Преобразователь напряжения стабилизатор тока
Диодный источник тока
Платон Константинович Денисов, г. Симферополь
Идеальный источник тока позволяет получить ток, не зависящий от сопротивления нагрузки. Параметры диодного источника тока, обуславливающие область применения прибора, рассматриваются в этой статье.
Для упрощения электрических схем удобно использовать диодные источники тока, представляющие собой двухвыводной компонент с низкой стоимостью, устанавливаемый в цепи схем последовательно с различными компонентами. Такое схемное решение проблемы стабилизированного тока привлекает простотой и повышением устойчивости работы разрабатываемых схем приборов. Один полупроводник этого класса, в зависимости от типа, обеспечивает стабилизацию тока на уровне от 0.1 до 30 миллиампер. Термина и схемного обозначения для наименования этих полупроводниковых приборов в соответствии с ГОСТ найти не удалось. В иллюстрациях к статье пришлось применить схемное обозначение обычного диода.
Один из примеров использования – питание светодиода. Диодный источник тока, включенный последовательно светодиоду, обеспечивает стабильную и надежную работу светодиода. Одна из особенностей диодного источника тока – работа в диапазоне напряжений от 1.8 до 100 В, позволяющая защитить светодиод от выхода из строя при импульсных изменениях напряжения повышает надежность светодиодного индикатора и расширяет диапазон допустимых отклонений питания. Яркость и оттенок свечения светодиода зависят от протекающего тока. Стабилизация тока питания светодиода позволяет задать требуемый режим работы с неплохой точностью. С помощью диодных источников тока можно построить индикатор или осветительную лампу, предназначенную для питания от сети переменного тока 220 В. Такой прибор будет иметь постоянную яркость свечения при значительном падении напряжения питания. Низкая потребляемая мощность и длительный срок службы являются неоспоримыми преимуществами светодиодных ламп по сравнению с лампами накаливания и газонаполненными осветительными приборами.
Применение резистора в цепи питания светодиода для индикации питания двигателя постоянного тока микродрели приводило к быстрому выходу индикатора из строя. Использование диодного источника тока позволило получить надежную работу индикатора и постоянную яркостью свечения. Требуемый режим можно получить, меняя тип диодного источника тока, или включая 2 — 3 штуки параллельно. Превышение диодным источником тока стоимости резистора на несколько центов оправдывает увеличение надежности работы индикатора.
Простая схема зарядного устройства аккумулятора получается при параллельном включении диодных источников тока.
При питании входного светодиода оптрона через резистор пульсации напряжения питания схемы приводят к колебаниям яркости, которые накладываются на фронт входного прямоугольного импульса. Напряжение питания схемы всегда содержит пульсации. Если пульсации питающего напряжения 5 В имеют уровень 50 мВ, то пульсации напряжения на светодиоде будут около 13 мВ.
При большом быстродействии оптрона пульсации напряжения питания приведут к искажению информации, передаваемой через оптрон.
Применение диодного источника тока для питания светодиода, входящего в состав оптрона, позволяет снизить искажения цифрового сигнала, передаваемого через оптрон.
Для создания источника опорного напряжения используются диодный источника тока и резистор. Применение источника стабильного тока улучшает параметры источника опорного напряжения и дает возможность включать источник опорного напряжения в схемы с большими колебаниями напряжения питания. Схема с низким уровнем шумов и возможностью точно установить требуемое значение опорного напряжения с помощью переменного сопротивления показана на рисунке.
Вольтамперная характеристика помогает понять работу диодного источника тока. Режим стабилизации начинается при превышении напряжения 1.8 В на выводах прибора. При напряжениях более 100 В происходит пробой прибора. Отклонение тока стабилизации от номинального, в зависимости от экземпляра прибора, составляет ±10 процентов. При изменении напряжения от 1.8 до 100 В ток стабилизации меняется на 5 процентов. Диодные источники тока, выпускаемые некоторыми производителями, изменяют ток стабилизации при изменении напряжения до 20 процентов. Чем выше ток стабилизации, тем больше отклонение при изменении напряжения. Параллельное включение пяти приборов, рассчитанных на ток 2 мА, позволяет получить более высокие параметры, чем у одного на 10 мА.
Дешевые диодные источники тока представляют собой отобранные по току полевые транзисторы, у которых затвор соединен с истоком. Обобщенная зависимость прямого и обратного тока от прямого и обратного напряжения изображена на рисунке. Диодный источник тока превращается в обычный диод при смене полярности напряжения, приложенного к его выводам. Это свойство обусловлено тем, что p-n переход полевого транзистора оказывается смещенным в прямом направлении, и ток течет по цепи затвор-сток. Максимальный обратный ток диодного стабилизатора тока может достигать 50 мА, а у некоторых типов и 100 мА. Это свойство позволяет разработать несложный преобразователь синусоидального сигнала в прямоугольный.
Амплитуда выходного сигнала, форма которого близка к прямоугольной, задается напряжением стабилизации стабилитрона. Диодный источник должен обеспечить номинальный ток, необходимый для работы стабилитрона. В файле математической модели Electronics Workbench 5.12, прилагаемом к статье, показана работа преобразователя. Преобразование синусоидального сигнала в треугольный сигнал осуществляет схема, в которой стабилитроны заменены конденсатором.
Удвоенная амплитуда (разность потенциалов между максимумом и минимумом) равняется
I – ток стабилизации диодных источников тока,
t – время изменения напряжения между минимумом и максимумом,
С – емкость конденсатора.
В файле математической модели Electronics Workbench 5.12, прилагаемом к статье, показана работа преобразователя.
Для стабилизации токов порядка ампера применяется схема, силовой элемент которой мощный транзистор. Диодный источник тока стабилизирует напряжение на резисторе 200 Ом и на выводе базы транзистора 2Т819. Изменение сопротивления резистора R1 от 0.2 до 10 Ом изменяет ток, поступающий в нагрузку. С помощью этой схемы можно получить ток, ограниченный максимальным током транзистора или максимальным током источника питания. Выбор диодного источника тока с возможно большим номинальным током стабилизации улучшает стабильность выходного тока схемы. Изменение резистора R1 на 1-2 Ом сильно меняет значение тока. Этот резистор должен быть большой мощности, изменение сопротивления из-за нагрева приведет к отклонению выходного тока от заданного значения. Резистор 200 Ом можно заменить переменным для точной настройки выходного тока или для построения регулируемого источника стабильного тока. Для улучшения стабильности тока транзистор 2Т819 усиливается вторым транзистором меньшей мощности. Транзисторы соединяются по схеме составного транзистора Дарлингтона. При использовании составного транзистора минимальное напряжение стабилизации увеличивается. В файле математической модели Electronics Workbench 5.12, прилагаемом к статье, показана работа мощного источника тока.
Улучшенным вариантом диодного источника тока является схема на полевом транзисторе с автоматическим смещением, где резистор обеспечивает обратную связь по току и увеличивает обратное смещение затвора, что приводит к работе транзистора на более предпочтительном участке характеристики, расположенном ниже характеристики начального тока стока. По графику выходной характеристики полевого транзистора КП312А видно как можно управлять током насыщения, меняя напряжение между затвором и истоком. Ток, протекающий через схему стабилизации, создает на резисторе напряжение затвор-исток. Изменяя сопротивление резистора можно задать стабилизируемый ток. Включение в цепь истока резистора снижает отклонение стабилизируемого тока до двух процентов.
Схема, обладающая более высокими характеристиками, состоит из двух полевых транзисторов. Транзистор VT1 обеспечивает уменьшение колебаний напряжения на стоке VT2. Транзистор VT1 должен иметь более высокий начальный ток стока, так как в истоковую цепь входит резистор и сопротивление канала VT2. Также большой начальный ток стока необходим для работы транзистора на линейном участке выходной характеристики, находящемся между вертикальной осью тока и пунктирной линией напряжения насыщения. Транзистор VT2 стабилизирует ток через сток-исток транзистора VT1, что не позволяет транзистору VT2 перейти в режим насыщения. Таким образом, транзисторы задают режимы работы друг друга. При увеличении напряжения на полюсах схемы сопротивление канала VT1 возрастает. При увеличении напряжения, приложенного к выводам схемы, сопротивление сток-исток транзистора VT2 возрастает и отрицательное напряжение затвор-исток транзистора VT1 увеличивается по модулю. Сопротивление сток-исток транзистора VT1 возрастает, большая часть напряжения падает на транзисторе VT1. В файле математической модели Electronics Workbench 5.12, прилагаемом к статье, показана работа схемы. Меняя в программе Electronics Workbench 5.12 напряжение источника питания интересно пронаблюдать значение тока и напряжения на транзисторах VT1 и VT2.
Диодные источники тока выпускаются многими производителями полупроводников. Параметры некоторых типов приведены в таблице.
Описание характеристик, назначение выводов и примеры схем включения линейного стабилизатора напряжения LM317
При разработке электрических схем часто возникает необходимость применения стабилизаторов напряжения малой или средней мощности (до 1,5 А) или источников образцового напряжения. Удобно, если такой узел имеется в интегральном исполнении, в виде единой микросхемы. Ряд из 9 номиналов постоянных напряжений с номиналами от 5 до 24 В закрывают стабилизаторы серии 78ХХ. Ниша работы LM317 – напряжения выше (до 37 В) и ниже (до 1,2 В) данного диапазона, промежуточные значения напряжения, регулируемые стабилизаторы.
Что из себя представляет микросхема LM317
Микросхема представляет собой линейный стабилизатор напряжения, выходное значение которого можно устанавливать в определенных пределах или оперативно регулировать. Выпускается в нескольких вариантах корпуса с тремя выводами. Диапазон выходного напряжения у всех вариантов одинаковый, а максимальный ток может различаться.
Обозначение | Максимальный ток, А | Корпус |
---|---|---|
LM317T | 1,5 | TO-220 |
LM317LZ | 0,1 | ТО-92 |
LM317P | 1,5 | ISOWAT-220 |
LM317D2T | 1,5 | D2PAK |
LM317K | 0,1 | ТО-3 |
LM317LD | 1,5 | SO-8 |
Основные характеристики линейного стабилизатора напряжения LM317
В даташитах на стабилизатор LM317 содержится полная техническая информация, с которой можно ознакомиться, изучив спецификацию. Ниже приведены параметры, несоблюдение которых наиболее критично и при неверном применении микросхема может выйти из строя. В первую очередь, это максимальный рабочий ток. Он приведен в предыдущем разделе для разных видов исполнения. Надо добавить, что для получения наибольшего тока в 1,5 А микросхему обязательно надо устанавливать на теплоотводе.
Максимальное напряжение на выходе регулятора, построенного на основе LM317, может быть не более 40 В. Если этого мало, надо выбрать высоковольтный аналог стабилизатора.
Минимальное напряжение на выходе составляет 1,25 В. При таком построении схемы можно получить и меньше, но сработает защита от перегрузки. Это не самый удачный вариант – такая защита должна работать от превышения выходного тока, как это работает в других интегральных стабилизаторах. Поэтому на практике получить регулятор, работающий от нуля при подаче отрицательного смещения на вывод Adjust, нельзя.
Минимальное значение входного напряжения в даташите не указано, но может быть определено из следующих соображений:
- минимальное выходное напряжение – 1,25 В;
- минимальное падение напряжения для Uвых=37 В равно трем вольтам, логично предположить, что для минимального выходного оно должно быть не меньше;
Исходя из этих двух посылок, на вход надо подавать не меньше 3,5 В для получения минимального выходного значения. Также для стабильной работы ток через делитель должен быть не менее 5 мА – чтобы паразитный ток вывода ADJ не вносил значительного сдвига напряжения (на практике он может достигать до 0,5 мА).
Это относится к информации из классических даташитов известных производителей (Texas Instruments и т.п.). В даташитах нового образца от фирм Юго-Восточной Азии (Tiger Electronics и т.д.) этот параметр указывается, но в неявном виде, как разница между входным и выходным напряжением. Она должна составлять минимум 3 вольта для всех напряжений, что не противоречит предыдущим рассуждениям.
Максимальное же входное напряжение не должно превышать проектируемое выходное более, чем на 40 В. Это надо также учитывать при разработке схем.
Важно! На заявленные параметры можно ориентироваться, если микросхема выпущена каким-либо известным производителем. Продукция неизвестных фирм обычно имеет более низкие характеристики
Назначение выводов и принцип работы
Упоминалось, что LM317 относится к классу линейных стабилизаторов. Это означает, что стабилизация выходного напряжения осуществляется за счёт перераспределения энергии между нагрузкой и регулирующим элементом.
Транзистор и нагрузка составляют делитель входного напряжения. Если заданное на нагрузке напряжение уменьшается (по причине изменения тока и т.п.), транзистор приоткрывается. Если увеличивается – закрывается, коэффициент деления изменяется и напряжение на нагрузке остается стабильным. Недостатки такой схемы известны:
- необходимо, чтобы входное напряжение превышало выходное;
- на регулирующем транзисторе рассеивается большая мощность;
- КПД даже теоретически не может превышать отношение Uвых/Uвх.
Зато имеются серьезные плюсы (относительно импульсных схем):
- относительно простая и недорогая микросхема;
- требует минимальной внешней обвязки;
- и главное достоинство – выходное напряжение свободно от высокочастотных паразитных составляющих (помехи по питанию минимальны).
Стандартная схема включения микросхемы:
- на вывод Input подается входное напряжение;
- на вывод Output – выходное;
- на Ajust – опорное напряжение, от которого зависит выходное.
Резисторы R1 и R2 задают выходное напряжение. Оно рассчитывается по формуле:
Uвых=1,25⋅ (1+R2/R1) +Iadj⋅R2.
Iadj является паразитным током вывода настройки, по данным изготовителя он может быть в пределах 5 мкА. Практика показывает, что он может достигать значений на порядок-два выше.
Конденсатор С1 может иметь ёмкость от сотен до нескольких тысяч микрофарад. В большинстве случаев им служит выходной конденсатор выпрямителя. Он должен быть подключен к микросхеме проводниками длиной не более 7 см. Если это условие для конденсатора выпрямителя выполнить нельзя, то следует подключить дополнительную ёмкость примерно в 100 мкФ в непосредственной близости от входного вывода. Конденсатор С3 не должен иметь ёмкость более 100-200 мкФ по двум причинам:
- чтобы избежать перехода стабилизатора в режим автоколебаний;
- чтобы устранить бросок тока на заряд при подаче питания.
Во втором случае может сработать защита от перегрузки.
Не стоит забывать, что при протекании тока через резисторы, они нагреваются (это также возможно при повышении температуры окружающей среды). Сопротивление R1 и R2 изменяются, и нет гарантии, что они изменятся пропорционально. Поэтому напряжение на выходе с прогревом или охлаждением может изменяться. Если это критично, можно использовать резисторы с нормированным температурным коэффициентом сопротивления. Их можно отличить по наличию шести полосок на корпусе. Но стоят такие элементы дороже и купить их сложнее. Другой вариант – вместо R2 использовать стабилитрон на подходящее напряжение.
Какие существуют аналоги
Существуют подобные микросхемы, разработанные в других фирмах других стран. Полными аналогами являются:
- GL317;
- SG317;
- UPC317;
- ECG1900.
Также выпускаются стабилизаторы с повышенными электрическими характеристиками. Больший ток могут выдать:
- LM338 – 5 А;
- LM138 – 5 А
- LM350 – 3 А.
Если требуется регулируемый источник напряжения с верхним пределом в 60 В, надо применять стабилизаторы LM317HV, LM117HV. Индекс HV означает High Voltage – высокое напряжение.
Из отечественных микросхем полным аналогом является КР142ЕН12, но она выпускается только в корпусе ТО-220. Это надо учитывать при разработке печатных плат.
Примеры схем включения стабилизатора LM317
Типовые схемы включения микросхемы приведены в даташите. Стандартное применение — стабилизатор с фиксированным напряжением — рассмотрен выше.
Если вместо R2 установить переменный резистор, то выходное напряжение регулятора можно оперативно регулировать. Надо учитывать, что потенциометр будет слабым местом в схеме. Даже у переменных резисторов хорошего качества место контакта движка с проводящим слоем будет иметь некоторую нестабильность соединения. На практике это выльется в дополнительную нестабильность выходного напряжения.
Для защиты производитель рекомендует включить два диода D1 и D2. Первый диод должен защищать от ситуации, когда напряжение на выходе будет выше входного. На практике это ситуация крайне редкая, и может возникнуть только если со стоны выхода есть другие источники напряжения. Производитель отмечает, что этот диод также защищает от случая короткого замыкания на входе – конденсатор С1 в этом случае создаст разрядный ток противоположной полярности, что приведет микросхему к выходу из строя. Но внутри микросхемы параллельно этому диоду стоит цепочка из стабилитронов и резисторов, которая сработает точно также. Поэтому необходимость установки этого диода сомнительна. А D2 в такой ситуации защитит вход стабилизатора от тока конденсатора С2.
Если параллельно R2 поставить транзистор, то работой стабилизатора можно управлять. При подаче напряжения на базу транзистора, он открывается и шунтирует R2. Напряжение на выходе уменьшается до 1,25 В. Здесь надо следить, чтобы разница между входным и выходным напряжением не превысила 40 В.
Вредное воздействие контакта потенциометра на стабильность выходного напряжения можно уменьшить подключением параллельно переменному сопротивлению конденсатора. В этом случае защитный диод D1 не помешает.
Если выходного тока стабилизатора не хватает, его можно умощнить внешним транзистором.
Из стабилизатора напряжения можно получить стабилизатор тока, включив LM317 по такой схеме. Выходной тока рассчитывается по формуле I=1,25⋅R1. Подобное включение часто используется в качестве драйвера для светодиодов – LED включается в качестве нагрузки.
Наконец, необычное включение линейного стабилизатора – на его основе создана схема импульсного блока питания. Положительную обратную связь для возникновения колебаний задает цепь C3R6.
Микросхема LM317 имеет значительное количество слабых сторон. Но искусство создания схем и состоит в том, чтобы, используя плюсы стабилизатора, обходить недостатки. Все минусы микросхемы выявлены, даны советы по их нейтрализации. Поэтому LM317 пользуется популярностью у создателей профессиональной и любительской радиоаппаратуры.
Описание, характеристики и схема включения стабилизатора напряжения КРЕН 142
Как работает микросхема TL431, схемы включения, описание характеристик и проверка на работоспособность
Режимы работы, описание характеристик и назначение выводов микросхемы NE555
Что такое диодный мост, принцип его работы и схема подключения
Что такое выпрямитель напряжения и для чего нужен: типовые схемы выпрямителей
Dc Dc преобразователь. Устройство и принцип работы основных схем.
Dc Dc преобразователь
Для питания различной электронной аппаратуры весьма широко используется Dc Dc преобразователь. Применяется он в устройствах вычислительной техники, устройствах связи, различных схемах управления, автоматики и др.
Питание схем с помощью трансформаторных блоков питания
В традиционных трансформаторных блоках питания напряжение питающей сети с помощью трансформатора преобразуется, чаще всего понижается, до нужного значения. Пониженное напряжение выпрямляется диодным мостом и сглаживается конденсаторным фильтром. В случае необходимости после выпрямителя ставится полупроводниковый стабилизатор.
Трансформаторные блоки питания, как правило, оснащаются линейными стабилизаторами. Достоинств у таких стабилизаторов не менее двух: это маленькая стоимость и незначительное количество деталей в обвязке. Но эти достоинства съедает низкий КПД, поскольку значительная часть входного напряжения используется на нагрев регулирующего транзистора, что совершенно неприемлемо для питания переносных электронных устройств.
Питание схем с помощью Dc Dc преобразователей
Если питание аппаратуры осуществляется от гальванических элементов или аккумуляторов, то преобразование напряжения до нужного уровня возможно лишь с помощью Dc Dc преобразователей.
Идея достаточно проста: постоянное напряжение преобразуется в переменное, как правило, с частотой несколько десятков и даже сотен килогерц, повышается (понижается), а затем выпрямляется и подается в нагрузку. Такие преобразователи часто называются импульсными.
В качестве примера можно привести повышающий преобразователь из 1,5 В до 5 В (выходное напряжение компьютерного USB).
Dc Dc преобразователь 1,5 В / 5 В
Импульсные преобразователи хороши тем, что имеют высокий КПД, в пределах 60..90%. Еще одно достоинство импульсных преобразователей широкий диапазон входных напряжений: входное напряжение может быть ниже выходного или намного выше.
Классификация Dc Dc преобразователей
Вообще Dc Dc преобразователи можно разделить на несколько групп.
Понижающий, по английской терминологии step-down или buck
Выходное напряжение этих преобразователей, как правило, ниже входного: без особых потерь на нагрев регулирующего транзистора можно получить напряжение всего несколько вольт при входном напряжении 12…50 В. Выходной ток таких преобразователей зависит от потребности нагрузки, что в свою очередь определяет схемотехнику преобразователя.
Еще одно англоязычное название понижающего преобразователя chopper. Один из вариантов перевода этого слова – прерыватель. В технической литературе понижающий преобразователь иногда так и называют «чоппер». Пока просто запомним этот термин.
Повышающий, по английской терминологии step-up или boost
Выходное напряжение этих преобразователей выше входного. Например, при входном напряжении 5 В на выходе можно получить напряжение до 30 В, причем, возможно его плавное регулирование и стабилизация. Достаточно часто повышающие преобразователи называют бустерами.
Универсальный Dc Dc преобразователь – SEPIC
Выходное напряжение этих преобразователей удерживается на заданном уровне при входном напряжении как выше входного, так и ниже. Рекомендуется в случаях, когда входное напряжение может изменяться в значительных пределах. Например, в автомобиле напряжение аккумулятора может изменяться в пределах 9…14 В, а требуется получить стабильное напряжение 12 В.
Инвертирующий Dc Dc преобразователь — inverting converter
Основной функцией этих преобразователей является получение на выходе напряжения обратной полярности относительно источника питания. Очень удобно в тех случаях, когда требуется двухполярное питание, например для питания ОУ (операционных усилителей).
Все упомянутые преобразователи могут быть стабилизированными или нестабилизированными, выходное напряжение может быть гальванически связано с входным или иметь гальваническую развязку напряжений. Все зависит от конкретного устройства, в котором будет использоваться преобразователь.
Чтобы перейти к дальнейшему рассказу о Dc Dc преобразователях следует хотя бы в общих чертах разобраться с теорией.
Понижающий Dc Dc преобразователь – преобразователь типа buck
Его функциональная схема показана на рисунке ниже. Стрелками на проводах показаны направления токов.
Функциональная схема чопперного стабилизатора
Входное напряжение U in подается на входной фильтр — конденсатор C in. В качестве ключевого элемента используется транзистор VT, он осуществляет высокочастотную коммутацию тока. Это может быть транзистор структуры MOSFET, IGBT либо обычный биполярный транзистор. Кроме указанных деталей в схеме содержится разрядный диод VD и выходной фильтр – LC out, с которого напряжение поступает в нагрузку R н.
Нетрудно видеть, что нагрузка включена последовательно с элементами VT и L. Поэтому схема является последовательной.
Как же происходит понижение напряжения?
Широтно-импульсная модуляция – ШИМ
Схема управления вырабатывает прямоугольные импульсы с постоянной частотой или постоянным периодом, что в сущности одно и то же. Эти импульсы показаны на рисунке ниже.
Импульсы управления
Здесь tи время импульса, транзистор открыт, tп – время паузы, — транзистор закрыт. Соотношение tи/T называется коэффициентом заполнения duty cycle, обозначается буквой D и выражается в %% или просто в числах. Например, при D равном 50% получается, что D=0,5.
Таким образом D может изменяться от 0 до 1. При значении D=1 ключевой транзистор находится в состоянии полной проводимости, а при D=0 в состоянии отсечки, попросту говоря, закрыт. Нетрудно догадаться, что при D=50% выходное напряжение будет равно половине входного.
Совершенно очевидно, что регулирование выходного напряжения происходит за счет изменения ширины управляющего импульса tи, по сути дела изменением коэффициента D. Такой принцип регулирования называется широтно-импульсной модуляцией ШИМ (PWM). Практически во всех импульсных блоках питания именно с помощью ШИМ производится стабилизация выходного напряжения.
Вообще конвертеры получили столь широкое применение, что фирмы производители электронных компонентов наладили выпуск ШИМ контроллеров на все случаи жизни. Ассортимент настолько велик, что просто для того чтобы их перечислить понадобится целая книга. Поэтому собирать конвертеры на дискретных элементах, или как часто говорят на «рассыпухе», никому не приходит в голову.
Более того готовые конвертеры небольшой мощности можно купить на Алиэкспрес или Ebay за незначительную цену. При этом для установки в любительскую конструкцию достаточно припаять к плате провода на вход и выход, и выставить требуемое выходное напряжение.
Сейчас вернемся к нашему понижающему конвертеру типа buck, полная схема приведена выше.
В данном случае коэффициент D определяет, сколько времени будет открыт (фаза 1) или закрыт (фаза 2) ключевой транзистор. Для этих двух фаз можно представить схему двумя рисунками. На рисунках НЕ ПОКАЗАНЫ те элементы, которые в данной фазе не используются.
Фаза 1
При открытом транзисторе ток от источника питания (гальванический элемент, аккумулятор, выпрямитель) проходит через индуктивный дроссель L, нагрузку Rн, и заряжающийся конденсатор Cout. При этом через нагрузку протекает ток, конденсатор Cout и дроссель L накапливают энергию. Ток iL ПОСТЕПЕННО ВОЗРАСТАЕТ, сказывается влияние индуктивности дросселя. Эта фаза называется накачкой.
После того, как напряжение на нагрузке достигнет заданного значения (определяется настройкой устройства управления), транзистор VT закрывается и устройство переходит ко второй фазе – фазе разряда. Закрытый транзистор на рисунке не показан вовсе, как будто его и нет. Но это означает лишь то, что транзистор закрыт.
Фаза 2
При закрытом транзисторе VT пополнения энергии в дросселе не происходит, поскольку источник питания отключен. Индуктивность L стремится воспрепятствовать изменению величины и направления тока (самоиндукция) протекающего через обмотку дросселя.
Поэтому ток мгновенно прекратиться не может и замыкается через цепь «диод-нагрузка». Из-за этого диод VD получил название разрядный. Как правило, это быстродействующий диод Шоттки. По истечении периода управления фаза 2 схема переключается на фазу 1, процесс повторяется снова. Максимальное напряжение на выходе рассмотренной схемы может быть равным входному, и никак не более. Чтобы получить выходное напряжение больше, чем входное, применяются повышающие преобразователи.
Следует заметить, что на самом деле не все так просто, как написано выше: предполагается, что все компоненты идеальные, т.е. включение и выключение происходит без задержек, а активное сопротивление нулевое. При практическом изготовлении подобных схем приходится учитывать многие нюансы, поскольку очень многое зависит от качества применяемых компонентов и паразитной емкости монтажа. Только про такую простую деталь как дроссель (ну, просто моток провода!) можно написать еще не одну статью.
Пока только следует напомнить собственно о величине индуктивности, которая определяет два режима работы чоппера. При недостаточной индуктивности преобразователь будет работать в режиме разрывных токов, что совершенно недопустимо для источников питания.
Если же индуктивность достаточно большая, то работа происходит в режиме неразрывных токов, что позволяет с помощью выходных фильтров получить постоянное напряжение с приемлемым уровнем пульсаций. В режиме неразрывных токов работают и повышающие преобразователи, о которых будет рассказано ниже.
Для некоторого повышения КПД разрядный диод VD заменяется транзистором MOSFET, который в нужный момент открывается схемой управления. Такие преобразователи называются синхронными. Их применение оправдано, если мощность преобразователя достаточно велика.
Повышающий Dc Dc преобразователь – преобразователь типа boost
Повышающие преобразователи применяются в основном при низковольтном питании, например, от двух-трех батареек, а некоторые узлы конструкции требуют напряжения 12…15 В с малым потреблением тока. Достаточно часто повышающий преобразователь кратко и понятно называют словом «бустер».
Функциональная схема повышающего преобразователя
Входное напряжение U in подается на входной фильтр C in и поступает на последовательно соединенные катушку индуктивности L и коммутирующий транзистор VT. В точку соединения катушки и стока транзистора подключен диод VD. К другому выводу диода подключены нагрузка R н и шунтирующий конденсатор C out.
Транзистор VT управляется схемой управления, которая вырабатывает сигнал управления стабильной частоты с регулируемым коэффициентом заполнения D, так же, как было рассказано чуть выше при описании чопперной схемы. Диод VD в нужные моменты времени блокирует нагрузку от ключевого транзистора.
Когда открыт ключевой транзистор правый по схеме вывод катушки L соединяется с отрицательным полюсом источника питания U in. Нарастающий ток (сказывается влияние индуктивности) от источника питания протекает через катушку и открытый транзистор, в катушке накапливается энергия.
В это время диод VD блокирует нагрузку и выходной конденсатор от ключевой схемы, тем самым предотвращая разряд выходного конденсатора через открытый транзистор. Нагрузка в этот момент питается энергией накопленной в конденсаторе C out. Естественно, что напряжение на выходном конденсаторе падает.
Как только напряжение на выходе станет несколько ниже заданного, (определяется настройками схемы управления), ключевой транзистор VT закрывается, и энергия, запасенная в дросселе, через диод VD подзаряжает конденсатор C out, который подпитывает нагрузку. При этом ЭДС самоиндукции катушки L складывается с входным напряжением и передается в нагрузку, следовательно, напряжение на выходе получается больше входного напряжения.
По достижении выходным напряжением установленного уровня стабилизации схема управления открывает транзистор VT, и процесс повторяется с фазы накопления энергии.
Универсальный Dc Dc преобразователь – SEPIC
SEPIC (single-ended primary-inductor converter) или преобразователь с несимметрично нагруженной первичной индуктивностью.
Подобные преобразователи применяются в основном, когда нагрузка имеет незначительную мощность, а входное напряжение изменяется относительно выходного в большую или меньшую сторону.
Функциональная схема преобразователя SEPIC
Очень похожа на схему повышающего преобразователя, показанного на предыдущем рисунке, но имеет дополнительные элементы: конденсатор C1 и катушку L2. Именно эти элементы и обеспечивают работу преобразователя в режиме понижения напряжения.
Преобразователи SEPIC применяются в тех случаях, когда входное напряжение изменяется в широких пределах. В качестве примера можно привести 4V-35V to 1.23V-32V Boost Buck Voltage Step Up/Down Converter Regulator. Именно под таким названием в китайских магазинах продается преобразователь, схема которого показана на рисунке ниже.
Принципиальная схема преобразователя SEPIC
Ниже показан внешний вид платы с обозначением основных элементов.
Внешний вид преобразователя SEPIC
Следует обратить внимание на наличие двух катушек L1 L2. По этому признаку можно определить, что это именно преобразователь SEPIC.
Входное напряжение платы может быть в пределах 4…35 В. При этом выходное напряжение может настраиваться в пределах 1,23…32 В. Рабочая частота преобразователя 500 КГц. При незначительных размерах 50 x 25 x 12 мм плата обеспечивает мощность до 25 Вт. Максимальный выходной ток до 3 А.
Но тут следует сделать замечание. Если выходное напряжение установить на уровне 10 В, то выходной ток не может быть выше 2,5 А (25 Вт). При выходном напряжении 5 В и максимальном токе 3 А мощность составит всего 15 Вт. Здесь главное не перестараться: либо не превысить максимально допустимую мощность, либо не выйти за пределы допустимого тока.
Стабилизаторы напряжения или как получить 3,3 вольта
Исходные данные: мотор-редуктор рабочее напряжение у которого 5 Вольт при токе 1 А и микроконтроллер ESP-8266 с чувствительным на изменение рабочим напряжением питания 3,3 Вольт и с пиковым током до 600 миллиампер. Все это необходимо учесть и запитать от одной аккумуляторной литий-ионной батареи 18650 напряжением 2,8 -4,2 Вольт.
Собираем схему приведенную ниже: аккумулятор литий-ионный 18650 напряжением 2,8 — 4,2 Вольт без внутренней схемы зарядного устройства -> присоединяем модуль на микросхеме TP4056 предназначенный для зарядки литий-ионных аккумуляторов с функцией ограничения разряда аккумулятора до 2,8 Вольт и защитой от короткого замыкания (не забываем что этот модуль запускается при включенном аккумуляторе и кратковременной подачи питания 5 Вольт на вход модуля от USB зарядного устройства, это позволяет не использовать выключатель питания, ток разряда в ждущем режиме не очень большой и при долгом не использования всего устройства оно само выключиться при падении напряжения на аккумуляторе ниже 2,8 Вольт)
К модулю TP4056 подключаем модуль на микросхеме MT3608 — повышающий DC-DC (постоянного в постоянный ток) стабилизатор и преобразователь напряжения с 2,8 -4,2 Вольт аккумулятора до стабильных 5 Вольт 2 Ампера — питания мотор-редуктора.
Параллельно к выходу модуля MT3608 подключаем понижающий DC-DC стабилизатор-преобразователь на микросхеме MP1584 EN предназначенный для стабильного питания 3,3 Вольта 1 Ампер микропроцессора ESP8266.
Стабильная работа ESP8266 очень зависит от стабильности напряжения питания. Перед подключением последовательно модулей DC-DC стабилизаторов-преобразователей не забудьте настроить переменными сопротивлениями нужное напряжение, поставьте конденсатор параллельно клеммам мотор-редуктора что бы тот не создавал высокочастотных помех работе микропроцессору ESP8266.
Как видим из показаний мультиметра при присоединении мотор-редуктора напряжение питания микроконтроллера ESP8266 НЕ ИЗМЕНИЛОСЬ!
Небольшой обзор стабилизаторов напряжения и тока
Зачем нужен СТАБИЛИЗАТОР НАПРЯЖЕНИЯ. Как использовать стабилизаторы напряжения
Знакомство со стабилитронами, расчет параметрического стабилизатора; использование интегральных стабилизаторов; конструкция простого тестера стабилитронов и другое.AMS1117 Технический паспорт
Наименование | AMS1117 | Kexin Промышленные |
Описание | Линейный регулятор напряжения DC-DC с малым внутренним падением напряжения, выход 800мА, 3.3В, SOT-223 |
RT9013 Технический паспорт
MP1584EN Технический паспорт
Наименование | MP1584EN | Монолитные Power Systems | |||||||||||||||||||
Описание | 3А, 1.5MHz, 28В Step-Down конвертер | ||||||||||||||||||||
MP1584EN Технический паспорт PDF (datasheet) : | |||||||||||||||||||||
Диапазон входного напряжения от 4.5 Вольт до 28 Вольт охватывает большинство понижающих приложений, в том числе в автомобильной сфере. 100 мкА оперативный ток покоя позволяет использовать модуль в спящем режиме от батарейного питания. Эффективность преобразования в широком диапазоне нагрузки достигается путем уменьшения частоты переключения при малой нагрузке, чтобы уменьшить потери при коммутации затвора выходного транзистора. **Приобрести можно в магазине Your Cee MP2307 Технический паспорт
1. Термостойкий 8-контактный SOIC корпус. 2. 3A — непрерывный выходной ток 4A — пиковый выходной ток. 3. Широкий диапазон рабочего входного напряжении от 4.75 Вольт до 23 Вольт. *Приобрести можно в магазине Your Cee LM2596 Технический паспорт
|