Sfera-perm.ru

Сфера Пермь
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Приведите пример использования тепловых действий тока ответ

§ 14. Тепловое действие тока

Выделение тепла при прохождении электрического тока.

При прохождении электрического тока по проводнику в результате столкновений свободных электронов с его атомами и ионами проводник нагревается.

Количество тепла, выделяемого в проводнике при прохождении электрического тока, определяется законом Ленца — Джоуля. Его формулируют следующим образом. Количество выделенного тепла Q равно произведению квадрата силы тока I 2 , сопротивления проводника R и времени t прохождения тока через проводник:

Q = I 2 Rt (34)

Если в этой формуле силу тока брать в амперах, сопротивление в омах, а время в секундах, то получим количество выделенного тепла в джоулях. Из сравнения формул (29) и (34) следует, что количество выделенного тепла равно количеству электрической энергии, полученной данным проводником при прохождении по нему тока.

Допустимая сила и плотность тока.

Превращение электрической энергии в тепловую нашло широкое применение в технике. Оно происходит, например, в различных производственных и бытовых электронагревательных приборах (электрических печах, электроплитах, электрических паяльниках и пр.), в электрических лампах накаливания, аппаратах для электрической сварки и пр.

Однако во многих электрических устройствах, например в электрических машинах и аппаратах, электрических проводах и т. д., превращение электрической энергии в тепло вредно, так как это тепло не только не используется, а наоборот, ухудшает работу этих машин и аппаратов, а в некоторых случаях может вызвать повреждения и аварии.

Каждый проводник в зависимости от условий, в которых он находится, может пропускать, не перегреваясь, ток силой, не превышающей некоторое допустимое значение. Для определения токовой нагрузки проводов часто пользуются понятием допустимой плотности тока J (сила тока I, приходящаяся на 1 мм 2 площади s поперечного сечения проводника):

J = I/s (35)

Допустимая плотность тока зависит от материала провода (медь
или алюминий), вида применяемой изоляции, условий охлаждения, площади поперечного сечения и пр. Например, допустимая плотность тока в проводах обмоток электрических машин не должна превышать 3—6 А/мм 2 , в нити осветительной электрической лампы — 15 А/мм 2 .

В проводах силовых и осветительных сетей плотность тока может быть различной в зависимости от площади поперечного сечения провода и его изоляции. Например, для медных проводов с резиновой изоляцией и площадью поперечного сечения 4 мм 2 допускается плотность тока 10,2 А/мм 2 , а 50 мм 2 — только 4,3 А/мм 2 ; для неизолированных проводов тех же площадей сечения — 12,5 и 5,6 А/мм 2 .

Уменьшение допустимой плотности тока при увеличении площади поперечного сечения провода объясняется тем, что в проводах с большей площадью сечения отвод тепла от внутренних слоев затруднен, так как сами они окружены нагретыми слоями. Для неизолированных проводов допускается большая температура нагрева, чем для изолированных.

Превышение допустимого значения силы тока в проводнике может вызвать чрезмерное повышение температуры, в результате этого изоляция проводов электродвигателей, генераторов и электрических сетей обугливается и даже горит, что может привести к короткому замыканию и пожару. Неизолированные же провода могут при высокой температуре расплавиться и оборваться.

Для того чтобы предотвратить недопустимое увеличение силы тока, во всех электрических установках должны приниматься меры для автоматического отключения от источников электрической энергии тех приемников или участков цепи, в которых имеет место перегрузка или короткое замыкание.

Для этой цели в технике широко используют плавкие предохранители, автоматические выключатели и другие устройства.

Нагрев в переходном сопротивлении.

Повышенный нагрев проводника, как следует из закона Ленца — Джоуля, может происходить г не только вследствие прохождения по нему тока большой силы, но и вследствие повышения сопротивления проводника. Поэтому для надежной работы электрических установок большое значение имеет значение сопротивления в месте соединения отдельных проводников.

При неплотном электрическом контакте и плохом соединении проводников (рис. 32) электрическое сопротивление в этих местах (так называемое переходное сопротивление электрического контакта) сильно возрастает, и здесь происходит усиленное выделение тепла.

Читайте так же:
Тепловое действие тока в домашних условиях

В результате место неплотного соединения проводников будет представлять собой опасность в пожарном отношении, а значительный нагрев может привести к полному выгоранию плохо соединенных проводников. Во избежание этого при соединении проводов на э. п. с. и тепловозах концы их тщательно зачищают, облуживают и впаивают в кабельные наконечники, ко-


Рис. 32. Схемы выделения тепла и возникновения искрения при неплотном электрическом контакте

торые надежно прикрепляют болтами к зажимам электрических машин и аппаратов. Специальные меры принимают и для уменьшения переходного сопротивления между контактами электрических аппаратов, осуществляющих включение и выключение тока.


12 примеров тепловой энергии в повседневной жизни

Тепловая энергия относится к энергии, которой обладает объект в результате движения частиц внутри объекта. Это внутренняя кинетическая энергия объекта, которая исходит от случайных движений молекул и атомов объекта.

В то время как молекулы и атомы, составляющие материю, постоянно движутся, когда объект нагревается, повышение температуры заставляет эти частицы двигаться быстрее и сталкиваться друг с другом. Чем быстрее движутся эти частицы, тем выше тепловая энергия объекта.

Она может быть записана математически как произведение постоянной Больцмана (k B) и абсолютной температуры (T).

Тепловая энергия = k B T

Термин «тепловая энергия» может также применяться к количеству передаваемого тепла или энергии, переносимой тепловым потоком.

Тепловая энергия (или термическая энергия) может передаваться от одного тела другому через три процесса —

  • Проводимость: это наиболее распространенная форма теплопередачи, которая происходит через физический контакт: передача внутренней энергии за счет микроскопических столкновений частиц и движения электронов внутри тела.
  • Конвекция: представляет собой передачу тепла из одной области в другую в результате движения жидкостей, например, жидкостей и газов.
  • Излучение — это передача энергии в виде частиц или волн через пространство или среду. Чем горячее объект, тем больше он будет излучать тепловой энергии.

Чтобы лучше объяснить это явление, мы собрали некоторые из лучших примеров тепловой энергии, которые вы видите в повседневной жизни.

12. Солнечная энергия

Тип теплопередачи: Излучение

Солнце — это почти идеальная сфера горячей плазмы, которая преобразует водород в гелий посредством миллиардов химических реакций, которые в конечном итоге производят интенсивное количество тепла.

Вместо того, чтобы находиться рядом с Солнцем, тепло излучается вдаль от звезды и в космос. Небольшая часть этой энергии (тепла) достигает Земли в виде света. В основном она содержит инфракрасный, видимый и ультрафиолетовый свет. Передача тепловой энергии таким образом называется тепловым излучением.

В то время как часть тепловой энергии проникает в атмосферу Земли и достигает земли, часть ее блокируется облаками или отражается от других объектов. Солнечный свет, достигающий поверхности Земли, нагревает ее.

По данным Университета Орегона, вся Земля получает в среднем 164 Ватта на квадратный метр в течение суток. Это означает, что вся планета получает 84 тераватта энергии.

11. Тающий лед

Тип теплопередачи: Конвекция

Тепловая энергия всегда течет из регионов с более высокой температурой в регионы с более низкой температурой. Например, когда вы добавляете к напитку кубики льда, тепло переходит из жидкости в кубики льда.

Температура жидкости падает по мере того, как тепло переходит от напитка к льду. Тепло продолжает перемещаться в самую холодную область напитка до тех пор, пока не достигнет равновесия. Потеря тепла приводит к падению температуры напитка.

10. Топливные элементы

Топливный элемент, который принимает водород и кислород в качестве входных данных

Теплопередача: зависит от типа топливного элемента

Топливные элементы — это электрохимические устройства, которые преобразуют химическую энергию топлива и окислителя в электрическую энергию. При работе топливного элемента значительная часть входной энергии используется для выработки электрической энергии, а оставшаяся часть преобразуется в тепловую энергию в зависимости от типа топливного элемента.

Читайте так же:
Тепловая пушка пусковые токи

Тепло, получаемое в ходе этого процесса, используется для повышения энергоэффективности. Теоретически топливные элементы являются гораздо более энергоэффективными, чем обычные процессы: если отработанное тепло улавливается в когенерационной схеме, эффективность может достигать 90%.

9. Геотермальная энергия

Тип теплопередачи: мантийная конвекция

Геотермальная энергия — это тепло, получаемое в недрах Земли. Оно содержится в жидкостях и породах под земной корой и может быть найдено глубоко в горячей расплавленной породе Земли — магме.

Она образуется в результате радиоактивного распада материалов и непрерывной потери тепла от формирования планеты. Температура и давление на границе ядра и мантии могут достигать более 4000°C и 139 ГПа, в результате чего некоторые породы расплавляются, а твердая мантия ведет себя пластически.

Это приводит к тому, что части мантии конвектируются вверх (так как расплавленная порода легче, чем окружающие твердые породы). Пар и/или вода переносят геотермальную энергию на поверхность планеты, откуда она может быть использована для охлаждения и обогрева, или может быть использована для производства чистого электричества.

8. Тепловая энергия в океане

Тип теплопередачи: Конвекция и Проводимость

На протяжении десятилетий океаны поглощали более 9/10 избыточного тепла атмосферы от выбросов парниковых газов. Согласно исследованию, океан нагревается со скоростью 0,5-1 ватт энергии на квадратный метр в течение последних десяти лет.

Океаны обладают невероятным потенциалом для хранения тепловой энергии. Поскольку их поверхности подвергаются воздействию прямых солнечных лучей в течение длительных периодов времени, существует огромная разница между температурами мелководных и глубоководных морских районов.

Эта разница температур может быть использована для запуска теплового двигателя и выработки электроэнергии. Этот тип преобразования энергии, известный как преобразование тепловой энергии океана, может работать непрерывно и может поддерживать различные побочные отрасли.

7. Солнечная плита

Тип теплопередачи: излучение и проводимость

Солнечная плита — это низкотехнологичное, недорогое устройство, использующее энергию прямых солнечных лучей для нагрева, приготовления или пастеризации напитков и других пищевых материалов. В солнечный день она может достигать температуры до 400°C.

Все солнечные плиты работают по трем основным принципам:

  • Концентрат солнечного света : устройство имеет зеркальную поверхность для концентрации солнечного света в небольшой зоне для приготовления пищи.
  • Преобразование световой энергии в тепловую энергию. Когда свет падает на материал приемника (кастрюлю), он преобразует свет в тепло, и это мы называем проводимостью.
  • Ловушка тепловой энергии : стеклянная крышка изолирует воздух внутри плиты от наружного воздуха, сводя к минимуму конвекцию (потери тепла).

6. Потирая руку

Тип теплопередачи: Проводимость

Когда вы потираете руки, трение превращает механическую энергию в тепловую. Механическая энергия относится к движению ваших рук.

Поскольку трение происходит за счет электромагнитного притяжения между заряженными частицами на двух соприкасающихся поверхностях, трение рук друг о друга приводит к обмену электромагнитной энергией между молекулами наших рук. Это приводит к тепловому возбуждению молекул наших рук, которые в конечном итоге вырабатывают энергию в виде тепла.

5. Тепловой двигатель

Тип теплопередачи: Конвекция

Тепловой двигатель преобразует тепловую энергию в механическую энергию, которую затем можно использовать для выполнения механической работы. Двигатель забирает энергию из тепла (по сравнению с окружающей средой) и превращает ее в движение.

В зависимости от типа двигателя применяются разные процессы, такие как использование энергии ядерных процессов для выработки тепла (уран) или воспламенение топлива в результате сгорания (уголь или бензин). Во всех процессах цель одна и та же: преобразовать тепло в работу.

Ежедневные примеры тепловых двигателей включают паровоз, двигатель внутреннего сгорания и тепловую электростанцию. Все они приводятся в действие расширением нагретых газов.

Читайте так же:
Переменный ток сравнивают с постоянным по тепловому действию

4. Горящая свеча

Тип теплопередачи: Проводимость, Конвекция, Излучение

Свечи делают свет, производя тепло. Они преобразуют химическую энергию в тепло. Химическая реакция называется сгоранием, при котором воск свечи вступает в реакцию с кислородом на воздухе и образует бесцветный газ, называемый углекислым газом, вместе с небольшим количеством пара.

Пар образуется в синей части пламени, где воск горит чисто с большим количеством кислорода. Но поскольку ни один воск не горит идеально, они также производят немного дыма (аэрозоль) в яркой, желтой части пламени.

На протяжении всего процесса фитиль поглощает воск и горит, чтобы произвести свет и тепловую энергию.

3. Электрические тостеры

Тип теплопередачи: тепловое излучение

Электрический тостер забирает электрическую энергию и очень эффективно преобразует ее в тепло. Он состоит из рядов тонких проволок (нитей), которые расположены достаточно широко друг от друга, чтобы поджарить всю поверхность хлеба.

Когда электричество течет по проводу, энергия передается от одного конца к другому. Эта энергия переносится электронами. На протяжении всего процесса электроны сталкиваются друг с другом и с атомами в металлической проволоке, выделяя тепло. Чем больше электрический ток и чем тоньше провод, тем больше происходит столкновений и выделяется больше тепла.

2. Современные системы отопления дома

Тип теплопередачи: Конвекция

Два распространенных типа отопительных систем, установленных в зданиях, — это системы отопления теплым воздухом и горячей водой. Первая использует тепловую энергию для нагрева воздуха, а затем циркулирует по системе воздуховодов и регистров. Теплый воздух выдувается из воздуховодов и циркулирует по помещениям, вытесняя холодный воздух.

Второй использует тепловую энергию для нагрева воды, а затем прокачивает ее по всему зданию в системе труб и радиаторов. Горячий радиатор излучает тепловую энергию в окружающий воздух. Затем теплый воздух движется по помещениям конвекционными потоками.

1. Процессоры и другие электрические компоненты

Тип теплопередачи: Конвекция и Проводимость

Процессор, графический процессор и система на чипе рассеивают энергию в виде тепла за счет сопротивления в электронных схемах. Графические процессоры в ноутбуках/настольных компьютерах потребляют и рассеивают значительно больше энергии, чем мобильные процессоры из-за их более высокой сложности и скорости.

Для поддержания оптимальной температуры микропроцессоров используются различные типы систем охлаждения. Например, обычная настольная система охлаждения ЦП предназначена для рассеивания до 90 Вт тепла без превышения максимальной температуры соединения для ЦП настольного компьютера.

Приведите пример использования тепловых действий тока ответ

В электрической цепи, подключённой к источнику, возникают электрические силы, действующие на носители зарядов и приводящие их в движение. Пусть под действием электрической силы `F` частица, несущая заряд `q`, переместилась вдоль проводника из точки `1` в точку `2`, а сила `F` совершила над заряженной частицей работу `A_(12)`. Отношение работы `A_(12)` электрической силы над зарядом `q` при перемещении его из точки `1` в точку `2` к самому заряду $$ q$$ называют электрическим напряжением между точками `1` и `2`:

Единицей измерения напряжения в СИ является вольт (В).

За один вольт принимается напряжение на концах проводника, при котором работа сил электрического поля по перемещению через этот проводник заряда в один кулон равна одному джоулю.

Эта единица названа в честь итальянского физика А. Вольта, который в 1800 г. изобрёл электрическую батарею и впервые получил с её помощью постоянный ток, устойчиво поддерживавшийся в электрической цепи. Это открытие ознаменовало начало новой эпохи, полностью преобразившей нашу цивилизацию: современная жизнь немыслима без использования электрического тока.

В соотношении (3) индексы `1` и `2` можно опустить, если помнить, что `1` – это точка «старта», `2` – точка «финиша».

Читайте так же:
Плотность тока через тепло

Зная напряжение `U` на концах проводника и силу тока `I`, текущего в проводнике в течение времени `t` постоянного тока, вычислим заряд `q=I*t`, который протечёт за указанное время по проводнику. Тогда за это время силы электрического поля в проводнике совершат работу

Это позволяет судить о скорости совершения работы электрическими силами, т. е. о мощности, развиваемой силами электрического поля. Из (4) следует, что в проводнике, напряжение на концах которого равно `U`, а сила тока `I`, силы электрического поля в единицу времени совершают работу

Напомним, что единицей измерения мощности в СИ служит ватт (Вт).

Очень часто работу и мощность электрических сил называют соответственно работой и мощностью электрического тока, тем самым подчёркивают, что это работа по поддержанию электрического тока в цепи.

По проводнику в течение `T=1` мин течёт постоянный ток силой `I=0,2` А. Напряжение на проводнике `U=1,5` В. Какую работу `A` совершают электрические силы в проводнике за указанное время? Найдите мощность `P` электрического тока в проводнике.

За время `T` через проводник пройдёт заряд `Q=I*T`. Работа сил электрического поля над этим зарядом в соответствии с (4) равна

Для ответа на второй вопрос задачи воспользуемся соотношением (5):

Заметим, что в повседневной жизни, рассчитываясь «за электричество», мы оплачиваем расход электроэнергии – работу электрических сил, а не мощность. И здесь принято работу электрических сил выражать во внесистемных единицах – киловатт-часах:

Работа электрического тока может идти на изменение механической и внутренней энергий проводника. Например, в результате протекания электрического тока через электродвигатель его ротор (подвижная часть, способная вращаться, в отличие от статора) раскручивается. При этом большая часть работы электрических сил идёт на увеличение механической энергии ротора, а также других тел, с которыми ротор связан теми или иными механизмами. Другая часть работы электрического тока (в современных электродвигателях один – два процента) идёт на изменение внутренней энергии обмоток двигателя, что приводит к их нагреванию (обмотка электродвигателя представляет собой катушку, изготовленную обычно из меди, с большим числом витков).

Обсудим тепловое действие электрического тока более подробно. Из опыта известно, что электрический ток нагревает проводник. Объясняется это явление тем, что свободные электроны в металлах, перемещаясь под действием сил электрического поля, взаимодействуют с ионами вещества и передают им свою энергию. В результате увеличивается энергия колебаний ионов в проводнике, его температура растёт, при этом говорят, что в проводнике за некоторое время `t` выделяется количество теплоты `Q_(«тепл»)`. Если проводник с током неподвижен и величина тока постоянна, то работа электрических сил идёт на изменение внутренней энергии проводника. По закону сохранения энергии это количество равно работе сил электрического поля (4) в проводнике за то же самое время, т. е.

Отсюда мощность `P` тепловыделения, т. е. количество теплоты, выделяющейся в единицу времени на участке цепи, где напряжение равно `U`, а сила тока равна `I` составляет

По спирали электроплитки, подключённой к источнику с напряжением `U=120` В, протекает постоянный ток силой `I=5` А в течение `T=1` ч. Какое количество теплоты `Q_(«тепл»)` отдаёт при этом плитка в окружающую среду?

В окружающую среду будет передано то количество теплоты, которое выделится в спирали нагревательного элемента плитки за указанное время. По формуле (6) находим:

`Q_(«тепл») =I*T*U=5*3600*120=2,16*10^6` Дж.

Электродвигатель, включённый в электрическую сеть с напряжением `U=24` В, за время `T=1` ч работы совершил механическую работу `A=1680` кДж. Сила тока в обмотке `I=20` А. Найдите мощность `P` электрического тока и коэффициент полезного действия `eta` двигателя. Какое количество теплоты `Q_(«тепл»)` выделится в обмотке?

Читайте так же:
Тепловая мощность тока через плотность тока

Мощность электрического тока найдём по формуле (5):

По определению коэффициент полезного действия (КПД) `eta` двигателя равен отношению полезной механической работы `A` к работе электрических сил `A_(«эл»)`, умноженному на `100%`. С учётом выражения (4) для работы электрических сил находим КПД электродвигателя:

Количество `Q_(«тепл»)` теплоты, выделившейся в обмотке, найдём по закону сохранения энергии `A_(«эл»)=A+Q_(«тепл»)`. Отсюда `Q_(«тепл»)=A_(«эл»)-A=UIT-A=24*20*3600-1680*10^3=48*10^3` Дж.

Занятие 14 Тепловое действие тока

а) Общие определения

В проводнике, по которому течет электрический ток, также как и во всех телах, есть движение молекул. При наличии тока в проводнике движущиеся электрические заряды усиливают движение молекул, что и является причиной повышения температуры проводника. Явление выделения тепла при протекании тока по проводнику может иметь как вредные последствия , так и приносить пользу. Например, с помощью электрического тока можно нагревать спираль электронагревательных приборов. Однако, протекая по изолированному проводу ток нагревает его изоляцию приводя ее к преждевременному износу и разрушению

б) Закон Джоуля-Ленца.

Количества теплоты, выделяемой током при прохождении по проводнику зависит от сопротивления проводника, силы тока и времени его прохождения.

Количественные соотношения, имеющие место при нагревании проводника током называются законом Джоуля — Ленца.

Где: Q – количество теплоты [Дж]

в) Элементы тепловой защиты электроаппаратов

Плавкие предохранители применяются для защиты электроустановок от токов короткого замыкания.

Рис.14.1. Плавкие предохранители различных типов

Основным элементом предохранителя является плавкая вставка, которая сгорает (плавится) при значительном повышении тока в сети.

Защитное действие плавкого предохранителя основано на тепловом эффекте электрического тока. Протекая по плавкой вставке ток нагревает ее. Если величина тока значительно возрастает, то количество выделяемой током теплоты становится достаточным для расплавления плавкой вставки.

При расплавлении плавкой вставки электрическая цепь разрывается и потребитель обесточивается.

Этим способом достигается обеспечение сохранности дорогостоящего оборудования.

Рис.14.2. Плавкие вставки предохранителей

Контрольный опрос №1Напишите пары чисел и букв из первого и второго столбцов соответствующие определениям

болты контактной шайбы

Занятие 15. Аппараты управления

а) Кнопки управления

предназначены для замыкания и размыкания цепей дистанционного управления электродвигателями.

Комплект из нескольких кнопок «ПУСК» и «СТОП», объединенных в одном корпусе

называется кнопочной станцией.

Рис.15.1. Кнопки управления

б)Концевые и путевые выключатели

применяются для переключения цепей управления по мере передвижения элементов механизмов и для автоматического отключения механизма в конце его рабочего пути.

Рис.15.2. Концевые и путевые выключатели

в) Магнитный пускатель

— это распространенный электромагнитный аппарат для дистанционного и местного управления электродвигателями и другими установками, а также защиты их от перегрузок и токов короткого замыкания.

Рис.15.3. Магнитный пускатель

г)Тепловое реле

является составной частью магнитного пускателя.

Тепловые реле предназначены для защиты электродвигателей от перегрузок и токов короткого замыкания.

Действие теплового реле основано на изгибании биметаллической пластинки при ее нагревании током перегрузки.

Тепловое реле состоит (см.рисунок)

Рис.15.4. Внешний вид теплового реле и его схема

Работа теплового реле:

При перегрузке электродвигателя в линейных проводах протекают большие токи, значительно больше номинальных значений. Этот ток протекает через нагревательный элемент 2.

Элемент нагревается и нагревает биметаллическую пластинку 1.

Пластинка изгибается вверх, освобождая из зацепления рычаг 7.

Рычаг под действием пружины 4 поворачивается по часовой стрелке на оси 8 и приводит в движение тягу 5, при помощи которой контакты 6 цепи управления размыкаются.

Размыкание контактов в цепи управления магнитного пускателя приводит к разрыву силовой цепи. Электродвигатель отключается, что предотвращает выход его из строя при перегрузке.

При выключении силовой цепи нагревательный элемент 2 остывает, биметаллическая пластинка возвращается в исходное состояние.

Рычаг 7 возвращается в исходное состояние путем нажатия на кнопку возврата.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector