Sfera-perm.ru

Сфера Пермь
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Принципиальная схема стабилизатора тока

Релейный стабилизатор напряжения 220V без разрыва цепи

Содержание / Contents

  • 1 Идея
  • 2 Принципиальная схема
  • 3 Программа
  • 4 Технические характеристики
  • 5 Детали и конструкция
  • 6 Настройка
  • 7 Замеченные недостатки
  • 8 Выводы
  • 9 Использованы источники
  • 10 Файлы

Меня эта информация заинтересовала, я вспомнил, что в кинопередвижке «Украина» тоже было безразрывное переключение напряжения — там, на время переключения между смежными контактами переключателя подключался проволочный резистор. Я стал искать в интернете, что-либо полезное по этому поводу. Ознакомиться с изобретением № 2356082 я не смог.

Мне удалось найти статью «Типы стабилизаторов напряжения», где рассказывалось о возможности подключения диода к контактам реле в момент переключения. Идея заключается в том, чтобы в переменном напряжении произвести переключение во время положительного полупериода. При этом можно подключить диод параллельно контактам реле на время переключения.

На базе этой статьи были взяты самые обычные реле и измерены время отключения, время нахождения в разорванном состоянии и время включения. Во время измерений увидел на осциллографе дребезг контактов, который вызывал большое искрение и эрозию контактов, что резко уменьшает ресурс работы реле.

Для реализации и проверки этой идеи был собран релейный стабилизатор переменного тока мощностью 2 кВт, для питания квартиры. Вспомогательные реле подключают диод только на время переключения основного реле во время положительного полупериода. Оказалось, что реле имеют значительные времена задержки и дребезга, но, тем не менее операцию переключения удалось умесить в один полупериод.

↑ Принципиальная схема


Состоит из автотрансформатора переключаемого как по входу, так и по выходу при помощи реле.
В схеме применено прямое измерение переменного напряжения микроконтроллером. Выходное напряжение через делитель R13, R14, R15, R16 поступает на вход микроконтроллера через конденсатор C10.
Питание реле и микросхемы осуществляется через диод D3 и микросхему U1. Кнопка SB1 совместно с резистором R1 служат для калибровки стабилизатора. Транзисторы Q1-Q4 — усилители для реле.
Реле Р1 и Р2 — основные, а реле Р1а и Р2а совместно с диодами D1 и D5 и замыкают цепь во время переключения основных реле. Для уменьшения времени отключения реле в усилителях реле, применены транзисторы BF422 и обмотки реле шунтированы диодами 1N4007 и диодами Зенера на 150 Вольт , включенными встречно.
Для уменьшения импульсных помех, попадающих из сети, на входе и выходе стабилизатора стоят конденсаторы C1 и C11.
Трехцветный светодиод индицирует уровни напряжения на входе стабилизатора: красный — низкое, зеленый — норма, синий — высокое.

↑ Программа

Программа написана на языке СИ (mikroC PRO for PIC), разбита на блоки и снабжена комментариями. В программе применено прямое измерение переменного напряжения микроконтроллером, что позволило упростить схему. Микропроцессор применен PIC16F676.
Блок программы zero ожидает появление спадающего перехода через ноль
По этому перепаду происходит либо измерение величины переменного напряжения, либо начинается переключение реле.
Блок программы izm_U измеряет амплитуды отрицательного и положительного полупериодов

В основной программе производиться обработка результатов измерений и если необходимо дается команда на переключение реле.
Для каждой группы реле написаны отдельные программы включения и выключения с учетом необходимых задержек R2on, R2off, R1on и R1off.
5-й бит порта C задействован в программе для подачи импульса синхронизации на осциллограф, чтобы можно было посмотреть на результаты эксперимента.

↑ Технические характеристики

При изменении входного напряжения в пределах 195-245 Вольт выходное напряжение поддерживается с точностью 7%. При изменении входного напряжения в пределах 185-255 Вольт выходное напряжение поддерживается с точностью 10%
Выходной ток в длительном режиме 9 А.

↑ Детали и конструкция



↑ Настройка

Налаживание устройства заключается в проверке безобрывного переключения и установке номинального напряжения 220 Вольт с помощью построечного резистора R15 и кнопки SB1.
Необходимо подать на вход напряжение от ЛАТР’а через лампу накаливания мощностью 100 — 150 Вт, установить напряжение 220 Вольт и удерживая кнопку добиться зеленого свечения, вращая построечный резистор.
После этого кнопку отпустить, вольтметр подключить к выходу устройства и вращая ЛАТР проверить пороги переключения: нижний 207 Вольт и верхний 232 вольта. При этом лампа накаливания при переключениях не должна вспыхивать или светиться, что свидетельствует о правильной работе. Также работу безобрывного переключения можно увидеть на осциллографе, для этого надо подключить внешний запуск к порту RC5 и наблюдать выходное напряжение стабилизатора в, изменяя входное напряжение. В моменты переключений синусоида на выходе не должна разрываться.
При напряжении на выходе меньше 187V горит красный диод, а зеленый мигает.
При напряжении на выходе больше 242V горит синий диод, а зеленый мигает.

Стабилизатор работает у меня 3-й месяц и показал себя очень хорошо. До этого у меня работал стабилизатор предыдущей разработки «Стабилизатор напряжения сети на PIC12F675 (релейный) 1,8 кВт». Он работал хорошо, но иногда в момент его переключения срабатывал источник бесперебойного питания компьютера. С новым стабилизатором эта проблема исчезла безвозвратно.

Читайте так же:
Схема стабилизатора тока для ходовых огней

Учитывая, что в реле резко уменьшилась эрозия контактов (практически нет искрения), можно было бы в качестве основных использовать менее мощные реле (LIMING JZC — 22F).

↑ Замеченные недостатки

Довольно сложно было подобрать в программе время задержки реле.
Для такого включения желательно применять более быстродействующие реле.

↑ Выводы

a) Безобрывное переключение цепей переменного тока с помощью реле — вполне реальная и разрешимая задача.
b) Можно в качестве вспомогательного реле применить тиристор или симистор, тогда на реле не будет падения напряжения, а симистор за 10 мсек не успеет нагреться.
c) В таком режиме искрение контактов резко уменьшается, а долговечность возрастает, и уменьшаются помехи от переключений реле

↑ Использованы источники

1. Статья «Типы стабилизаторов напряжения» на сайте «Энергосбережение в Украине»
2. Официальный web-сайт предприятия ООО «Прибор», г. Челябинск
3. Даташиты на детали

↑ Файлы

Схема, чертеж печатной платы и программа с прошивкой
▼ Shema.zip 211.09 Kb ⇣ 189
▼ Plata.zip 24.09 Kb ⇣ 172
▼ Soft_V4.zip 4.97 Kb ⇣ 184
▼ Схема стабилизатора LOGIC POWER MVR 5K(relay) LPS-1500RV без микроконтроллеров 427.96 Kb ⇣ 29

Иван Внуковский,
Украина, г. Днепропетровск

Камрад, рассмотри датагорские рекомендации

🌼 Полезные и проверенные железяки, можно брать

Опробовано в лаборатории редакции или читателями.

Как сделать стабилизатор самому — рассказываем детально

Простой стабилизатор для съёмки видео в движении

Простейший стабилизатор изображения для фотокамеры или мобильного телефона – от идеи до воплощения.

Стабилизация напряжения бытовой сети

Стремления владельцев разного вида недвижимости обеспечить стабилизированное напряжение бытовой сети – явление очевидное. Такой подход обеспечивает сохранность эксплуатируемой техники, зачастую дорогостоящей, постоянно необходимой в хозяйстве.

Да и в целом фактор стабилизации – это залог повышенной безопасности эксплуатации электрических сетей.

Промышленная конструкция стабилизатора сетевого напряжения, которую несложно приобрести на рынке. Ассортимент подобного оборудования огромен, но всегда остаётся возможность сделать собственную конструкцию

Решить подобную задачу можно разными способами, самый простой из которых – купить мощный стабилизатор напряжения, изготовленный промышленным способом.

Предложений по такому оборудованию на коммерческом рынке масса. Однако нередко возможности приобретения ограничиваются стоимостью устройств или другими моментами.

Соответственно, альтернативой покупке становится сборка стабилизатора напряжения своими руками из доступных электронных компонентов.

При условии обладания соответствующими навыками и знаниями электромонтажа, теории электротехники (электроники), разводки схем и пайки элементов самодельный стабилизатор напряжения можно реализовать и успешно применять на практике. Такие примеры есть.

Примерно так может выглядеть оборудование стабилизации, изготовленное своими руками из доступных и недорогих радиодеталей. Шасси и корпус можно подобрать от старого промышленного оборудования (например, от осциллографа)

Конструкция и принцип действия стабилизатора

Решив собрать прибор самостоятельно придется заглянуть внутрь корпуса промышленной модели. Она состоит из нескольких основных деталей:

  • Трансформатора;
  • Конденсаторов;
  • Резисторов;
  • Кабеля для соединения элементов и подключения устройства.

Принцип действия самого простого стабилизатора основан на работе реостата. Он повышает или понижает сопротивление в зависимости от силы тока. Более современные модели обладают широким набором функций и способны в полной мере защитить бытовую технику от скачков напряжения в сети.

Виды стабилизаторов напряжения

В зависимости от мощности нагрузки в сети и других условий эксплуатации, используются различные модели стабилизаторов:

  • Феррорезонансные стабилизаторы считаются самыми простыми, в них применяется принцип магнитного резонанса. Схема включает в себя всего два дросселя и конденсатор. Внешне он похож на обычный трансформатор с первичной и вторичной обмотками на дросселях. Такие стабилизаторы имеют большой вес и габариты, поэтому почти не используются для бытовой аппаратуры. Благодаря высокому быстродействию, эти приборы применяются для медицинского оборудования;

Схема феррорезонансного стабилизатора напряжения

  • Сервоприводные стабилизаторы обеспечивают регулировку напряжения автотрансформатором, реостатом которого управляет сервопривод, получающий сигналы с датчика контроля напряжения. Электромеханические модели могут работать с большими нагрузками, но имеют малую скорость срабатывания. Релейный стабилизатор напряжения имеет секционную конструкцию вторичной обмотки, стабилизация напряжения производится группой реле, сигналы на замыкание и размыкание контактов которых поступают с платы управления. Таким образом, осуществляется подключение нужных секций вторичной обмотки для поддержания выходного напряжения в пределах установленных величин. Скорость регулировки осуществляется быстро, но точность установки напряжения невысокая;

Пример сборки релейного стабилизатора напряжения

  • Электронные стабилизаторы имеют аналогичный принцип, как и релейные, но вместо реле используются тиристоры, симисторы или полевые транзисторы для выпрямления соответствующей мощности, в зависимости от тока нагрузки. Это значительно повышает скорость переключения секций вторичной обмотки. Бывают варианты схем без трансформаторного блока, все узлы выполнены на полупроводниковых элементах;

Вариант схемы электронного стабилизатора

  • Стабилизаторы напряжения с двойным преобразованием осуществляют регулировку по инверторному принципу. Эти модели преобразуют переменное напряжение в постоянное, потом обратно в переменное напряжение, на выходе преобразователя формируется 220В.
Читайте так же:
Схемы стабилизаторы тока крен

Вариант схемы инверторного стабилизатора напряжения

Схема стабилизатора не преобразует напряжение сети. Инвертор постоянного напряжения в переменное при любом напряжении на входе генерирует на выходе 220В переменного тока. Такие стабилизаторы совмещают высокую скорость срабатывания и точность установки напряжения, но имеют высокую цену по сравнению с ранее рассмотренными вариантами.

Схемные решения стабилизации электросети 220В

Рассматривая возможные схемные решения под стабилизацию напряжения с учётом относительно высокой мощности (не менее 1-2 кВт), следует иметь в виду разнообразие технологий.

Существует несколько схемных решений, которыми определяются технологические способности приборов:

  • феррорезонансные;
  • сервоприводные;
  • электронные;
  • инверторные.

Какой вариант выбрать, зависит от ваших предпочтения, имеющихся материалов для сборки и навыков работы с электротехническим оборудованием.

Вариант #1 — феррорезонансная схема

Для самостоятельного изготовления самым простым вариантом схемы видится первый пункт списка — феррорезонансная схема. Она работает на использовании эффекта магнитного резонанса.

Структурная схема простого стабилизатора, выполненного на основе дросселей: 1 – первый дроссельный элемент; 2 – второй дроссельный элемент; 3 – конденсатор; 4 – сторона входного напряжения; 5 – сторона выходного напряжения

Конструкцию достаточно мощного феррорезонансного стабилизатора допустимо собрать всего на трёх элементах:

  1. Дроссель 1.
  2. Дроссель 2.
  3. Конденсатор.

Однако простота в данном варианте сопровождается массой неудобств. Конструкция мощного стабилизатора, собранная по феррорезонансной схеме, получается массивной, громоздкой, тяжелой.

Вариант #2 — автотрансформатор или сервопривод

Фактически речь идет о схеме, где используется принцип автотрансформатора. Трансформация напряжения автоматически осуществляется за счет управления реостатом, ползунок которого перемещает сервопривод.

В свою очередь сервопривод управляется сигналом, получаемым, к примеру, от датчика уровня напряжения.

Принципиальная схема сервоприводного аппарата, сборка которой позволит создать мощный стабилизатор напряжения для дома или на дачу. Однако этот вариант считается технологически устаревшим

Примерно по такой же схеме действует устройство релейного типа с той лишь разницей, что коэффициент трансформации меняется, в случае надобности, подключением или отключением соответствующих обмоток с помощью реле.

Подобного рода схемы выглядят уже более сложными технически, но при этом не обеспечивают достаточной линейности изменения напряжения.

Собрать вручную прибор релейный или на сервоприводе допустимо. Однако разумнее выбрать электронный вариант. Затраты сил и средств практически одинаковые.

Вариант #3 — электронная схема

Сборка мощного стабилизатора по схеме электронного управления при обширном ассортименте радиодеталей в продаже, становится вполне возможной. Как правило, такие схемы собираются на электронных компонентах – симисторах (тиристорах, транзисторах).

Также разработан целый ряд схем стабилизаторов напряжения, где в качестве ключей используются силовые полевые транзисторы.

Структурная схема модуля электронной стабилизации: 1 – входные клеммы устройства; 2 – симисторный блок управления трансформаторными обмотками; 3 – микропроцессорный блок; 4 – выходные клеммы на подключение нагрузки

Изготовить мощный аппарат полностью под электронным управлением руками неспециалиста достаточно сложно.Без опыта и знаний в сфере электротехники не обойтись.

Поэтому под самостоятельное производство рассматривать этот вариант целесообразно, если имеется сильное желание построить стабилизатор, плюс наработанный опыт электронщика. Далее в статье рассмотрим конструкцию электронного исполнения, пригодную для изготовления своими руками.

Самодельный выравниватель тока: характеристики

Стабилизатор характеризуется двумя параметрами:

  • Допустимый диапазон вводимого напряжения (Uвх);
  • Допустимый диапазон выводимого напряжения (Uвых).

В этой статье рассматривается симисторный преобразователь тока, потому что он обладает высокой эффективностью. Для него Uвх составляет 130-270В, а Uвых – 205-230В. Если большой диапазон входного напряжения – это преимущество, то для выходного – это недостаток.

Однако для бытовой техники этот диапазон остается допустимым. Это легко проверить, потому что допустимыми колебаниями вольтажа являются скачки и провалы не более 10%. А это 22,2 Вольта в большую или меньшую сторону. Значит допустимо изменение вольтажа от 197,8 до 242,2 Вольта. По сравнению с этим диапазоном ток на нашем симисторном стабилизаторе получается еще ровнее.

Подходит устройство для подключения к линии нагрузкой не больше 6 кВт. Ее переключение осуществляется за 0,01 секунды.

Принцип работы стабилизатора напряжения

Принцип работы релейного стабилизатора напряжения

Работа всех типов стабилизаторов переменного напряжения заключается в поддержании выходного напряжения на уровне 220 В при сильном изменении входного напряжения. Работа релейного стабилизатора основана на переключении обмоток трансформатора мощными реле. При таком переключении обмоток выходное напряжение меняется ступенями.

При переключении с одной обмотки на другую, выходное напряжение трансформатора изменится приблизительно на 20 В, или больше. Команду на переключение обмоток трансформатора поступает с контроллера на реле. Число переключаемых обмоток может меняться от 5 до 10, которое определяет точность стабилизации выходного напряжения. В большинстве релейные стабилизаторы работают при входном напряжении 150 – 250 В.

К положительным качествам релейных стабилизаторов можно отнести небольшое время срабатывания реле и невысокую стоимость. Недостатком таких стабилизаторов является скачок напряжения при переключении обмоток на 20 Вольт. На бытовых электроприборах это не отражается, однако лампы освещения могут моргать. Еще релейный стабилизатор издает щелчки при переключении реле, которые ночью хорошо слышны.

Читайте так же:
Стабилизатор частоты вращения двигателя током

Скачки напряжения при переключении обмоток трансформатора

В момент переключения контакты реле на время зависают в воздухе. В это время, хотя и короткое, нагрузка отключена, что вызывает ЭДС самоиндукции автотрансформатора. Эта ЭДС выражается в коротком импульсе напряжения, которое может достичь 1000 В. Такие импульсные помехи могут вызвать повреждение техники, особенно при многократном переключении обмоток стабилизатора.

Схема работы релейного стабилизатора

В этой ситуации нужно после релейного стабилизатора ставить ограничители напряжения на варисторах. Обмотка большинства автотрансформаторов намотана алюминиевым проводом, который имеет меньшую нагрузочную способность, чем медный. Контакты реле, особенно при большой нагрузке, искрят и подгорают, что вызывает необходимость их чистки. Релейные стабилизаторы имеют право на существование как недорогой вариант при больших перепадах сетевого напряжения.

Принцип работы симисторных стабилизаторов

Работа симисторных стабилизаторов похожа на работу релейных устройств. Отличие составляет узел переключения обмоток трансформатора. Вместо реле у симисторных устройств переключение обмоток происходит мощными симисторами или тиристорами. Контроллер управляют работой симисторов.

Симисторное управление обмотками не имеет контактов, поэтому отсутствуют щелчки. Автотрансформатор намотан медным проводом. Эти стабилизаторы могут работать с пониженным напряжением от 90 В и высоким напряжением до 300 В. Точность регулировки напряжения может достичь 2%, что не вызывает моргание ламп.

Однако ЭДС самоиндукции во время переключения симисторами также имеет место, как и у релейных устройств. Лучший дизайн интерьера квартиры на заказ. Так как симисторные ключи очень чувствительны к перегрузкам, им необходимо иметь запас по мощности. Такие устройства стабилизаторов напряжения имеют тяжелый температурный режим.

Схема работы симисторного стабилизатора

Поэтому симисторы ставятся на радиаторы с принудительным охлаждением вентиляторами. Работа этого вида устройства осуществляется по заводской программе, которая имеет неприятность ошибаться при эксплуатации.

В этом случае поможет только заводской ремонт. Стоимость таких стабилизаторов, на мой взгляд, завышена. Существуют симисторные стабилизаторы марки Volter с высокой степенью точности. Принцип работы этих стабилизаторов напряжения осуществляется по двухступенчатой системе. Первая ступень регулирует выходное напряжение грубо, а вторая степень имеет точную регулировку выходного напряжения.

Схема работы двухступеньчатого стабилизатора Volter

Один контроллер управляет двумя ступенями. По сути это два стабилизатора в одном корпусе. Обмотки обеих ступеней намотаны на одном трансформаторе. При 12 ключах двух ступеней стабилизатор имеет 36 уровней регулировки выходного напряжения, чем и достигается высокая точность выходного напряжения.

Принцип работы сервопривода стабилизатора

Эти устройства относятся к самым простым стабилизаторам переменного напряжения. В устройстве стабилизатора напряжения главным элементом является тороидальный трансформатор с сервоприводом, который управляется не сложной электронной схемой сравнения выходного и входного напряжений.

При разнице этих напряжений, сигнал с положительной или отрицательной полярностью подается на сервопривод постоянного тока, который включаясь, поворачивает токосъемник с графитовой щеткой до тех пор, пока на выходе напряжение не станет равным 220 В. Токосъемник двигается по контактной площадке трансформатора захватывает одновременно несколько витков обмотки, поэтому напряжение регулируется без скачков.

Вид открытого стабилизатора с сервоприводом

Время отклика на изменение напряжения сервопривода выше, чем у релейного устройства. Положительным качеством сервопривода является хорошая точность установки 2 – 3%. На этом, наверное, заканчиваются все положительные качества сервопривода. У стабилизатора с сервоприводом есть один очень большой недостаток, о котором нигде не говориться. Это его пожароопасность.

Схема работы стабилизатора с сервоприводом

По его вине также выходят из строя все электробытовые приборы и техника. Причина проста. При падении сетевого напряжения ниже низкого порога или подъема напряжения выше высокого порога стабилизатора, сервопривод выводит токосъемную щетку в крайние положения и клинит. Это происходит из-за низкого качества китайских сервоприводов или схема управления сервоприводом не вытягивает токосъемник с крайних точек контактной площадки.

А теперь представьте, упало сетевое напряжение, токосъемник естественно пополз в верхнюю крайнюю точку, поднимая напряжение и заклинил. Вернуться не может. Когда напряжение восстановилось на входе стабилизатора, то выходное напряжение будет равным 300 В или больше. Бытовые приборы такое напряжение не выдерживают. Подобное не раз встречалось на моей практике. Поэтому при выборе стабилизатора переменного напряжения нужно учитывать его надежность и безопасность.

Трансформаторные блоки питания.

Любой радиолюбитель в своей жизни не раз собирал блок питания для своих электронных устройств. Поэтому его устройство и принцип работы должен знать каждый, кто занимается электроникой.

Ведь собрав даже самый простой блок питания своими руками, начинающие радиолюбители получают такой восторг, потому что простой блок питания не требует никакой настройки и никакой регулировки, он сразу начинает работать.

Читайте так же:
Стабилизатор для усиления тока

Блоки питания бывают нескольких типов: трансформаторные, бестрансформаторные, импульсные.

Принципиальная схема БП

Трансформаторные блоки питания — самые простые и надежные блоки питания. Также из простых блоков питания они являются самыми безопасными по электробезопасности .

Простой трансформаторный блок питания состоит из: трансформатора, выпрямителя и фильтра. Если требуется более качественное стабилизированное питание, то устанавливается стабилизатор. Блоки питания будем рассматривать блоками. Внизу представлена принципиальная схема.

Трансформатор

На первичную обмотку трансформатора W1 (иногда её называют сетевой, так как она подключается к сети 220 вольт) поступает входное напряжение. При подаче на первичную обмотку переменное напряжение, в нашем случае — сетевое напряжение 220 В, по магнитопроводу будет протекать переменное электромагнитное поле. Если на магнитопроводе находится вторая обмотка, электромагнитное поле будет проходить и через вторичную обмотку W2. При этом во вторичной обмотки будет наводится электродвижущая сила, и на вторичной обмотке появится выходное напряжение. Со вторичной обмотки трансформатора выходит переменное, обычно пониженное напряжение для питания устройств напряжением 3,3 В, 5 В, 9 В, 12 В и 15 В и тд. Но бывают и повышающие трансформаторы, у них на входе напряжение ниже чем на выходе. Но мы будем рассматривать понижающие трансформаторы.

Мы возьмем трансформатор на выходе вторичной обмотки которой будет выходить 12 вольт.

Можно уже и таким блоком питания пользоваться, но только если для подключения лампы накаливания на 12 Вольт, ведь на выходе у нас переменное напряжение.

Диодный мост

Мы продолжим собирать простой блок питания своими руками. И для получения постоянного напряжения нам понадобится диодный мост, или по-другому его еще называют — диодный выпрямитель. Диодный мост служит для преобразования переменного напряжения вторичной обмотки в постоянное, так как для питания устройств в основном используется постоянное напряжение.

Диодный мост собран на четырех диодах VD1 — VD4. Рассмотрим работу диодного моста за один период. В первом полупериоде ток протекает через обмотку трансформатора, VD3 и VD4 заперты, и ток проходит через диод VD1 и выходит с диода +12В на нагрузку На схеме нагрузкой служит светодиод VD5 подключенный через токоограничивающий резистор R1.

С диода VD1 ток проходит через токоограничивающий резистор R1, через светодиод VD5, проходит через диод VD2, и уходит на вторичную обмотку трансформатора. На этом первый полупериод завершен.

Второй полупериод проходит также через обмотку трансформатора, но в обратном направлении. С обмотки трансформатора ток протекает теперь через диод VD3. VD1 и VD2 заперты, и далее ток через токоограничивающий резистор R1 на светодиод VD5, далее ток протекает через диод VD4 и уходит на трансформатор.

Вот мы рассмотрели и второй полупериод работы диодного моста.После диода выходное напряжение выходит пульсирующим, можно посмотреть на рисунке ниже.

Таким пульсирующим напряжением уже можно подключать некоторые устройства, которые не бояться пульсаций, например для зарядки автомобильного или другого аккумулятора. Но для питания приемника, усилителя, светодиодной ленты, и тд., такой блок питания не пойдет, к нему на выход диодов надо подключить фильтр, сглаживающий пульсации.

Фильтрующий конденсатор

Без этого фильтра устройство, которое будет питаться от этого блока питания может работать нестабильно, или вообще не работать. Фильтром служат электролитические конденсаторы. У конденсаторов два вывода, плюсовой вывод длиннее минусового. Также возле минусового вывода на корпусе наносится знак «-«

Ниже на рисунке показана схема, и уровень пульсаций в каждой точке

В устройствах, где требуется ещё и стабильное напряжение без скачков, например в электронике с применением микроконтроллеров, добавляют в схему еще и стабилизатор напряжения.

Стабилизатор

Продолжаем улучшать наш простой блок питания своими руками. Для получения качественного и стабильного напряжения без малейших пульсаций, скачков, и просадки напряжения используют стабилизатор напряжения.

В качестве стабилизатора используют стабилитрон, или интегральный стабилизатор напряжения. Мы собрали схему блока питания для устройства, которое нуждается в стабилизированном источнике питания. Это устройство собрано на контроллере, и без стабильного напряжения оно работать не будет. При небольшом повышении напряжении контроллер сгорит. А при понижении напряжении устройство откажется работать. Вот для таких устройств и предназначен стабилизатор.

Вывод 1 интегрального стабилизатора — входное напряжение. Вывод 2 — общий (земля). Вывод 3 — выходит стабилизированное напряжение.

Максимум, что может выдать L7805 — ток в 1,5 А, поэтому надо рассчитывать остальные детали на ток более 1,5 А. Выход трансформатора выбираем на ток более 1,5 ампера и напряжением выше стабилизированного значения больше на два вольта. Например, для LM7812 с выхода трансформатора должно выходить 14 — 15 В, для LM7805 7 – 8 В. Но не забывайте, что эти стабилизаторы греются из-за внутреннего сопротивления. Чем больше перепад между входом и выходом, тем больше нагрев. Ведь лишнее напряжение эти стабилизаторы гасят на себе.

Читайте так же:
Нагрузочный ток стабилизатора напряжения

Интегральные стабилизаторы бывают с общим минусом LM78**, или с общим плюсом LM79**. На месте звездочек находятся цифры указывающие напряжение стабилизации. Например LM7905 — общий плюс, напряжение стабилизации -5 В. Еще один пример LM7812 — общий минус, напряжение стабилизации 12 В. А теперь посмотрим распиновку, или назначение выводов интегрального стабилизатора.

Стабилизированный блок питания на LM7805

На рисунке ниже представлена схема простого блока питания со стабилизатором.

На первичную обмотку трансформатора TV1 поступает сетевое напряжение 220 В. Со вторичной обмотки трансформатора выходит пониженное переменное напряжение от 7 до 8 вольт. Далее ток проходит через диодный мост, и на выходе моста получается выпрямленное напряжение. На конденсаторах С1 и С2 выпрямленное напряжение сглаживается.

На выходе стабилизатора LM7805 выходит стабилизированное напряжение 5 вольт. Далее на конденсатор сглаживающий импульсы. И вот уже выпрямленное и стабильное напряжение поступает на светодиод VD5 с токоограничивающим резистором. Светодиод служит индикатором напряжения.

Если требуется источник питания малой мощности, то можно рассмотреть как вариант- бестрансформаторный блок питания. Но это уже другая история.

TL431 принцип работы и очень простая проверка.

TL431 принцип работы и очень простая проверка. Я не зря опять затронул эту тему ,это одна из самых массово выпускаемых интегральных микросхем .

Ее выпуск стартовал в 1978 году. Большую популярность она получила при использовании различных импульсных блоках питания для телевизоров ,тюнеров , DVD и другой аудио-видео техники. И она часто работает в паре с тоже очень популярной радиодеталью- оптроном PC817.

Для тех читателей, кому легче информацию воспринимать на слух, советую посмотреть видео в самом низу страницы.

Tl431 является прецизионным управляемым источником опорного напряжения.

Свою популярность она завоевала благодаря своей очень низкой стоимости и высокой надежности и точности. Принцип работы ее довольно просто понять из структурные схемы.

Если напряжение на входе источника ниже опорного напряжения то и на выходе операционного усилителя низкое напряжение , соответственно транзистор закрыт и ток от катода к аноду не протекает (точнее он очень маленький не превышает 1 миллиампера).

Эквивалентная схема TL431

Эквивалентную схему этой микросхемы можно представить в виде обыкновенного стабилитрона .Где напряжение стабилизации можно рассчитать по формуле приведенной ниже :

Один из самых простых типов стабилизаторов — это параметрический.

Параметрический: в таком стабилизаторе используется участок ВАХ прибора, имеющий большую крутизну(Википедия). Его можно сделать и на микросхеме tl431.

Для этого понадобится всего лишь три резистора, два из которых будут управлять входом микросхемы и как бы программировать напряжение на выходе. Рассчитать напряжение на выходе можно будет по формуле Uвых=Vref( 1 + R1/R2 ). При этом Vref=2,5В
R1=R2( Uвых/Vref – 1 ).
Кроме резисторов R1 и R2 в схеме ещё присутствует резистор R3 его предназначение как и для простого стабилитрона он является ограничителем тока
Основные технические характеристики TL431:
напряжение анод-катод: 2,5…36 вольт;
ток анод-катод: 1…100 мА (если нужна стабильная работа, то не стоит допускать ток менее 5мА);

Компенсационный стабилизатор напряжения

Компенсационный: имеет обратную связь.

В нём напряжение на выходе стабилизатора сравнивается с эталонным, из разницы между ними формируется управляющий сигнал для регулирующего элемента.
Чтобы увеличить токи стабилизации одного транзистора становится мало, нужен промежуточный усилительный каскад.

Теперь кратко назначение компонентов: Резистор R2 он является ограничителем тока базы транзистора vt1 можно использовать от 300 до 400 ом. Резистор R3 компенсирует обратный ток коллектора транзистора vt2 можно использовать резистор 4.7 кОм. Конденсатор C1 повышает устойчивость работы стабилизатора на высоких частотах, можно использовать 0.01 мкФ.

Стабилизатор тока на TL431

На микросхеме tl431 нужно собрать термостабильный стабилизатор тока.

Резистор R2 совместно с транзистором vt1 является своеобразным шунтом на котором с помощью обратной связи поддерживается напряжение 2,5 вольта. Рассчитать ток стабилизации можно по формуле Iн=2,5/R2.

Индикатор повышения напряжения на TL431

Светодиод начинает светиться когда напряжения превышает заданный порог. Который можно рассчитать по формуле:

R2 = 2,5 х Rl/(Uз — 2,5)

Индикатор изменения напряжения на TL431

Здесь светодиоды будут зажигаться в зависимости от того напряжение превысило или наоборот стало ниже заданного порога.

Подключение датчиков

Датчики подключают как одно из плеч делителя на управляющий контакт стабилизатора

Один из простых методов проверки TL431

нужно замкнуть его Катод и управляющий электрод

Вариант на макетной плате

и он должен показывать как обыкновенный стабилитрон на 2,5 вольта. Для этого можно использовать китайский тестер он будет показывать как два встречных диода один как обыкновенный идиот а другой как стабилитрон на два с половиной вольта

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector