зарядного устройства таким способом достаточно легко.
  • Строго соблюдать правила электробезопасности при подключении зарядника к клеммам батареек: он не должен быть включен в сеть 220 В. Соответственно во время отсоединения зарядника от аккумулятора его предварительно следует отключить.
  • Самодельное зарядное устройство для АКБ не оборудовано устройствами защиты. Поэтому следует во время работы следить за ним, возможно возникновение самых неожиданных ситуаций. Правила выполнения процесса зарядки АКБ в вентилируемом помещении, вдали от горючих материалов должны неукоснительно соблюдаться. Пробки на аккумуляторе обязательно выкрутить, для предотвращения его взрыва от закипающего электролита.
  • Собирая зарядник следует помнить о наличии на входе 220 В и тщательно соблюдать схему сборки. Это сохранит здоровье и при включении не выведет из строя аккумуляторную батарею на вашем автомобиле.

Видео по теме

Обзор схем зарядных устройств автомобильных аккумуляторов

Соблюдение режима эксплуатации аккумуляторных батарей, и в частности режима зарядки, гарантирует их безотказную работу в течение всего срока службы. Зарядку аккумуляторных батарей производят током, значение которого можно определить по формуле

I=0,1Q

где I — средний зарядный ток, А., а Q — паспортная электрическая емкость аккумуляторной батареи, А-ч.

Зарядный ток, рекомендуемый в инструкции по эксплуатации аккумуляторной батареи, обеспечивает оптимальное протекание электрохимических процессов в ней и нормальную работу в течение длительного времени.

Классическая схема зарядного устройства для автомобильного аккумулятора состоит из понижающего трансформатора, выпрямителя и регулятора тока зарядки. В качестве регуляторов тока применяют проволочные реостаты (см. Рис. 1) и транзисторные стабилизаторы тока.

В обоих случаях на этих элементах выделяется значительная тепловая мощность, что снижает КПД зарядного устройства и увеличивает вероятность выхода его из строя.

Для регулировки зарядного тока можно использовать магазин конденсаторов, включаемых последовательно с первичной (сетевой) обмоткой трансформатора и выполняющих функцию реактивных сопротивлений, гасящих избыточное напряжение сети. Упрощенная схема такого устройства приведена на рис. 2.

В этой схеме тепловая (активная) мощность выделяется лишь на диодах VD1-VD4 выпрямительного моста и трансформаторе, поэтому нагрев устройства незначителен.

Недостатком схемы на Рис. 2 является необходимость обеспечить напряжение на вторичной обмотке трансформатора в полтора раза большее, чем номинальное напряжение нагрузки (

Схема зарядного устройства, обеспечивающее зарядку 12-вольтовых аккумуляторных батарей током до 15 А, причем ток зарядки можно изменять от 1 до 15 А ступенями через 1 А, приведена на Рис. 3.

Предусмотрена возможность автоматического выключения устройства, когда батарея полностью зарядится. Оно не боится кратковременных коротких замыканий в цепи нагрузки и обрывов в ней.

Выключателями Q1 — Q4 можно подключать различные комбинации конденсаторов и тем самым регулировать ток зарядки.

Переменным резистором R4 устанавливают порог срабатывания реле К2, которое должно срабатывать при напряжении на зажимах аккумулятора, равном напряжению полностью заряженной батареи.

На Рис. 4 представлена схема еще одного зарядного устройства, в котором ток зарядки плавно регулируется от нуля до максимального значения.

Изменение тока в нагрузке достигается регулированием угла открывания тринистора VS1. Узел регулирования выполнен на однопереходном транзисторе VT1. Значение этого тока определяется положением движка переменного резистора R5. Максимальный ток заряда аккумулятора 10А , устанавливается амперметром. Защита устройства обеспечена со стороны сети и нагрузки предохранителями F1 и F2.

Вариант печатной платы зарядного устройства (см. рис. 4), размером 60х75 мм приведен на следующем рисунке:

В схеме на рис. 4 вторичная обмотка трансформатора должна быть рассчитана на ток, втрое больший зарядного тока, и соответственно мощность трансформатора также должна быть втрое больше мощности, потребляемой аккумулятором.

Названное обстоятельство является существенным недостатком зарядных устройств с регулятором тока тринистором (тиристором).

Диоды выпрямительного мостика VD1-VD4 и тиристор VS1 необходимо установить на радиаторы.

Значительно снизить потери мощности в тринисторе, а следовательно, повысить КПД зарядного устройства можно, если регулирующий элемент перенести из цепи вторичной обмотки трансформатора в цепь первичной обмотки. Схема такого устройства показана на рис. 5.

В схеме на Рис. 5 регулирующий узел аналогичен примененному в предыдущем варианте устройства. Тринистор VS1 включен в диагональ выпрямительного моста VD1 — VD4. Поскольку ток первичной обмотки трансформатора примерно в 10 раз меньше тока заряда, на диодах VD1-VD4 и тринисторе VS1 выделяется относительно небольшая тепловая мощность и они не требуют установки на радиаторы. Кроме того, применение тринистора в цепи первичной обмотки трансформатора позволило несколько улучшить форму кривой зарядного тока и снизить значение коэффициента формы кривой тока (что также приводит к повышению КПД зарядного устройства). К недостатку этого зарядного устройства следует отнести гальваническую связь с сетью элементов узла регулирования, что необходимо учитывать при разработке конструктивного исполнения (например, использовать переменный резистор с пластмассовой осью).

Вариант печатной платы зарядного устройства на рисенке 5, размером 60х75 мм приведен на рисунке ниже:

Диоды выпрямительного мостика VD5-VD8 необходимо установить на радиаторы.

В зарядном устройстве на рисунке 5 диодный мостик VD1-VD4 типа КЦ402 или КЦ405 с буквами А, Б, В. Стабилитрон VD3 типа КС518, КС522, КС524, или составленный из двух одинаковых стабилитронов с суммарным напряжением стабилизации 16÷24 вольта (КС482, Д808, КС510 и др.). Транзистор VT1 однопереходной, типа КТ117А, Б, В, Г. Диодный мостик VD5-VD8 составлен из диодов, с рабочим током не менее 10 ампер (Д242÷Д247 и др.). Диоды устанавливаются на радиаторы площадью не менее 200 кв.см, а если радиаторы будут сильно нагреваться, в корпус зарядного устройства можно установить вентилятор для обдува.

Микросхема LM317 в ЗУ для аккумуляторной батареи шуруповёрта

Предлагаемый вариант зарядного устройства на микросхеме LM317 предназначен в первую очередь для зарядки аккумуляторных батарей (АКБ) в шуруповёртах. Но это устройство можно с успехом применить для зарядки аккумуляторных батарей и отдельных аккумуляторов других типов, а также в лабораторном источнике питания как стабилизатор напряжения с защитой по току.

Шуруповёрты с автономным питанием от Ni-Cd АКБ широко распространены и пользуются популярностью у радиолюбителей. При интенсивной эксплуатации батарея сравнительно быстро выходит из строя. Для их замены очень часто используют Li-ion аккумуляторы. Это потребует доработки штатного или приобретения нового ЗУ.

В случае доработки предлагается изготовить отдельный зарядный модуль, схема которого показана на рис. 1. Он обеспечивает зарядку АКБ по алгоритму CC-CV (Constant Current — Constant Voltage, постоянный ток — постоянное напряжение). Модуль собран на стабилизаторе DA1 LM317T (отечественный аналог КР142ЕН12А) с регулируемым выходным напряжением по типовой схеме [1] и позволяет заряжать при подключённом к разъёму Х1 внешнем БП от одного до пяти Li-ion аккумуляторов, соединённых последовательно в батарею, или одну гелевую свинцовокислотную батарею с номинальным напряжением 6 или 12 В. С этой целью установка конечного напряжения и зарядного тока осуществляется с помощью подстроечных резисторов. Значение конечного напряжения зарядки (от 4,2 до 21 В) устанавливают подстроечным резистором R8. Из [1] (Figure 13) взят и узел ограничения тока зарядки. Он собран на транзисторе VT2 и резисторах R4-R6. Датчики тока собраны на резисторах R2 и R5. Подстроечным резистором R4 устанавливают начальный ток зарядки в интервале от 0,6 до 1,5 А. Стабильность начального тока до достижения конечного напряжения зарядки обеспечена наличием ООС через узел ограничения. При увеличении тока зарядки транзистор VT2 уменьшит своё внутреннее сопротивление, что приведёт к снижению напряжения на АКБ и восстановлению тока до установленного значения, и наоборот.

Рис. 1. Схема зарядного модуля

По достижении на АКБ конечного напряжения закончится первая фаза процесса зарядки стабильным током. Батарея (или аккумулятор) к этому моменту «наберёт» ёмкость, равную 80. 90 % от максимальной, и начнётся вторая фаза — дозарядка спадающим током при стабильном напряжении. Для контроля над её окончанием на транзисторе VT1, резисторах R1-R3 и светодиоде HL1 собран узел индикации. Работа подобного узла автором была описана ранее в [2]. По мере снижения тока зарядки напряжение на резисторе R2 уменьшается. Когда напряжение на резисторе упадёт примерно до 0,5 В, транзистор VT1 закроется и светодиод погаснет. Это служит сигналом того, что АКБ зарядилась полностью. Сопротивление резистора R2 определяют из формулы R2 (Ом) = 0,5/Iк, где Iк — конечный ток зарядки в амперах.

Для Li-ion аккумуляторов Iк= 0,1·Iнач, где Iнач — начальный ток зарядки. Кислотным АКБ ток Iнач в амперах устанавливают численно равным 0,1. 0,2·С, где С — ёмкость батареи в ампер·часах. При этом ток Iк можно установить численно равным от 0,01·С до 0,02·С.

Транзисторы VT1, VT2 — любые кремниевые маломощные структуры n-p-n. Диод VD1 — выпрямительный с максимально допустимым током 3 А. Светодиод — маломощный сверхъ-яркий любого свечения. Конденсатор С1 — керамический или плёночный, С2 — оксидный К50-35 или импортный. Резистор R5 — проволочный SQP-5, подстроечные R4, R8 — многооборотные, например, проволочные СП5-2 или импортные 3296P (Bourns), осталь-ные — МЛТ, С2-23. Резистор R4 можно заменить другим с номинальным сопротивлением до 500 Ом. При применении резистора R8 сопротивлением 4,7 или 5 кОм сопротивления резисторов R7 и R9 должны быть 750 и 330 Ом соответственно. Гнездо питания — DS-313 1,3×4,2 мм угловое на плату.

Чертежи печатной платы и расположение элементов приведены на рис. 2. Вариант чертежа печатной платы с подстроечными резисторами СП5-3 (с проволочными гибкими выводами) приведён на рис. 3. Конструктивное исполнение модуля с установленными подстроечными резисторами СП5-3 показано на рис. 4. Микросхема LM317T закреплена винтом М3 на ребристом теплоотводе размерами 15x60x60 мм через пластмассовую втулку и теплопроводящую электроизоляционную подложку. Выводы микросхемы (предварительно изогнутые) вставлены в предусмотренные на плате отверстия со стороны установки элементов и припаяны к контактным площадкам. В теплоотводе сделаны четыре резьбовых отверстия М3, в которые закручены четыре стойки PCSN-10 высотой 10 мм. Плата крепится на стойках четырьмя винтами М3. Сторона платы с установленными элементами обращена к теплоотводу. Для снятия платы без отпайки выводов микросхемы, напротив винта её крепления в плате, предусмотрено отверстие.

Рис. 2. Чертеж печатной платы и расположение элементов

Рис. 3. Вариант чертежа печатной платы с подстроечными резисторами СП5-3

Рис. 4. Конструктивное исполнение модуля с установленными подстроечными резисторами СП5-3

Подойдут теплоотводы от процессоров Pentium III со старых материнских плат с гнездом Socket 370, но их конструкцию придётся доработать. Потребуется изготовить алюминиевую пластину-переходник размерами 60×60 мм толщиной 1,5 мм. Поверхности пластины и теплоотвода с нанесённой между ними теплопроводящей пастой скрепляют двумя винтами впотай. Затем, как описано выше, к этому «бутерброду» с помощью стоек и винтов крепят плату.

Блок питания (БП), преобразующий переменное напряжение сети в постоянное, должен иметь минимальное выходное напряжение на 5 В больше конечного напряжения зарядки при токе нагрузки не менее начального тока зарядки. Если не подойдёт БП штатного ЗУ, следует применить другой подходящий, в том числе и лабораторный БП.

При значительно большей разнице указанных напряжений и нагреве теплоотвода более 60 о С на нём следует установить вентилятор обдува. Подойдёт кулер от теплоотвода процессора материнских плат. На рис. 1 подключение вентилятора M1 выделено красным цветом. На печатной плате для резистора R10 и выводов вентилятора предусмотрены печатные проводники и контактные площадки.

Для исключения перегрузки по току стабилизатора LM317T при первом включении движок резистора R4 до монтажа на плату необходимо установить в среднее положение с помощью омметра.

Налаживание модуля производят в следующей последовательности. Сначала его без нагрузки подключают к БП и движком резистора R8 устанавливают на выходе требуемое конечное напряжение зарядки. Для свинцово-кислотных АКБ его значение указано на боковой стороне корпуса, в прилагаемой инструкции или на сайте изготовителя. Далее к выходу модуля через амперметр подключают, соблюдая полярность, частично или полностью разряженную АКБ и движком резистора R4 устанавливают необходимый начальный ток зарядки. При установке вентилятора напряжение его питания 9. 12 В изменяют подборкой резистора R10.

Модуль зарядки может найти применение в лабораторном БП (особенно, если он нестабилизированный) как источник питания с регулируемым стабилизированным выходным напряжением и защитой от перегрузки по току. При этом минимальное выходное напряжение может быть равным 1,25 В, для этого взамен резистора R7 следует установить проволочную перемычку, подстроечные резисторы заменить переменными и снабдить их соответствующими шкалами.

1. LM117/LM217/LM317 1,2V to 37V Adjustable voltage regulator. — URL: http://lib.chipdip.ru/159/DOC000159840.pdf (24.06.19).

2. Глибин С. Зарядное устройство для малогабаритного Li-ion аккумулятора. — Радио, 2014, № 2, с. 53, 54.

Автор: С. Глибин, г. Москва

Мнения читателей

Нет комментариев. Ваш комментарий будет первый.

Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу:

Схема и принцип работы зарядного устройства на тиристорах

Зарядное устройство на тиристорах для аккумулятора обладает рядом преимуществ. Такая схема позволяет безопасно зарядить любую автомобильную батарею на 12 В, без риска закипания.

Дополнительно приборы данного типа подходят для восстановления свинцово-кислотных батарей. Достигается это за счет контроля параметров зарядки, а значит возможности имитировать восстановительные режимы.

Импульсное зарядное устройство на КУ202Н

Распространенная, простая, но очень эффективная схема тиристорного фазоимпульсного регулятора мощности уже давно используется для заряда свинцовых аккумуляторов.

Узнай время зарядки своего аккумулятора

Зарядка на КУ202Н позволяет:

Схема тиристорного зарядного устройства на КУ202Н

  • добиться зарядного тока до 10А;
  • выдавать импульсный ток, благоприятно влияющий на продолжительность жизни АКБ;
  • собрать устройство своими руками из недорогих деталей, доступных в любом магазине радиоэлектроники;
  • повторить принципиальную схему даже новичку, поверхностно знакомому с теорией.

Условно, представленную схему можно разделить на:

  • Понижающее устройство – трансформатор с двумя обмотками, превращающий 220В из сети в 18-22В, необходимых для работы прибора.
  • Выпрямительный блок, преобразующий импульсное напряжение в постоянно собирается из 4-х диодов или реализуется с помощью диодного моста.
  • Фильтры – электролитические конденсаторы, отсекающие переменные составляющие выходного тока.
  • Стабилизация осуществляется за счет стабилитронов.
  • Регулятор тока производится компонентом, строящимся на транзисторах, тиристорах и переменном сопротивлении.
  • Контроль выходных параметров реализуется с помощью амперметра и вольтметра.

Принцип работы

Схема зарядного устройства с тиристором

Цепь из транзисторов VT1 и VT2 контролирует электрод тиристора. Ток проходит через VD2, защищающий от возвратных импульсов. Оптимальный ток зарядки контролируется компонентом R5. В нашем случае, он должен быть равен 10% от емкости аккумулятора. Чтобы контролировать регулятор тока, данный параметр перед клеммами подключения необходимо установить амперметр.

Питание данной схемы осуществляется трансформатором с выходным напряжением от 18 до 22 В. Обязательно необходимо расположить диодный мост, а также управляющий тиристор на радиаторах, для отвода избытка тепла. Оптимальный размер радиатора должен превышать 100см2. При использовании диодов Д242-Д245, КД203- в обязательном порядке изолируйте их от корпуса устройства.

Данная схема зарядного устройства на тиристорах обязательно должна комплектоваться предохранителем для выходного напряжения. Его параметры подбираются согласно собственных нужд. Если вы не собираетесь использовать токи более 7 А, то предохранителя на 7.3 А будет вполне достаточно.

Особенности сборки и эксплуатации

Схема проверки теристора

Собранное по представленной схеме зарядное устройство в дальнейшем можно дополнять автоматическими защитными системами (от переполюсовки, короткого замыкания и др). Особенно полезным, в нашем случае будет установка системы отключения подачи тока при заряде батареи, что убережет ее от перезаряда и перегрева.

Другие защитные системы желательно комплектовать светодиодными индикаторами, сигнализирующими о коротких замыканиях и других проблемах.

Внимательно следите за выходным током, так как он может изменяться из-за колебаний в сети.

Как и аналогичные тиристорные фазоимпульсные регуляторы, собранное по представленной схеме зарядное устройство создает помехи радиоприему, поэтому желательно предусмотреть LC-фильтр для сети.

Тиристор КУ202Н можно заменить аналогичными КУ202В, КУ 202Г или КУ202Е. Также можно использовать и более производительные Т-160 или Т-250.

Тиристорное зарядное устройство своими руками

Для собственноручной сборки представленной схемы понадобится минимум времени и сил, вместе с невысокими затратами на компоненты. Большую часть составляющих можно легко заменить на аналоги. Часть деталей можно позаимствовать у вышедшего из строя электрооборудования. Перед использованием, компоненты следует проверить, благодаря этому собранное даже из б/у деталей зарядное устройство, будет работать сразу после сборки.

В отличие от представленных на рынке моделей, работоспособность собранного своими руками зарядного сохраняется в большем диапазоне. Вы можете зарядить автомобильный аккумулятор от -350С до 350С. Это и возможность регулировать выходной ток, давая батарее большой ампераж, позволяет за короткое время компенсировать батарее заряд, достаточный для поворота стартером мотора.

Тиристорные зарядные устройства имеют место в гаражах автолюбителей, благодаря их возможностям безопасно заряжать автомобильный аккумулятор. Принципиальная схема данного прибора позволяет собрать его самостоятельно, используя товары с радио рынка. Если знаний недостаточно, можно воспользоваться услугами радиолюбителей, которые за плату в разы меньшую, чем стоимость магазинного зарядного устройства, смогут собрать вам аппарат по предоставленной им схеме.

голоса
Рейтинг статьи
Читайте так же:
Дроссель как стабилизатор тока
Ссылка на основную публикацию
Adblock
detector