Sfera-perm.ru

Сфера Пермь
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Полевые транзисторы в стабилизаторах тока зарядных устройств

Библиотека

Постоянно пополняющаяся подборка книг для самодельщиков и не только.

TOP-50 — Последние поступления:
Импульсные источники питания. Switch Mode Power Supplies — 05.04.12
Транзисторная преобразовательная техника — 26.03.12
Импульсные источники питания. Теоретические основы проектирования и руководство по практическому применению — 19.03.12
Основы силовой электроники. Учебник — 11.03.12
Трансформаторы и дроссели в импульсных устройствах — 05.03.12
Однотактные преобразователи напряжения в устройствах электропитания РЭА — 27.02.12
Схемотехника функциональных узлов источников вторичного электропитания. Справочник — 20.02.12
Основы силовой электроники — 13.02.12
Оптимальное проектирование силовых высокочастотных ферромагнитных устройств — 05.02.12
Обратноходовый преобразователь — 30.01.12
Источники электропитания РЭА. Справочник. — 23.01.12
Справочник типовых решений с применением светодиодов — 16.01.12
Практическая схемотехника. Преобразователи напряжения. Книга 3. — 05.01.12
Практическая схемотехника. Источники питания и стабилизаторы. Книга 2. — 25.12.11
Источники питания радиоэлектронной аппаратуры — 27.11.11
Источники вторичного электропитания с бестрансформаторным входом — 21.11.11
Источники питания. Расчет и конструирование. — 14.11.11
Начальная школа построения импульсных DC/DC преобразователей — 07.11.11
Импульсные источники вторичного электропитания в бытовой радиоаппаратуре — 31.10.11
Проектирование вторичных источников питания с выходом на постоянном токе — 24.10.11
Источники электропитания электронных средств — 17.10.11
500 схем для радиолюбителей. Источники питания. — 10.10.11
300 схем источников питания — 03.10.11
Импульсные источники питания. Современная схемотехника. — 27.09.11
Силовая электроника: от простого к сложному — 20.09.11
Оригинальные конструкции источников питания — 05.09.11
Электрические униполярные машины — 10.08.11
Изобретателю о ветродвигателях и ветроустановках — 26.07.11
Ветроэнергетика — 10.07.11
Практическое руководство по устройствам мобильной энергии — Practical Guide to Free-Energy Devices — 02.07.11
Ветронасосные и ветроэлектрические агрегаты — 16.06.11
Автономные ветроэлектрические установки — 08.06.11
500 схем для радиолюбителей. (Часть.4. Источники питания) — 14.02.09
Двигатель Стирлинга, модель 2-90М — 19.08.08
Машины, работающие по циклу Стирлинга — 19.08.08
Аккумуляторы — 28.07.08
Самодельные электрические и паровые двигатели — 27.04.08
Экспериментальные источники электроэнергии — 27.04.08
Термоэлектрические генераторы — 20.04.08
все публикации в разделе Книги

Статьи (публикаций: 9)

Подборка интересных статей по практическому применению некоторых идей и изобретений.

Схема. Модуль мощного стабилизатора напряжения на полевом транзисторе

Современного человека в быту и на производстве окружает большое количество электротехнических приборов и оборудования. Для устойчивой, стабильной работы всей этой техники требуется бесперебойная подача электроэнергии. Однако из-за скачков сетевого напряжения, приборы довольно часто выходят из строя. Во избежание подобных ситуаций, применяются специальные устройства, в том числе и стабилизатор тока на полевом транзисторе. Его использование гарантирует нормальную работу электротехники, предотвращает аварии и поломки.

Работа стабилизаторов тока

Качественное питание всех электротехнических устройств можно гарантированно обеспечить лишь, используя стабилизатор тока. С его помощью компенсируются скачки и перепады в сети, увеличивается срок эксплуатации приборов и оборудования.

Основной функцией стабилизатора является автоматическая поддержка тока потребителя с точно заданными параметрами. Кроме скачков тока, удается компенсировать изменяющуюся мощность нагрузки и температуру окружающей среды. Например, с увеличением мощности, потребляемой оборудованием, произойдет соответствующее изменение потребляемого тока. В результате, произойдет падение напряжения на сопротивлении проводки и источника тока. То есть, с увеличением внутреннего сопротивления, будут более заметны изменения напряжения при увеличении токовой нагрузки.

В состав компенсационного стабилизатора тока с автоматической регулировкой входит цепь отрицательной обратной связи. Изменение соответствующих параметров регулирующего элемента позволяет достичь необходимой стабилизации. На элемент оказывает воздействие импульс обратной связи. Данное явление известно, как функция выходного тока. В зависимости от регулировок, стабилизаторы разделяются на непрерывные, импульсные и смешанные.

Среди множества стабилизаторов очень популярны стабилизаторы тока на полевых транзисторах. Подключение транзистора в данной схеме осуществляется последовательно сопротивлению нагрузки. Это приводит к незначительным изменениям тока нагрузки, в то время, как входное напряжение подвержено существенным изменениям.

Стабилизатор напряжения на мощном полевом транзисторе 13В (IRLR2905)

При построении сильноточных стабилизаторов напряжения радиолюбители обычно используют специализированные микросхемы серии 142 и аналогичные, «усиленные» одним или несколькими, включенными параллельно, биполярными транзисторами. Если для этих целей применить мощный переключательный полевой транзистор, то удастся собрать более простой сильноточный стабилизатор,

Схема одного из вариантов такого стабилизатора приведена на рис. 3.28.0. Со вторичной обмотки трансформатора переменное напряжение около 13 В (эффективное значение) поступает на выпрямитель и сглаживающий фильтр. На конденсаторах фильтра оно равно 16 В. Это напряжение поступает на сток мощного транзистора VT1 и через резистор R1 на затвор, открывая транзистор.

Часть выходного напряжения через делитель R2, R3 подается на вход микросхемы DA1, замыкая цепь ООС. Напряжение на выходе стабилизатора возрастает вплоть до того момента, пока напряжение на входе управления микросхемы DA1 не достигнет порогового, около 2,5 В. В этот момент микросхема открывается, понижая напряжение на затворе мощного транзистора, т.е. частично закрывая его, и, таким образом, устройство входит в режим стабилизации. Лучшие результаты удастся получить, если диод VD2 подключить к выпрямительному мосту (рис. 3.28.6). В этом случае напряжение на конденсаторе С5 увеличится, поскольку падение напряжения на диоде VD2 будет меньше, чем падение напряжения на диодах моста, особенно при максимальном токе.

При необходимости плавной регулировки выходного напряжения постоянный резистор R2 следует заменить переменным или подстроенным резистором.

В стабилизаторе в качестве регулирующего элемента применен мощный полевой транзистор IRLR2905. Хотя он и предназначен для работы в ключевом (переключательном) режиме, в данном стабилизаторе он используется в линейном режиме. Транзистор имеет в открытом состоянии весьма малое сопротивление канала (0,027 Ом), обеспечивает ток до 30 А при температуре корпуса до 100°С, обладает высокой крутизной и требует для управления напряжения на затворе всего 2,5…3 В. Мощность, рассеиваемая транзистором, может достигать 110 Вт.

Полевым транзистором управляет микросхема параллельного стабилизатора напряжения КР142ЕН19 (импортный аналог TL431). Конденсаторы — малогабаритные танталовые, резисторы — MJ1T, С2-33, диод VD2 — выпрямительный с малым падением напряжения (германиевый, диод Шоттки). Параметры трансформатора, диодного моста и конденсатора С1 выбирают исходя из необходимого выходного напряжения и тока. Хотя транзистор и рассчитан на большие токи и большую рассеиваемую мощность, для реализации всех его возможностей необходимо обеспечить эффективный теплоотвод.

Читайте так же:
Импульсный стабилизатор напряжения постоянного тока

Налаживание сводится к установке требуемого значения выходного напряжения. Надо обязательно проверить устройство на отсутствие самовозбуждения во всем диапазоне рабочих токов. Для этого напряжения в различных точках устройства контролируют с помощью осциллографа. Если самовозбуждение возникает, то параллельно конденсаторам CI, С2 и С4 следует подключить керамические конденсаторы емкостью 0,1 мкФ с выводами минимальной длины. Размещаются эти конденсаторы как можно ближе к транзистору VT1 и микросхеме DA1.

Печатная плата устройства приведена на рис. 3.29. Эта плата рассчитана на установку малогабаритных деталей в корпусах для поверхностного монтажа, в том числе и микросхема КР142ЕН19 требует замены на импортный аналог в корпусе SO-8.

В случае, если полевой транзистор найти не удалось, стабилизатор можно выполнить по другой схеме (рис. 3.30), на мощных биполярных транзисторах, с использованием той же микросхемы. Правда, максимальный ток нагрузки у этого варианта стабилизатора не более 3…4 А. Для повышения коэффициента стабилизации применен стабилизатор тока на полевом транзисторе, в качестве регулирующего элемента применен мощный составной транзистор. Трансформатор должен обеспечивать на вторичной обмотке напряжение не менее 15 В при максимальном токе нагрузки.

Устройство и работа полевого транзистора

Управление полевыми транзисторами осуществляется посредством электрического поля, отсюда и появилось их название. В свою очередь электрическое поле создается под действием напряжения. Таким образом, все полевые транзисторы относятся к полупроводниковым приборам, управляемым напряжением.

Канал этих устройств открывается только с помощью напряжения. При этом, ток не протекает через входные электроды. Исключение составляет лишь незначительный ток утечки. Отсюда следует, что какие-либо затраты мощности на управление отсутствуют. Однако на практике не всегда используется статический режим, в процессе переключения транзисторов задействована некоторая частота.

В конструкцию полевого транзистора входит внутренняя переходная емкость, через которую протекает некоторое количество тока во время переключения. Поэтому для управления затрачивается незначительное количество мощности.

В состав полевого транзистора входит три электрода. Каждый из них имеет собственное название: исток, сток и затвор. На английском языке эти наименования соответственно будут выглядеть, как source, drain и gate. Канал можно сравнить с трубой, по которой движется водяной поток, соответствующий заряженным частицам. Вход потока происходит через исток. Выход заряженного потока происходит через сток. Для закрытия или открытия потока существует затвор, выполняющий функцию крана. Течение заряженных частиц возможно лишь при условии напряжения, прилагаемого между стоком и истоком. При отсутствии напряжения тока в канале также не будет.

Таким образом, чем больше значение подаваемого напряжения, тем сильнее открывается кран. Это приводит к увеличению тока в канале на участке сток-исток и уменьшению сопротивления канала. В источниках питания применяется ключевой режим работы полевых транзисторов, позволяющий полностью закрывать или открывать канал.

↑ Несколько замечаний по выбору деталей

Исключён фрагмент. Полный вариант статьи доступен меценатам и полноправным членам сообщества. Читай условия доступа.

Есть немало споров: нужен или нет делитель R1R2 на входе фильтра и будет ли фильтр работать без него.

Почему у одних фильтр без делителя работает нормально, а у других – нет. Оказалось, что всё зависит от утечки конденсатора С1. Я испробовал около десятка конденсаторов 10 и 22 мкФ на напряжение 400 и 450 В при входном напряжении около 300 В.

Оказалось, что при оксидном (электролитическом) конденсаторе фильтр хорошо работает и без делителя. За счёт утечки в конденсаторе совместно с резистором R3 образуется делитель и падение напряжения на фильтре вполне достаточно (от 10 В и более). Мало того, в результате установки новых только что купленных конденсаторов, падение напряжения составило вместо 20 В (со старым выпаянным конденсатором) более 50 В. Нагрев резко увеличился, а выходное напряжение упало.

Потребовалась многочасовая формовка новых конденсаторов, и всё равно, утечка у конденсаторов 22 мкФ оказалась заметно выше, чем у 10 мкФ. Формовка, конечно, должна быть без подключённого усилителя.

Утечка плёночных конденсаторов будет многократно меньше, поэтому с ними делитель на входе необходим

, иначе на выходе фильтра может быть «пила», как на входе. В любом случае надо контролировать падение напряжения на транзисторе фильтра, оно должно быть более 10 В.

Важность пребывания транзистора в режиме насыщения

Первым серьезным вызовом этому идеализированному анализу данной схемы является тот факт, что всё разваливается, когда транзистор не находится в режиме насыщения. Если Q2 находится в области триода (т.е. в линейной), ток стока будет сильно зависеть от Vсток-исток (VDS). Другими словами, у нас больше нет источника тока, потому что на ток смещения влияет Vит. Мы знаем, что напряжение затвор-сток Q2, чтобы поддерживать насыщение, должно быть меньше порогового напряжения.

Другой способ сказать это: Q2 покинет область насыщения, когда напряжение стока станет на Vпорог вольт ниже, чем напряжение затвора. Мы не можем указать точное число, потому что и напряжение на затворе, и пороговое напряжение будут варьироваться от одной реализации к другой.

Пример: напряжение затвора, необходимое для генерации требуемого тока смещения, составляет около 0,9 В, а пороговое напряжение составляет 0,6 В; это означает, что мы можем поддерживать насыщение до тех пор, пока Vит остается выше

Настройка и управление

Эта удобная схема источника тока становится еще лучше, когда вы понимаете, насколько она гибкая. Сначала давайте посмотрим на настройку тока, генерируемого Q2. До сих пор мы предполагали, что генерируемый ток равен опорному току, но это верно только в том случае, если транзисторы имеют одинаковое отношение ширины канала к длине канала. Вспомните формулу для тока стока в режиме насыщения:

Ток стока прямо пропорционален отношению ширины к длине, и, таким образом, мы можем увеличить или уменьшить Iсмещ, просто сделав отношение W/L в Q2 выше или ниже, чем в Q1. Например, если мы хотим, чтобы ток смещения был в два раза больше опорного тока, все, что нам нужно сделать, это сохранить длины каналов одинаковыми и увеличить ширину канала в Q2 в два раза. (Это может показаться не таким простым, если вы привыкли работать с дискретными полевыми транзисторами, но указание размеров канала является стандартной практикой при проектировании микросхем).

Читайте так же:
Импульсный стабилизатор тока схема 10а

Также очень просто использовать эту схему для «токового управления». Следующая схема иллюстрирует концепцию токового управления:


Рисунок 5 – Токовое управление

Это включение MOSFET транзисторов позволяет генерировать множество токов смещения от одного опорного тока. Более того, каждый из этих токов может быть разным – их можно индивидуально изменять, просто регулируя соотношения ширины канала к его длине.

Форум радиоконструкторов

Текущее время: 11 окт 2021, 14:56

СТАБИЛИЗАТОР 13,8 В ✕ 25 А С ЗАЩИТОЙ

Хоть пол света обойдёшь — лучше схемы не найдёшь!

Каких только блоков питания для своих радиостанций и трансиверов напридумывали за последние десятилетия радиолюбители всего мира, произвели малые и большие фирмы из разных стран. Всевозможные трансформаторные и бестрансформаторные, импульсные двухтактные и однотактные, стабилизированные и нет, с защитой и без.

Но мне пришлось создавать свой собственный, надёжный, стабильный и дешёвый. Преимуществом блока является его простота и полное отсутствие радиопомех, свойственных импульсным блокам питания, а также крепление фланца коллектора мощного регулирующего транзистора непосредственно к шасси — дюралевой пластине размером 245✕155 мм и толщиной 10 мм, что обеспечивает хороший теплоотвод и упрощает конструкцию.

Предлагаю данный блок питания для повторения радиолюбителями, имеющими трансиверы любых марок и типов с напряжением питания 13,8 В и выходной мощностью до 120 Вт, и гарантирую её отличную и качественную работу. Все применяемые в схеме радиокомпоненты имеются в широкой розничной продаже. Силовой трансформатор может быть любого типа габаритной мощностью не менее 300 Ватт, но предпочтительней тороидальный.

Базовая схема стабилизатора приведена на рисунке ниже. Переменное напряжение величиной 18 Вольт с вторичной обмотки силового трансформатора поступает на выпрямительные диоды VD1—VD4 типа Шоттки, расположенные попарно на двух изолированных от корпуса радиаторах. Диоды VD1, VD2 крепятся к радиатору непосредственно, а диоды VD3, VD4 через слюдяные прокладки и изолирующие шайбы. Вместо диодов можно применить полевые транзисторы по схеме http://radon.org.ua/forum/viewtopic.php?f=124&t=160&p=332#p332

Стабилизатор работает следующим образом. Выпрямленное напряжение с минуса конденсатора С1, ёмкость которого может быть вдвое больше, поступает на эмиттер регулирующего транзистора VT1 типа TIP35C, который заменим на BD250C, а через резистор R1 и предохранитель FUSE с током перегорания от 1,5 до 2 Ампер на вход микросхемы интегрального стабилизатора типа LM79M12 в корпусе TO-220 Plastic Package, в опорный вывод которого включен обычный не яркий зелёный светодиод, выполняющий роль стабилитрона с напряжением стабилизации около 1,8 В.

При малой нагрузке выходной ток стабилизатора обеспечивает сама микросхема, поскольку падения напряжения на резисторе R1 недостаточно для отпирания транзистора VT1. При увеличении нагрузки транзистор VT1 отпирается и через него начинает протекать ток в β (бета) раз больший тока через микросхему. Электролитический конденсатор С2 устраняет переходные процессы и сглаживает пульсации выходного напряжения, его желательно зашунтировать керамическим конденсатором ёмкостью 0,1 мкФ.

Монтаж силовых цепей стабилизатора (на схеме они выделены жирными линиями) необходимо производить многожильным медным проводом сечением 4 мм² уделяя особое внимание качеству паек и комплектующих элементов. Зачищенные выводы силовых проводов и выводы соответствующих деталей прикладывают один к другому и плотно обматывают в один слой тонким медным проводом без изоляции, делая так называемый бандаж, после чего смачивают флюсом Ф3 и паяют хорошо прогретым 90 Ваттным паяльником не экономя припой.

Показанные точками на схеме соединения деталей необходимо спаивать между собой без применения длинных проводников. Катод светодиода припаивают непосредственно к первой ножке (GND) интегрального стабилизатора, анод припаивают к плюсу конденсатора C2 и выходной клемме. Выводы светодиода необходимо изгибать не ближе 3 мм от корпуса, чтобы не передавать механическое напряжение на кристалл. Интегральный стабилизатор LM79M12 (фото ниже) следует применять в изолированном корпусе и крепить к шасси рядом с транзистором VT1.

Применение диодов VD1—VD4 типа Шоттки обусловлено малым прямым падением напряжения, раза в три меньшим, чем у обычных кремниевых диодов, что уменьшает их нагрев и увеличивает КПД выпрямителя. Вместо четырёх диодов КД2998Г в мостовом выпрямителе, он ещё называется «мост Греца», можно использовать импортные сборки диодов Шоттки, такие как MBR30100CT (30 А ✕ 100 В) включённые по приведённой ниже схеме. Они должны крепиться к радиаторам с использованием термопроводящей пасты.

Правильно собранная схема стабилизатора в наладке не нуждается. Во избежание больших бросков тока при включении блока питания в сеть, что может вызвать перегорание сетевого предохранителя или пробой выпрямительных диодов, в цепь первичной обмотки силового трансформатора последовательно с предохранителем следует включить полупроводниковый термистор NTC типа SCK-105 (10 Ом, 5А).

Такой же термистор ( http://radiocom.dn.ua/image/data/pdf/NTC-MF72.pdf ) но сопротивлением 20 Ом и выше на рабочий ток 2 А можно включить последовательно с лампой накаливания 220 В в светильнике или последовательно с люстрой из нескольких ламп для продления срока службы спиралей, как минимум вдвое.

Охлаждение радиаторов диодов, силового трансформатора и всего внутреннего пространства стабилизатора производится с помощью кулера ⌀80—90 мм на рабочее напряжение 24 В питаемого непосредственно с выхода выпрямителя и включаемого контактами биметаллического термостата типа JUC-31F-70-H с температурой замыкания контактов 70 °C прикреплённого к радиатору между диодами VD1, VD2.

При длительной работе на передачу, когда силовой трансформатор уже нагрелся, но кулер ещё не включился, можно применить схему двухуровневого охлаждения, приведённую ниже. В обычном режиме на кулер подаётся напряжение 12 В и он работает на пониженных оборотах, охлаждая внутреннее пространство блока. При нагреве радиаторов термостат срабатывает и на кулер подаётся напряжение 24 В, увеличивая его обороты до максимальных.

Читайте так же:
Простой стабилизатор тока для зарядки аккумуляторов

Для защиты трансивера от аварийного превышения выходного напряжения стабилизатора можно применить опубликованную разными авторами простую схему на тиристоре, которая подключается параллельно клеммам питания трансивера, срабатывание которой закорачивает цепь и вызывает перегорание предохранителя на шнуре питания трансивера, обесточивая его.

Однако себе такую защиту не делал, полагаясь на качество применённых деталей, надёжность схемы и Божью милость, подобно архитектору, смело стоящему под спроектированным им мостом, когда по нему проходит тяжёлый транспорт. С 2010 года работает у меня этот блок питания и никаких проблем с ним никогда не возникало. Главное, чтобы напряжение выпрямителя в холостом режиме не превышало 24 Вольта, а мощность рассеиваемая транзистором VT1 была не больше 120 Ватт.

Но для большей безопасности, уверенности, наглядности и успокоения собственной души, каждый раз при включении блока питания в сеть следует сперва внимательно посмотреть на показания вольтметра, контролирующего выходное напряжение и лишь убедившись, что оно соответствует номинальному, только тогда можно смело включать питание самого трансивера.

Учитывая эксплуатацию блока питания радиолюбителями разной квалификации в разных условиях, разработал схему защиты трансивера от пробоя силового регулирующего транзистора VT1 при аварийном превышении тока нагрузки, перегреве или некачественном образце. Схема защиты выделена цветом. При включении блока заряд конденсатора C3 открывает транзистор VT2 подавая напряжение на схему стабилизатора, транзистор VT3 также открывается, поддерживая транзистор VT2 в открытым состоянии.

При пробое силового регулирующего транзистора VT1 транзистор VT3 запирается, что приводит к запиранию транзистора VT2 и прекращению подачи напряжения с выпрямителя на стабилизатор. Трансивер мгновенно обесточивается. Схема защиты собирается навесным монтажом в разрыве синего минусового провода идущего от конденсатора C1 к эмиттеру транзистора VT1. Быстродействие этой защиты как минимум на порядок выше, чем на тиристоре.

Транзистор VT2 крепится к небольшому радиатору изолированному от шасси. Вместо него можно применить любой мощный ключевой полевой транзистор с сопротивлением сток-исток в открытом состоянии (Drain-Source On-State Resistance) не более 0,01 Ом и напряжением затвор-исток не менее 20 В в корпусе TO-220 или TO-263, например, FDP6035AL, IPD09N03LA, APM3055L, HUF75307D3, NTD4815NH. Такие транзисторы стоят на материнских платах старых компьютеров. При параллельном включение двух транзисторов радиатор не понадобится. Транзистор IRFR9024 можно заменить на 2SJ176, 2SJ325, 2SJ598.

При выключении блока на конденсаторе C1 остаётся напряжение, которое при следующем быстром включении, например, при пропадании и появлении сети не позволяет защите срабатывать. Поэтому для ускорения разряда конденсатора C1 необходимо параллельно ему включить резистор номиналом несколько килоом или маломощную лампочку накаливания на 24 В или подключать их через кнопку «разряд» на передней панели. Монтаж схемы защиты показан ниже.

На фото внизу показан блок стабилизатора до установки защиты в ракурсе доступном для визуального ознакомления с его внешней и внутренней конструкцией и представления о его компоновке. Однако каждый радиолюбитель может «слепить» его по-своему, главное не отступать от схемы, рекомендаций по монтажу, использовать качественные и проверенные детали, надёжный и компактный монтаж.

Измерительные приборы на передней панели блока применены типа М4203, причём контролировать ток не имеет особого смысла, поскольку все стоваттные трансиверы при нормальном КСВ не потребляют больше 25 Ампер. Важнее контролировать входное и выходное напряжение стабилизатора двумя вольтметрами со шкалой, соответственно, 30 В и 15 В.


__________________________________________________
Юрко СТРЕЛКОВ-СЕРГА (UT5NC)

Последний раз редактировалось Yurko 22 мар 2020, 20:14, всего редактировалось 65 раз.

Зарядное устройство из компьютерного БП ATX с защитой от переполюсовки и КЗ.

Пожалуй каждый автолюбитель рано или поздно сталкивается с необходимостью подзарядить аккумулятор своего «коня». Я много раз находил информацию, что из компьютерного блока питания можно сделать хорошую зарядку для аккумуляторов, но всегда отбрасывал эту информацию так как на переделку просто не было достаточно свободного времени и у меня была простейшая зарядка внутри которой был трансформатор, диод и амперметр 🙂 Заряжать аккумуляторы при необходимости я мог, но вот качество этой зарядки оставляло желать лучшего.

И вот, когда появилось свободное время, я начал процесс изготовления (переделки) блока питания компьютера в зарядное устройство для автомобильных свинцово-кислотных аккумуляторных батарей 62 А.Ч. Потратив несколько часов на поиски в интернете был найден ненужный, ещё рабочий блок питания (Codegen 250W) и инструкция со схемой по переделке. Сразу скажу, что суммарно процесс переделки у меня занял около двух-трёх недель, так как взятая изначально схема дорабатывалась, просчитывалась, переделывалась и настраивалась. При этом за две-три недели перечитал кучу инструкций, статей, схем по принципам работы блоков питания, работе ШИМ контроллеров, назначению ДГС и ещё тонны полезнейшей информации для общего развития. Многие элементы схемы пришлось рассчитывать самому дабы получить именно то, что мне было необходимо.

Начальная схема переделки выглядела так:

Блок питания решено было взять Codegen 250W 250X1, вот такой:

Была найдена принципиальная схема блока питания Codegen 250W 250X1:

Огромное количество схем к компьютерным блокам питания АТХ/АТ и блокам питания к ноутбукам можно найти в моём сборнике схем к компьютерным блокам питания. В сборнике есть и данная схема.

Для начала выпаиваем с платы БП всё лишнее и заменяем некоторые детали: схемы защиты и контроля напряжений выпаиваем, конденсаторы ставим с большим напряжением, линию +3.3v выпаиваем полностью, линию -5v тоже выпаиваем. Оставляем схему управления оборотами вентилятора и для неё линию -12v на которой заменяем конденсатор на аналогичный с большим напряжением.

Для чего необходимо менять конденсаторы на аналогичные с большим напряжением? Отвечаю. Мы будем поднимать напряжение на линии +12v до +14.4v (а в процессе настройки и более), а вместе с линией +12v вырастут напряжения и на линиях +5v (примерно до +6v) и -12v (примерно до -14,4v). Стоит ещё учесть, что мы оставим стабилизацию только по линии +12v и в моменты большой нагрузки, когда ток будет около 5-6 ампер, то напряжения на остальных линиях могут ещё возрасти. Так что лучше поставить конденсаторы с более высоким запасом по напряжению на все линии.

Читайте так же:
Печатная плата стабилизатора тока

На принципиальной схеме изменения показаны красным цветом:

Так как мне необходим максимальный ток зарядки в 5-6 ампер, то резистор R11 я установлю не 0,2 Ом, а 0,1 Ом. Но если установить его один, то он будет сильно греться, поэтому я установил параллельно три резистора 0,3 Ом 5 Ватт, общее сопротивление получилось 0,1 Ом и они практически не нагреваются даже при токах в 10 ампер.

Резистор R9 отвечает за уровень напряжения на линии +12v. Делитель напряжения R9/R3 делает напряжение на ноге 1 микросхемы равным 2.5 вольт. ШИМ контроллер будут стремиться выдать на выходе линии +12v такое напряжение, чтобы на ноге 1 было 2.5 вольта и оно сравнялось с опорным напряжением на ноге 2 (тоже 2.5 вольта), которое получается на делителе R1/R2.

Взяв калькулятор я посчитал, что для 12 вольт на выходе зарядного устройства, R9 должен быть 11,4 КОм, а для 14,4 вольт — 14,28 КОм. В результате я решил установить один постоянный резистор на 10 КОм (обозначен как R9) и один переменный на 10КОм (обозначен как R9+), тем самым я смогу точно подстроить нужное напряжение на выходе. Изначально я установил R9+ на 1,4 КОм чтобы получить 12 вольт на выходе. Вдальнейшем я подстройкой резистора увеличу напряжение до необходимого уровня, но это уже будет на этапе тестирования готового изделия.

Внимание! Ни в коем случае не устанавливайте в схему полевые транзисторы на напряжение менее 30 вольт! Дело в том, что при подключении аккумулятора обратной полярностью, на полевике будет сумма напряжений от зарядки (14.4v) и от самого аккумулятора (от 12 до 15 вольт), что в сумме будет 14.4 + 12(максимум 15) = около 28-30 вольт. Так что рекомендую устанавливать полевик более чем на 30 вольт.

В качестве шунта решено было использовать встроенный шунт в китайский LED измеритель напряжения и тока, 100V 10A. Вот такой:

Такой индикатор-измеритель можно купить в китайском интернет магазине всего за пару долларов, оплата с банковской карты, доставка посылки через обычную почту за 3-4 недели. Я заказал себе сразу несколько, чтобы они у меня были в запасе, такие индикаторы будут полезны не только в зарядке.

Изучив схему подключения этого измерителя приходим к выводу, что должен подойти и в качестве шунта и в качестве измерителя напряжения и тока. Смотрим схему подключения:

А вот и принципиальная схема измерителя:

Как можно видеть, подключить его в нашу схему защиты не составит труда. Питание берём из нашей же линии, внутри измерителя стоит собственный стабилизатор на 3 вольта для работы измерителя. Кстати, опытным путём я определил (уже на рабочем устройстве), что сопротивление шунта RX в этом измерителе где-то 0,04 Ома. А суммарное сопротивление шунта и транзисторного перехода полевика — 0,04+0,017=0,057 Ом. Этого будет немного многовато, и защита может срабатывать при меньшем токе, чем в исходной схеме. Ну ничего, немного доработаем схему увеличив порог тока, необходимого для срабатывания защиты.

Поясню мои доработки. Добавлен конденсатор 0,33 микрофарада для отключения защиты по току в начальный момент скачка тока, например при подключении ламп накаливания. Без этого конденсатора при подключении лампочки на 40 Ватт срабатывала защита, хотя ток при работе лампы был менее 4 ампер. Лампы в момент подключения потребляют огромные токи! Конденсатор подобрал опытным путём так, чтобы защита не срабатывала при подключении одной лампы, но срабатывала при подключении двух ламп по 40 ватт.

Резистор R16 добавил для того, чтобы понизить порог срабатывания защиты по току. Без этого резистора схема тоже работает, но порог определяется только значением падения напряжения на Rш и переходе транзистора VT2. При увеличении тока через эти сопротивления, на базе транзистора VT3 повышается напряжение, и когда оно станет 0,5-0,7 вольт — транзистор VT3 откроется и закроет полевой транзистор (минусовая цепь разорвётся).

Добавлены индикаторы на светодиодах:

  • VD1 » зелёный » — индикатор наличия напряжения на выходных клеммах
  • VD3 » синий » — индикатор срабатывания защиты
  • VD5 » красный » — индикатор обратного подключения аккумулятора (переполюсовки)

Все детали, что не разместились на плате старого блока питания, я изобразил на окончательной схеме:

Ну и наконец фото уже собранного зарядного устройства:

Всем спасибо за интерес к статье. Жду критику в комментариях и советы по доработке устройства!

Автор: Попов Вадим Сергеевич

Схемы и принципы работы стабилизатора TL431

Особенности работы, простота включения во многие схемы и хорошие характеристики сделали микросхему TL431 очень популярным регулируемым стабилизатором на рынке. С минимальным набором дополнительных электронных компонентов (нескольких резисторов и конденсаторов), она способна обеспечить рабочее напряжение в диапазоне от 2,5 до 36 В при токе стабилизации от 1 до 100 мА. Для получения больших значений на выход ТЛ431 обычно добавляют мощные транзисторы.

Это устройство еще называют управляемым программируемым стабилитроном. Его впервые представила миру американская компания Texas Instruments (TI) в далеком 1977 году. С тех пор оно постоянно совершенствовалось и теперь является неотъемлемой частью многих современных импульсных блоков питания, где выполняет роль источника опорного напряжения. Оно может быть отличной заменой для диодов Зенера, в различных электронных схемах.

  1. Цоколевка
  2. Технические характеристики TL431
  3. Рекомендуемые параметры эксплуатации
  4. Схемы включения TL431
  5. Расчет параметрической схемы стабилизации
  6. Регулировка напряжения стабилизации
  7. Аналоги TL431
  8. Как проверить мультиметром
  9. Производители

Цоколевка

Распиновка TL431 зависит от корпусного исполнения устройства, в котором она размещена. Всего существует пять его разновидностей: для установки в отверстия: ТО-92; для поверхностного монтажа: SOT-23, SOT-25, SOT-89 и SOP-8. У электронных схем, находящихся внутри таких пластиковых упаковок, всего 3 контакта с назначением: 1 – управляющий электрод; 2 – анод; 3- катод. Металлических выводов у некоторых типов корпусов этой микросхемы больше, при этом они не используются или совмещены с соседними. Как это сделано, наглядно показано на рисунке.

Читайте так же:
Стабилизатор тока повышенной мощности

Технические характеристики TL431

Рассмотрим максимально допустимые рабочие характеристики микросхемы. Если при его эксплуатации они будут превышены, то устройство неминуемо выйдет из строя. Продолжительная эксплуатация с параметрами, близкими к предельным значениям, также не допускается. Рассмотрим их подробней:

  • катодное выходное напряжение (VKA), по отношению к выводу анода до 37 В;
  • возможные значения токов: для непрерывного катодного на выходе (IKA) от –100 мА до 150 мА; для обратного на входе от -50 мА до 10 мА;
  • типовой импеданс до 0,22 Ом;
  • рассеиваемая мощность (для разных типов упаковки) PD: 0.8 Вт (SOT-89); 0,78 Вт (ТО-92); 0.75 Вт (SO-8); 0,33 Вт (SOT-23); 0,5 Вт (SOT-25);
  • температура кристалла (TJ): рабочая: 0…+70 О С; -40 … +125 О С (для некоторых автомобильных версий); максимальная (TJmax) до +150 О С;
  • тепловое сопротивление корпуса RθJC: 97 О С/Вт (D); 156 О С/Вт (LP); 28 О С/Вт (KTP); 127 О С/Вт (P); 52 О С/Вт (PK); 149 О С/Вт (PW);
  • температура хранения: -65… +150 О С.

Максимальную рассеиваемую мощность можно рассчитать по стандартной формуле PD= (TJmax-TA)/ RθJC. В ней ТА – это температура окружающей среды.

Рекомендуемые параметры эксплуатации

Схемы включения TL431

Разберемся как работает TL431 на примере простейшей схемы стабилизации, состоящей из самого стабилитрона и одного резистора. К катоду подключается положительный, а к аноду отрицательный полюс питания. Для включения микросхемы, на её управляющий электрод подается опорное напряжение (Vref).

Если его значение будет больше 2.5 В, то стабилитрон почти сразу откроется и начнет пропускать через себя ток (IKA), которым можно запитать соответствующую нагрузку. Его значение будет расти вместе с повышением уровня Vin . IKA можно определить по формуле IKA = (Vin— Vref)/R. При этом, выходное напряжение схемы будет стабилизировано на уровне опорного (VКА = Vref), не превышающего 2.5 В и независимо от подаваемого на входе Vin.

Максимальное значение IKA у TL431 ограничено не только 100 мА, но и мощностью рассеивания на её корпуса.

Расчет параметрической схемы стабилизации

Для получения на выходе микросхемы большего по величине напряжения (вплоть до 36 В), к её управляющему электроду дополнительно подсоединяют резистивный делитель. Он состоит из двух резисторов (R1 и R2) подключаемых между катодом и анодом. В этом случае внутреннее сопротивление стабилитрона возрастает на (1 + R1/R2) раз.

Для расчета схемы стабилизации на TL431 необходимы начальные данные о входном(VIN) и выходном (VКА) напряжениях, а также токах: стабилизации (IKA) и нагрузки (IL). Имея эти данные можно рассчитать значения других электронных компонентов, представленных на рисунке ниже.

Выходное напряжение и номиналы сопротивлений связаны между собой следующей формулой VКА= Vref *(1 + R1/R2)+ Iref *R1. Где Vref = 2495 мВ и Iref = 2 мкА -это типовые величины, они указаны в электрических параметрах из даташит на устройство.

Сопротивление R1 также можно взять из datasheet. Чаще всего берут с номиналами от 10 до 30 кОм. Значение R1 ограничено небольшим опорным током (Iref = 2 мкА), которым часто пренебрегают для расчетов схем стабилизации на TL431. Поэтому для вычисления значения R2, без учета Iref, можно использовать следующую формулу R2=R1/((VКА/Vref)-1).

Регулировка напряжения стабилизации

Для построения схем с возможностью ручной регулировки напряжения на выходе, вместо обычного R1 ставят потенциометр. Номинал ограничительного резистора R, оказывающего сопротивление току на входе (IIN), рассчитывают по формуле R=(VIN-VКА)/ IIN. Здесь IIN = IKA+ IL.

Несмотря на достоинства микросхемы TL431, есть у неё и весьма существенный недостаток– это маленький ток в нагрузке, который она способна выдержать. Для решения этой проблемы в схему включают мощные биполярные или полевые транзисторы.

Примеры различных схем на основе стабилитрона TL431 можно посмотреть в следующем видео.

Аналоги TL431

Существует отечественная микросхема, похожая по своим параметрам на рассматриваемую. Это российский линейный стабилизатор КР142ЕН19. Наиболее полными аналогами TL431 является: IR943N, TL432, LM431. К устройствам с похожей цоколевкой, но немного другими электрическими параметрами можно отнести: HA17431A, KIA431. В качестве замены также можно попробовать использовать APL1431.

Как проверить мультиметром

TL431 нельзя проверить с помощью мультиметра, так как это не простой стабилитрон, а интегральная микросхема. Сопротивления между его выводами у разных производителей отличаются. Поэтому, для того чтобы убедится в её исправности обычно собирают простейшие схемы проверки.

Для проверки в схеме изображенной на рисунке слева, на вход подается 12 В. Если устройство исправно, то на выходе должно появится напряжение 4.9-5.0 В, а при замыкании кнопки S1 – 2.5 В. Мультиметр, в данном случае, нужен для измерения результатов тестирования.

TL431 можно также проверить в другой тестовой схеме со светодиодом (рисунок справа). При изменении сопротивления R2 потенциометра, на управляющем электроде появится 2.5 В. Диод должен скачкообразно перейти в светящееся состояние. Это будет означать то, что устройство исправно. Данный принцип работы можно использовать для создания индикатора разряда аккумулятора.

Производители

Из-за своих хороших параметров, надежности и дешевизны, TL431 используется в различных технических решениях. Поэтому её производством занимаются многие зарубежных компаний. Существует даже полностью переведенный datasheet tl431 на русском от Texas Instruments (TI). А вот ссылки на некоторые даташит устройств продающихся в РФ: TI, ON Semiconductor, STMicroelectronics, Nexperia, HTC Korea, NXP Semiconductors. Есть еще изготовители этих изделий, но их трудно найти в российских магазинах. К ним относятся: Unisonic Technologies, Motorola, Fairchild Semiconductor, Diodes Incorporated, HIKE Electronics, Calogic, Sangdest Microelectronic (Nanjing), SeCoS Halbleitertechnologie GmbH, Hotchip Technology, Foshan Blue Rocket Electronics и др.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector