Sfera-perm.ru

Сфера Пермь
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Погрешность от времени счетчики

Сроки поверки электросчетчиков: рассматриваем детально

Для учета потребления электроэнергии в каждой квартире или доме устанавливаются электрические счетчики. Корректность их работы проверяют с определенной периодичностью. Такая проверка называется поверкой.

Нужно ли поверять новые электрические счетчики

Только что купленный в магазине электросчетчик не требует поверки. Объясняется это тем, что каждое устройство уже прошло эту процедуру после изготовления на заводе. Но если перед установкой прибор хранился долгое время на складе, то необходимо подвергнуть его поверке.

Для разных типов счетчиков интервал времени, допустимый для хранения на складе, отличается. Для однофазных приборов он составляет 2 года. Трехфазные приборы хранят не более года со дня изготовления. Поэтому компании, занимающиеся реализацией электросчетчиков, закупку стали производить небольшими партиями, чтобы на момент продажи прибора у него не истек срок хранения.

Межповерочный интервал механических и электронных счетчиков

Допустимый период работы счетчика между двумя поверками называется межповерочным интервалом, и у каждой модели прибора он свой. МПИ указан в техническом паспорте заводом-изготовителем, и составляет от 4 до 16 лет для разных типов электросчетчиков. Дата последней поверки должна быть указана на корпусе электрического счетчика.

Например, для счетчика Меркурий 230 МПИ составляет 10 лет, для Меркурий 201 и Энергомера СЕ 101 – 16 лет.

Однофазные

Для однофазных индукционных счетчиков межповерочный интервал составляет 16 лет. Исключение составляют приборы, в которых величина номинального тока 5 – 10 А, для электронных – от 5 до 16 лет, в зависимости от значения номинального тока.

Трехфазные

Периодичность поверки трехфазных индукционных электросчетчиков составляет от 4 до 8 лет. Каждые 4 года требуется для электросчетчиков с величиной номинального тока 3х5 А. Остальным до следующей поверки требуется 8 лет.

Для электронных трехфазных счетчиков межповерочный интервал определен сроком 6 лет.

Что такое межповерочный интервал и сколько он может составлять?

Межповерочный интервал — это интервал времени, через который Вам нужно будет осуществить поверку счетчика, так как без своевременной поверки прибор считается нерабочим, а его показания не принимаются для расчета.

Для каждого вида электрического счетчика устанавливается свой определенный временной интервал, в течение которого его показания признаются правильными и действительными. Данный интервал зависит от модели и типа счетчика, но в среднем составляет от 4 до 16 лет. Ознакомиться с межповерочным интервалом в Вашем конкретном случае Вы можете в паспорте электросчетчика.

Законодательный регламент

Необходимость поверки электросчетчиков устанавливает Федеральный Закон N 102-ФЗ «Об обеспечении единства измерений», в частности — статья 13.

Она определяет обязанность прохождения поверки, устанавливает порядок проведения поверки, лица или организации, имеющие право на ее осуществление, определяет средства, удостоверяющие прохождение поверки (пломбы, знаки, отметки в паспорте).

Куда звонить, если без предупреждения отключили свет в квартире? Об этом читайте здесь.

Зачем поверять счётный прибор

Правила пользования и ГОСТы фиксируют обязательные поверки приборов учёта. Это необходимо для установления их точной работы. Эти работы производятся в целях:

  • Установления исправности основных узлов прибора: обмотки индуктивности, модулей подсчёта показаний, электронных компонентов, датчиков.
  • Корректировка погрешности.
  • Проверка целостности пломб для фиксации фактов вскрытия счётчика.
  • Устранение холостого хода.
  • Продление срока годности аппарата.

Межповерочный интервал механических и электронных счетчиков

В зависимости от типа оборудования временной промежуток для диагностики энергомеров будет отличаться. Важно соблюдать межповерочный интервал электросчетчика и учитывать не только разновидность, но и тип устройства — механический либо электронный.

Однофазные счетчики

Таблица периодичности поверок индукционных приборов составлена с учетом технических параметров.

Тип оборудованияВеличина номинального токаЧисло оборотов на 1 киловатт в часКоличество цифр на счетном механизмеКласс точностиМежповерочный интервалПримечание к устройству
СО-15250032,58Уже не производится
СО-110125042,58
СО-110–4060042,516Изготавливается с 1995 года
СО-19310–4060052,516
СО-21060052,516ВЗЭТ
СО-21065042,516
СО-21075042,516
СО-21062542,516
СО-25125042,516
СО-2(60)1075042,516МЗЭП
СО-2(60)5125042,516
СО-2М1064042,516ВЗЭТ
СО-2М5128042,516
СО-2М210–3064042,516
СО-2М25–15128042,516
СО-2МТ10–3064042,516
СО-2МТ310–3064042,516
СО-55–15125042,516
СО-50510–406005216
СО-5010–4062542,516
СО-5У10–3062542,516
СО-И44510–404405216
СО-И44610–3460052,516
СО-И4465–17120042,516
СО-И4465–20120042,516
СО-И446М10–4060052,516
СО-И44910–402105216
СО-И449М10–602005216
СО-И449М1-110–404005216
СО-И449Т10–402105216
СО-И449МТ10–602005216
СО-ЭЭ670510–404504216ЛЭМЗ
СО-ЭЭ670510–404005216
Читайте так же:
Kyocera 4200 сброс счетчика

Для остальных типов однофазных индукционных приборов интервал поверки составит 16 лет независимо от класса точности и количества цифр на счетном механизме.

Немного другая периодичность диагностики у электронного оборудования.

Тип устройстваПараметр номинального токаКоличество оборотов
на 1 кВт/ч
Число цифр на считывающем механизмеКласс точностиМежповерочная периодичностьПримечание
ЦЭ6807А-15–50500526МЭТЗ
ЦЭ6807А-25–50500526МЭТЗ
Двухтарифное оборудование СЭО-110–5057600526
СО-Ф6635–50100525Не производится
СОЭБ-110–50720526БЭМЗ
А100D1B10 (60)1000ЖКИ116СП «АББВЭИ»

Трехфазные счетчики

Таблица периодичности поверки индукционного типа энергомеров в соответствии с техническими параметрами.

Тип оборудованияВеличина номинального токаЧисло оборотов на один киловатт в часКоличество цифр на считывающем устройствеКласс точностиМежповерочная периодичностьПримечание
СА4У-И672М3×54504 (5)24ЛЭМЗ
СА4-И672М3×10225428ЛЭМЗ 1, 2, 3
СА4-И6783×20–501005281, 2, 3
САЗУ-М670М3×5450424Уже не производится
СА4У-Т43×5750424
СР4У-И673М3×5450424ЛЭМЗ
СА4-И6П3×10-60100528
Т31-F3×10 (60)75628
HN4-СА43×25–50120538
ДН-43х5–25300528Выпускается в Венгрии
А1Т-4-0000Т5×24428
А4-33×10–40120528Производится в Болгарии
ЕТ41410–40528
ДН-415100628Выпускается в Венгрии
САЧ-И603×10–60100528
САЧУ-1963×552Производится на Украине

В моделях счетчиков, которые не были указаны в таблице, периодичность между диагностикой — 4 года.

Для всех электронных трехфазных приборов учета межповерочный интервал составляет шесть лет.

Канал «Типичная Анжерка» подробно рассказал о сроках годности счетчиков, а также о межповерочном интервале.

Как определить класс точности электросчётчика

Класс точности электросчётчика представляет собой максимальную погрешность, которую может допустить устройство при измерении расхода электрической энергии. Эта величина выражается в процентах и обычно написана в паспорте счётчика или прямо на шкале. Обычно эта цифра обведена кругом и найти её не составит труда.

  • Виды электросчётчиков ↓
  • Индукционные ↓
  • Электронные ↓
  • Классы точности ↓
  • Вопрос выбора ↓
  • Цена электросчётчиков ↓
  • Блиц-советы ↓

Виды электросчётчиков

Индукционные

Индукционные – представляют собой знакомое практически каждому устройство. Их характерной особенностью является постоянно вращающееся колёсико за прозрачным стеклом. Оно крутиться с разной скоростью и зависит это от расхода электричества. Чем он выше, тем быстрее раскручивается колёсико.

Ещё её функция заключается в создании магнитного потока, который эквивалентен проходящему через неё напряжению. Вторая катушка называется токовой. Она также производит магнитный поток, но только он соразмерен силе тока.

Оба магнитных потока в итоге проникают через специальный алюминиевый диск. Поскольку они имеют параболическую траекторию, то проходят сквозь вышеупомянутую преграду 2 раза. За счёт этого и возникают силы, которые заставляют алюминиевый диск крутиться.

Вследствие этого ось, на которой он расположен, оказывает действие на те самые барабаны с цифрами посредством зубчато-винтовой передачи. Таким образом, показания зависят от скорости вращения диска из алюминия, а она, в свою очередь, зависит от магнитных потоков, которые создаются катушками.

В итоге, чем выше напряжения в электросети, тем больше будут цифры на барабанах. Такие счётчики достаточно широко распространены даже в век высоких технологий.

К их достоинствам можно отнести:

  1. Высокую надёжность.
  2. Долговечность.
  3. Абсолютную независимость от случайных перепадов напряжения.
  4. Невысокую цену.

Однако есть у них несколько недостатков:

  1. Низкий класс точности.
  2. Фактическое отсутствие какой-либо защиты от хищения электроэнергии.
  3. Большой расход электричества самим счётчиком.
  4. Неизбежный рост погрешности при малых нагрузках.
  5. Большие габаритные размеры.

Электронные

Электронные – в наши времена более выгодны и используются несколько чаще. Они превосходят индукционные по классу точности и дают возможность учитывать такой показатель, как многотарифность.

Счётчик электрического типа обладает гораздо большим числом достоинств, чем индукционный собрат, к ним относят:

  1. Высокий класс точности.
  2. Многотарифность.
  3. Измерение расхода всех типов электричества.
  4. Хранение всех показаний.
  5. Легкодоступность информации.
  6. При попытке хищения происходит фиксация несанкционированного доступа.
  7. Возможность снимать показания с прибора дистанционно.
  8. Небольшие габаритные размеры.

К малому числу недостатков относятся:

  1. Высокая чувствительность устройства к перепадам напряжения.
  2. Относительно высокая стоимость
  3. Сложность при обслуживании и ремонте.

Классы точности

Как уже говорилось выше, классом точности счётчика является максимальная погрешность в показаниях, которая может возникнуть во время его работы. Ещё около 15 лет назад допустимый показатель был относительно высоким и составлял 2,5%.

Но 2 класс точности это далеко не предел для современных приборов измерения электроэнергии. Современные электронные счётчики могут иметь погрешность 1%, 0,5% и даже 0,2%.

Читайте так же:
Как вернуть бракованный счетчик

Вопрос выбора

Сейчас государство приняло решение перейти на приборы измерения электричества, которые имеют 1 класс точности, то есть их погрешность составляет не более 1%. Исходя из этого, при выборе нового устройство необходимо купить счётчик, который соответствует действующему законодательству.

Выбирая счётчик для установки в частном доме необходимо сначала определить технические условия его энергоснабжения. И на основе этих данных выбирать измерительный прибор. Для частных домов, конечно, лучше всего подойдут приборы, которые обладают классом точности не менее 2 и имеют функцию переключения между ночным и дневным режимом.

Главными критериями при выборе должны стать:

  • Низкое потребление энергии самим устройством.
  • Высокая надёжность.
  • Большой период между проверками.
  • Простота при его установке.
  • Относительная простота в обслуживании и эксплуатации.
  • Бесшумная работа аппарата.

При выборе электросчётчика для квартиры нужно сначала понять, сколько фаз содержит электросеть. Определить это очень просто. Достаточно посмотреть на кабель, который подходит к вводному автомату.

Если в нём две жилы, значит электросеть однофазная и нужно подобрать соответствующий счётчик. Если же кабель имеет три жилы, значит выбор нужно остановить на трёхфазном приборе.

Цена электросчётчиков

В зависимости от класса точности меняется цена на этот измерительный прибор. В наше время человек, пришедший в магазин за таким устройством, может купить счётчик с классом точности от 1 и ниже. На сегодняшний день прибор для измерения электроэнергии 1 класса точности будет стоить около 1500 рублей.

Но если модель является многотарифной, то это увеличит стоимость примерно в 2 раза. Устройства с погрешностью 1,5% будет стоить немного дешевле. Старые индукционные счётчики, которые работают по дисковому принципу, в наше время уже не производят.

Блиц-советы

В век высоких технологий самым мудрым решением будет отдать предпочтение электронным счётчикам. Они гораздо более точны, чем старые индукционные. Первый класс точности может сэкономить приличные суммы.

Это, несомненно, благоприятно отразиться на семейном бюджете тех, кто установит такой счётчик в своём доме или квартире. Он оснащён удобным дисплеем и может хранить показания.

Поверка электросчетчика: срок поверки и межповерочный интервал

Для учета потребления электроэнергии в каждой квартире или доме устанавливаются электрические счетчики. Корректность их работы проверяют с определенной периодичностью. Такая проверка называется поверкой.

Что такое поверка электрических счётчиков

Федеральный закон РФ №102 (Об обеспечении единства измерений) и закон №261 (Об энергосбережении и о повышении энергетической эффективности, а также о внесении корректировок в отдельные законодательные акты Российской Федерации) говорят о том, что к работе допускаются только поверенные электросчетчики.

Поверка является обязательной процедурой, она подтверждает исправность измерительного прибора для осуществления учетных задач. Представляет собой сравнительный анализ показаний электрического счётчика с эталонном, имеющим меньшую погрешность. На основании полученных замеров, выполненных по методике поверки для конкретной модели прибора, определяют величину погрешности. В результате проведения процедуры выдаётся сертификат о поверке или сертификат о непригодности.

Процедура поверки заключается в следующем:

  • Осмотр счетчика на предмет повреждений;
  • Проверка прочности электроизоляции;
  • Определение погрешностей в работе счетного механизма;
  • Проверяют устройство на самоход;
  • Поверка значения порога чувствительности.

Самостоятельно погрешность в работе прибора можно определить так:

Три стоваттные лампочки накаливания соединяются параллельно и подключаются к сети. Остальные источники потребления энергии отключаются. Секундомером фиксируется время, за которое диск делает пять вращений, или светодиод — 10 миганий.

Полученные данные заносятся в специальную формулу:

E = (P * T * A / 3600 — 1) * 100%

  • P — мощность потребления, кВт;
  • T — время одного вращения диска , сек;
  • A — передаточное число (указано в паспорте или на корпусе счётчика) это количество оборотов диска на 1 кВт∙ч, имп/кВт∙ч
  • Е — погрешность.

При отрицательном результате счетчик завышает показания. При положительном запаздывает. Допустимая погрешность составляет 2% в любую сторону. Если это показание выше, прибор нуждается в поверке.

Виды поверок

Согласно Постановлению Правительства РФ №250 от 20.04.2010, все типы электросчетчиков входят в список приборов измерения, подлежащих поверке.

Диагностику электроприбора различают нескольких видов.

Первичная

Проводится на заводе-изготовителе и представляет собой проверку функциональности устройства и соответствие определяемых величин относительно установленных стандартов. Во время диагностики рассчитывается фактическая погрешность, сравнивается с допустимой, результаты фиксируются в техническом паспорте на электрический счётчик вместе с датой проведения работ. Что касается зарубежных изделий, поверка выполняется перед ввозом в страну.

Периодическая

Производится сотрудниками метрологической организации, спустя назначенный срок эксплуатации или хранения прибора. В ходе неё определяется вероятность выдачи показаний счетчиком допустимой степени погрешности.

Внеочередная

Проводится в интервале между периодическими поверками. Причиной к принудительной диагностике могут быть:

  • необходимость замены электрического счётчика;
  • ремонт оборудования;
  • утеря технической документации электроприбора;
  • по просьбе владельца при возникновении сомнений в правильности показаний прибора.
Читайте так же:
Счетчик для размотки кабеля

Нужно ли поверять новые электрические счетчики

Только что купленный в магазине электросчетчик не требует поверки. Объясняется это тем, что каждое устройство уже прошло эту процедуру после изготовления на заводе. Но если перед установкой прибор хранился долгое время на складе, то необходимо подвергнуть его поверке.

Для разных типов счетчиков интервал времени, допустимый для хранения на складе, отличается. Для однофазных приборов он составляет 2 года. Трехфазные приборы хранят не более года со дня изготовления. Поэтому компании, занимающиеся реализацией электросчетчиков, закупку стали производить небольшими партиями, чтобы на момент продажи прибора у него не истек срок хранения.

Межповерочный интервал механических и электронных счетчиков

Допустимый период работы счетчика между двумя поверками называется межповерочным интервалом, и у каждой модели прибора он свой. МПИ указан в техническом паспорте заводом-изготовителем, и составляет от 4 до 16 лет для разных типов электросчетчиков. Дата последней поверки должна быть указана на корпусе электрического счетчика.

Например, для счетчика Меркурий 230 МПИ составляет 10 лет, для Меркурий 201 и Энергомера СЕ 101 — 16 лет.

Однофазные

Для однофазных индукционных счетчиков межповерочный интервал составляет 16 лет. Исключение составляют приборы, в которых величина номинального тока 5 — 10 А, для электронных — от 5 до 16 лет, в зависимости от значения номинального тока.

Трехфазные

Периодичность поверки трехфазных индукционных электросчетчиков составляет от 4 до 8 лет. Каждые 4 года требуется для электросчетчиков с величиной номинального тока 3х5 А. Остальным до следующей поверки требуется 8 лет.

Для электронных трехфазных счетчиков межповерочный интервал определен сроком 6 лет.

Куда обращаться для выполнения поверки

Для вызова специалиста необходимо обратиться в любую метрологическую лабораторию, обладающую аккредитацией на этот вид деятельности. Местонахождение её можно узнать в организации, занимающейся контролем электропотребления. Доставить счетчик для проведения испытаний обязан его владелец. О сроке проведения поверки уведомляет Энергосбыт. Если владелец не уверен в точности показаний прибора, то он может инициировать поверку самостоятельно, не дожидаясь плановой. Владелец вправе самостоятельно выбрать метрологическую организацию.

Какие делаются отметки после проведения поверки

В результате проведения испытаний выдаётся свидетельство о поверке или о непригодности. Данные включают в себя дату и степень погрешности, которая обнаружилась при испытании. На счетчик ставится клеймо поверителя.

Можно ли не снимать электросчетчик

Да, такой способ проверить точность работы электроприбора, не снимая его с рабочего места, существует. Для этого составляется договор с метрологическим учреждением и оплачивается работа. Сотрудник ЦСМ с необходимой аппаратурой приезжает на дом. Проводят работу согласно методике на конкретную модель устройства.

Способ поверки счетчика на дому считается более целесообразным, по причине экономии времени. Нет необходимости ожидать очереди в 2-4 недели пока работа выполнится в ЦСМ.

Сколько стоит поверка

Сумма за поверку электросчетчика зависит от выбранного учреждения, её срочности и типа электросчётчика:

  • индукционные однофазные счетчики — от 650 руб.
  • электронные однофазные счетчики — от 720 руб.
  • трехфазные индукционные электросчетчики — от 750 руб.
  • трехфазные счетчики электронного типа — от 820 руб.

Стоимость услуги актуальна для проведения работы в лаборатории. Не включает в себя расходы по снятию прибора и его доставке.

Срок проведения составляет около двух недель.

Есть возможность заказать ускоренную поверку, но сумма оплаты за процедуру возрастет:

  • в течение 5 дней — плюс 25% к сумме;
  • 3 дня — плюс 50%;
  • 1 день — плюс 100% к оплате.

Что касается поверки на дому, то цена за нее будет выше. Обычно сюда включена стоимость доставки необходимого специального оборудования. Однофазный счетчик обойдется в 2 500 рублей, трехфазный — в 3 500 руб. Если мастер приехал, а диагностика по каким-либо причинам не проводилась, владельцу придется оплатить 1000 рублей за ложный вызов. Если поверка состоялась, за выданный дубликат, подтверждающий ее проведение, требуется доплата 1000 рублей.

Для юридических лиц конечная сумма за все услуги возрастет на ставку НДС.

Поверка без снятия прибора хоть и дорогостоящая, но зато менее хлопотная процедура.

Кто оплачивает услугу

В Постановлении Правительства РФ №442 от 04.05.2012 и п.145 говорится о том, что все издержки, необходимые на содержание счетчика, его сохранности и невредимости, берет на себя владелец.

Что делать, если истек срок поверки

По истечении срока поверки поступают в зависимости от класса точности прибора. Если класс равен 2 или 1, то прибор поверяют. Выполняют ее в течение месяца.

Электросчётчики с классом точности 2,5 и более поверке не подлежат и требуют замены.

Предусмотрена ли ответственность за неосуществление поверки

За несоблюдение сроков поверки электрических счётчиков штрафные санкции в отношении владельца не предусмотрены.

Когда истекает срок годности прибора, его показания считаются недействительными. Платить за электричество придется по нормативу, который значительно превышает реальное использование электроэнергии.

Сотрудниками энергосбыта составляется акт о неуточненном потреблении электричества, согласно которому будет произведен перерасчет со дня окончания срока поверки.

Читайте так же:
Год 2012 года счетчики

Первые четыре месяца сумма за потребление электричества будет приравнена к среднемесячному показателю, или к данным общедомового электросчетчика, а далее согласно установленным нормативам.

Заключение

Владельцу электросчетчика необходимо помнить о том, что контроль за сроками поверки и актуальности их прохождения ложатся на него. Самостоятельная поверка запрещена и считается недействительной. Её может выполнять только аккредитованная метрологическая лаборатория. Своевременная поверка электрических счётчиков избавит от проблем и конфликтов с энергосбытовыми учреждениями и с УК.

Обзор однофазного электрического счетчика Энергомера СЕ 101

Как правильно выбрать и какой лучше поставить электросчетчик в квартиру

Обзор трехфазного электросчетчика марки Меркурий 230

Как правильно снять показания со счетчика электроэнергии?

Обзор однофазного электросчетчика Меркурий 201 — схема подключения

Как поменять счетчик электроэнергии в квартире или частном доме?

Погрешности измерения датчиков КИП. Классы точности

Основной качественной характеристикой любого датчика КИП является погрешность измерения контролируемого параметра. Погрешность измерения прибора это величина расхождения между тем, что показал (измерил) датчик КИП и тем, что есть на самом деле. Погрешность измерения для каждого конкретного типа датчика указывается в сопроводительной документации (паспорт, инструкция по эксплуатации, методика поверки), которая поставляется вместе с данным датчиком.

По форме представления погрешности делятся на абсолютную, относительную и приведенную погрешности.

ООПосновная относительная погрешность
ОППосновная приведенная погрешность
ОАПосновная абсолютная погрешность

Абсолютная погрешность – это разница между измеренной датчиком величиной Хизм и действительным значением Хд этой величины.

Действительное значение Хд измеряемой величины это найденное экспериментально значение измеряемой величины максимально близкое к ее истинному значению. Говоря простым языком действительное значение Хд это значение, измеренное эталонным прибором, или сгенерированное калибратором или задатчиком высокого класса точности. Абсолютная погрешность выражается в тех же единицах измерения, что и измеряемая величина (например, в м3/ч, мА, МПа и т.п.). Так как измеренная величина может оказаться как больше, так и меньше ее действительного значения, то погрешность измерения может быть как со знаком плюс (показания прибора завышены), так и со знаком минус (прибор занижает).

Относительная погрешность – это отношение абсолютной погрешности измерения Δ к действительному значению Хд измеряемой величины.

Относительная погрешность выражается в процентах, либо является безразмерной величиной, а также может принимать как положительные, так и отрицательные значения.

Приведенная погрешность – это отношение абсолютной погрешности измерения Δ к нормирующему значению Хn, постоянному во всем диапазоне измерения или его части.

Нормирующее значение Хn зависит от типа шкалы датчика КИП:

  1. Если шкала датчика односторонняя и нижний предел измерения равен нулю (например, шкала датчика от 0 до 150 м3/ч), то Хn принимается равным верхнему пределу измерения (в нашем случае Хn = 150 м3/ч).
  2. Если шкала датчика односторонняя, но нижний предел измерения не равен нулю (например, шкала датчика от 30 до 150 м3/ч), то Хn принимается равным разности верхнего и нижнего пределов измерения (в нашем случае Хn = 150-30 = 120 м3/ч).
  3. Если шкала датчика двухсторонняя (например, от -50 до +150 ˚С), то Хn равно ширине диапазона измерения датчика (в нашем случае Хn = 50+150 = 200 ˚С).

Приведенная погрешность выражается в процентах, либо является безразмерной величиной, а также может принимать как положительные, так и отрицательные значения.

Довольно часто в описании на тот или иной датчик указывается не только диапазон измерения, например, от 0 до 50 мг/м3, но и диапазон показаний, например, от 0 до 100 мг/м3. Приведенная погрешность в этом случае нормируется к концу диапазона измерения, то есть к 50 мг/м3, а в диапазоне показаний от 50 до 100 мг/м3 погрешность измерения датчика не определена вовсе – фактически датчик может показать все что угодно и иметь любую погрешность измерения. Диапазон измерения датчика может быть разбит на несколько измерительных поддиапазонов, для каждого из которых может быть определена своя погрешность как по величине, так и по форме представления. При этом при поверке таких датчиков для каждого поддиапазона могут применяться свои образцовые средства измерения, перечень которых указан в методике поверки на данный прибор.

У некоторых приборов в паспортах вместо погрешности измерения указывают класс точности. К таким приборам относятся механические манометры, показывающие биметаллические термометры, термостаты, указатели расхода, стрелочные амперметры и вольтметры для щитового монтажа и т.п. Класс точности – это обобщенная характеристика средств измерений, определяемая пределами допускаемых основных и дополнительных погрешностей, а также рядом других свойств, влияющих на точность осуществляемых с их помощью измерений. При этом класс точности не является непосредственной характеристикой точности измерений, выполняемых этим прибором, он лишь указывает на возможную инструментальную составляющую погрешности измерения. Класс точности прибора наноситься на его шкалу или корпус по ГОСТ 8.401-80.

Читайте так же:
Для установки счетчика акт

При присвоении прибору класса точности он выбирается из ряда 1·10 n ; 1,5·10 n ; (1,6·10 n ); 2·10 n ; 2,5·10 n ; (3·10 n ); 4·10 n ; 5·10 n ; 6·10 n ; (где n =1, 0, -1, -2, и т. д.). Значения классов точности, указанные в скобках, не устанавливают для вновь разрабатываемых средств измерений.

Определение погрешности измерения датчиков выполняют, например, при их периодической поверке и калибровке. С помощью различных задатчиков и калибраторов с высокой точностью генерируют определенные значения той или иной физической величины и сличают показания поверяемого датчика с показаниями образцового средства измерения, на которое подается то же самое значение физической величины. Причем погрешность измерения датчика контролируется как при прямом ходе (увеличение измеряемой физической величины от минимума до максимума шкалы), так и при обратном ходе (уменьшение измеряемой величины от максимума до минимума шкалы). Это связано с тем, что из-за упругих свойств чувствительного элемента датчика (мембрана датчика давления), различной интенсивности протекания химических реакций (электрохимический сенсор), тепловой инерции и т.п. показания датчика будут различны в зависимости от того, как меняется воздействующая на датчик физическая величина: уменьшается или увеличивается.

Довольно часто в соответствии с методикой поверки отсчет показаний датчика при поверке нужно выполнять не по его дисплею или шкале, а по величине выходного сигнала, например, по величине выходного тока токового выхода 4…20 мА.

У поверяемого датчика давления со шкалой измерения от 0 до 250 mbar основная относительная погрешность измерения во всем диапазоне измерений равна 5%. Датчик имеет токовый выход 4…20 мА. На датчик калибратором подано давление 125 mbar, при этом его выходной сигнал равен 12,62 мА. Необходимо определить укладываются ли показания датчика в допустимые пределы.

Во-первых, необходимо вычислить каким должен быть выходной ток датчика Iвых.т при давлении Рт = 125 mbar.

Iвых.т = Iш.вых.мин + ((Iш.вых.макс – Iш.вых.мин)/(Рш.макс – Рш.мин))*Рт

где Iвых.т – выходной ток датчика при заданном давлении 125 mbar, мА.

Iш.вых.мин – минимальный выходной ток датчика, мА. Для датчика с выходом 4…20 мА Iш.вых.мин = 4 мА, для датчика с выходом 0…5 или 0…20 мА Iш.вых.мин = 0.

Iш.вых.макс — максимальный выходной ток датчика, мА. Для датчика с выходом 0…20 или 4…20 мА Iш.вых.макс = 20 мА, для датчика с выходом 0…5 мА Iш.вых.макс = 5 мА.

Рш.макс – максимум шкалы датчика давления, mbar. Рш.макс = 250 mbar.

Рш.мин – минимум шкалы датчика давления, mbar. Рш.мин = 0 mbar.

Рт – поданное с калибратора на датчик давление, mbar. Рт = 125 mbar.

Подставив известные значения получим:

То есть при поданном на датчик давлении равном 125 mbar на его токовом выходе должно быть 12 мА. Считаем, в каких пределах может изменяться расчетное значение выходного тока, учитывая, что основная относительная погрешность измерения равна ± 5%.

То есть при поданном на датчик давлении равном 125 mbar на его токовом выходе выходной сигнал должен быть в пределах от 11,40 до 12,60 мА. По условию задачи мы имеем выходной сигнал 12,62 мА, значит наш датчик не уложился в определенную производителем погрешность измерения и требует настройки.

Основная относительная погрешность измерения нашего датчика равна:

Поверка и калибровка приборов КИП должна выполнятся при нормальных условиях окружающей среды по атмосферному давлению, влажности и температуре и при номинальном напряжении питания датчика, так как более высокие или низкие температура и напряжение питания могут привезти к появлению дополнительной погрешности измерения. Условия проведения поверки указываются в методике поверки. Приборы, погрешность измерения которых не уложилась в установленные методикой поверки рамки либо заново регулируют и настраивают, после чего они повторно проходят поверку, либо, если настройка не принесла результатов, например, из-за старения или чрезмерной деформации сенсора, ремонтируются. Если ремонт невозможен то приборы бракуются и выводятся из эксплуатации.

Если все же приборы удалось отремонтировать то они подвергаются уже не периодической, а первичной поверке с выполнением всех изложенных в методике поверки пунктов для данного вида поверки. В некоторых случаях прибор специально подвергают незначительному ремонту (с отметкой в паспорте) так как по методике поверки выполнить первичную поверку оказывается существенно легче и дешевле чем периодическую, из-за различий в наборе образцовых средств измерения, которые используются при периодической и первичной поверках.

Для закрепления и проверки полученных знаний рекомендую выполнить тестовое задание.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector