Sfera-perm.ru

Сфера Пермь
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Перегрузка по току электросчетчика

ток перегрузки

3.2.2 ток перегрузки: Сверхток в электрически не поврежденной цепи.

Примечание — Достаточно длительный ток перегрузки может привести к повреждению.

3.4.2.1 ток перегрузки: Сверхток в электрически неповрежденной цепи.

Примечание — Ток перегрузки может вызвать повреждение цепи, если будет протекать достаточно долго.

3.3.124 ток перегрузки : Сверхток в электрической цепи электроустановки при отсутствии электрических повреждений.

15. Ток перегрузки

Наибольшее допустимое значение тока, кратковременно протекающего через разрядный промежуток, которое не вызывает потери работоспособности газоразрядного прибора

3.2.2 ток перегрузки (overload current): Сверхток в электрически не поврежденной цепи.

Примечание — Достаточно длительный ток перегрузки может привести к повреждению.

3.4.2.1 ток перегрузки: Сверхток в электрически неповрежденной цепи.

Примечание — Ток перегрузки может вызвать повреждение цепи, если будет протекать достаточно долго.

3.18 Ток перегрузки — сверхток в электрической цепи электроустановки при отсутствии электрических повреждений.

3.18 Ток перегрузки — сверхток в электрической цепи электроустановки при отсутствии электрических повреждений.

2.1.8 ток перегрузки : Сверхток в электрически не поврежденной цепи.

2.1.8 ток перегрузки: Сверхток, возникающий в неповрежденной электрической цепи.

3.1.5 ток перегрузки: Сверхток в электрически не поврежденной цепи.

3.1.5 ток перегрузки (overload current): Сверхток в электрически не поврежденной цепи.

Смотри также родственные термины:

3.38 ток перегрузки (цепи): Отношение время/ток для цепи, в которой превышена допустимая максимальная нагрузка, когда цепь находится в исправном состоянии.

Примечание — Не следует использовать термин «перегрузка» как синоним сверхтока.

3.38 ток перегрузки (цепи): Отношение время/ток для цепи, в которой превышена допустимая максимальная нагрузка, когда цепь находится в исправном состоянии.

Примечание — Не следует использовать термин «перегрузка» как синоним сверхтока.

ток перегрузки (электрической цепи)

(overload current (of an electric circuit)):

Сверхток, возникающий в электрической цепи, причиной которого не является короткое замыкание или замыкание на землю.

70. Ток перегрузки в обратном проводящем состоянии тиристора

E. Overload reverse conducting current

F. Courant de surcharge prévisible à l’état conducteur dans le sens inverse

Ток в обратном проводящем состоянии тиристора, который при длительном протекании вызвал бы превышение максимально допустимой температуры перехода, но который так ограничен во времени, что эта температура не превышается.

Примечание. За время эксплуатации тиристора число воздействий током перегрузки не ограничивается

55. Ток перегрузки в открытом состоянии тиристора

E. Overload on-state current

F. Courant de surcharge prévisible à l’état passant

Ток в открытом состоянии тиристора, который при длительном протекании вызвал бы превышение максимально допустимой температуры перехода, но который так ограничен во времени, что эта температура не превышается.

Примечание. За время эксплуатации тиристора число воздействий током перегрузки не ограничивается

42. Ток перегрузки выпрямительного диода

E. Overload forward current

F. Courant direct de surcharge prévisible

Значение прямого тока выпрямительного диода, длительное протекание которого вызвало бы превышение максимально допустимой температуры перехода, но который так ограничен во времени, что эта температура не превышается.

Примечание. За время эксплуатации диода число воздействий током перегрузки не ограничивается

Словарь-справочник терминов нормативно-технической документации . academic.ru . 2015 .

  • ток отсечки; сквозный ток короткого замыкания
  • ток перегрузки (цепи)

Полезное

Смотреть что такое «ток перегрузки» в других словарях:

ток перегрузки — Сверхток в электрически не поврежденной цепи. [ГОСТ Р 50030.1 2000 (МЭК 60947 1 99)] ток перегрузки Сверхток в электрически не поврежденной цепи. Примечание — Достаточно длительный ток перегрузки может привести к повреждению [ГОСТ Р 50345… … Справочник технического переводчика

ТОК ПЕРЕГРУЗКИ — сверхток в электрической цепи электроустановки при отсутствии электрических повреждений … Российская энциклопедия по охране труда

ток перегрузки — perkrovos srovė statusas T sritis automatika atitikmenys: angl. overload current vok. Überstrom, m rus. ток перегрузки, m pranc. courant de surcharge, m … Automatikos terminų žodynas

Ток перегрузки — – ток, величина которого превышает наибольшее номинальное значение. СТ МЭК 50(151) 78. Сверхток в электрической цепи электроустановки при отсутствии электрических повреждений. ГОСТ 30331.1 95 / Р 50571.1 93 … Коммерческая электроэнергетика. Словарь-справочник

Читайте так же:
Как снять пломбу роторную пломбу с электросчетчика не повредив

Ток перегрузки — English: Overcurrent Сверхток в электрической цепи электроустановки при отсутствии электрических повреждений (по ГОСТ 30331.1 95 ГОСТ Р 50571.1 93) Ток, величина которого превышает наибольшее номинальное значение (по СТ МЭК 50(151) 78) Источник:… … Строительный словарь

ток перегрузки в обратном проводящем состоянии тиристора — Ток в обратном проводящем состоянии тиристора, который при длительном протекании вызвал бы превышение максимально допустимой температуры перехода, но который так ограничен во времени, что эта температура не превышается. Обозначение Iпс,прг… … Справочник технического переводчика

ток перегрузки в открытом состоянии тиристора — Ток в открытом состоянии тиристора, который при длительном протекании вызвал бы превышение максимально допустимой температуры перехода, но который так ограничен во времени, что эта температура не превышается. Обозначение Iос,прг I(OV) Примечание… … Справочник технического переводчика

ток перегрузки выпрямительного диода — Iпрг I(OV) Значение прямого тока выпрямительного диода, длительное протекание которого вызвало бы превышение максимально допустимой температуры перехода, но который так ограничен во времени, что эта температура не превышается. Примечание За время … Справочник технического переводчика

ток перегрузки (в газоразрядном приборе) — ток перегрузки Наибольшее допустимое значение тока, кратковременно протекающего через разрядный промежуток, которое не вызывает потери работоспособности газоразрядного прибора [ГОСТ 20724 83] Тематики газоразрядные приборы … Справочник технического переводчика

ток перегрузки выпрямителя — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN rectifier overload current … Справочник технического переводчика

Схемы светодиодных индикаторов перегрузки по току

Превышение выходного тока в источниках питания свидетельствует об увеличении потребляемой мощности в устройстве нагрузки. Иногда потребляемый ток в нагрузке (из-за неисправности соединений или самого устройства нагрузки) может увеличиться вплоть до значения тока короткого замыкания (к/з), что неминуемо приведет к аварии (если источник питания не снабжен узлом защиты от перегрузки).

Последствия перегрузки могут оказаться более существенными и непоправимыми, если использовать источник питания без узла защиты (как сегодня часто делают радиолюбители, изготавливая простые источники и покупая недорогие адаптеры) — увеличится энергопотребление, выйдет из строя сетевой трансформатор, возможно возгорание отдельных элементов и неприятный запах.

Для того чтобы вовремя заметить выход источника питания в «заштатный” режим, устанавливают простые индикаторы перегрузки. Простые — потому, что они, как правило, содержат всего несколько элементов, недорогих и доступных, а установить эти индикаторы можно универсально практически в любой самодельный или промышленный источник питания.

Простая схема индикатора токовой перегрузки

Самая простая электронная схема индикатора токовой перегрузки показана нарис. 1

Рис. 1. Электрическая схема светового индикатора токовой перегрузки.

Работа ее элементов основана на том, что последовательно с нагрузкой в выходной цепи источника питания включают ограничивающий резистор малого сопротивления (R3 на схеме).

Данный узел можно применять универсально в источниках питания и стабилизаторах с разным выходным напряжение (испытано в условиях выходного напряжения 5— 20 В). Однако значения и номиналы элементов, указанных на схеме рис. 3.4, подобраны для источника питания с выходным напряжением 12 В.

Соответственно, для того чтобы расширить диапазон источников питания для данной конструкции, в выходном каскаде которых будет эффективно работать предлагаемый узел индикации, потребуется изменить параметры элементов R1— R3, VD1, VD2.

Пока перегрузки нет, источник питания и узел нагрузки работают в штатном режиме, через R3 протекает допустимый ток и падение напряжения на резисторе невелико (менее 1 В). Также невелико в этом случае и падение напряжения на диодах VD1, VD2, при этом светодиод HL1 едва светится.

При увеличении тока потребления в устройстве нагрузки или коротком замыкании между точками А и Б ток в цепи возрастает, падение напряжения на резисторе R3 может достигнуть максимального значения (выходного напряжения источника питания), вследствие чего светодиод HL1 загорится (будет мигать) в полную силу.

Для наглядного эффекта в схеме применен мигающий светодиод L36B. Вместо указанного светодиода можно применить аналогичные по электрическим характеристикам приборы, например, L56B, L456B (повышенной яркости), L816BRC-B, L769BGR, TLBR5410 или подобные им.

Читайте так же:
Щит распределительный электрический для счетчика

Мощность, рассеиваемая на резисторе R3 (при токе к/з) более 5 Вт, поэтому этот резистор изготавливается самостоятельно из медной проволоки типа ПЭЛ-1 (ПЭЛ-2) диаметром 0,8 мм.

Ее берут из ненужного трансформатора. На каркас из канцелярского карандаша наматывают 8 витков этого провода, концы ее облуживают, затем каркас вынимают. Проволочный резистор R3 готов.

Все постоянные резисторы типа МЛТ-0,25 или аналогичные. Вместо диодов VD1, VD2 можно установить КД503, КД509, КД521 с любым буквенным индексом. Эти диоды защищают светодиод в режиме перегрузки (гасят излишнее напряжение).

Индикатор перегрузки с звуковым сигнализатором

К сожалению, на практике нет возможности постоянно визуально следить за состоянием индикаторного светодиода в источнике питания, поэтому разумно дополнить схему электронным узлом звукового сопровождения. Такая схема представлена на рис. 2.

Как видно из схемы, она работает по тому же принципу, но в отличие от предыдущей, это устройство более чувствительно и характер его работы обусловлен открыванием транзистора VT1, при установлении в его базе потенциала более 0,3 В. На транзисторе VT1 реализован усилитель тока.

Транзистор выбран германиевым. Из старых запасов радиолюбителя. Его можно заменить на аналогичные по электрическим характеристикам приборы: МП 16, МП39—МП42 с любым буквенным индексом. В крайнем случае, можно установить кремниевый транзистор КТ361 или КТЗ107 с любым буквенным индексом, однако тогда порог включения индикации будет иным.

Рис. 2. Электрическая схема узла звукового и светового индикатора перегрузки

Порог включения транзистора VT1 зависит от сопротивления резисторов R1 и R2 и в данной схеме при напряжении источника питания 12,5 В индикация включится при токе нагрузки, превышающем 400 мА.

В коллекторной цепи транзистора включен мигающий светодиод и капсюль со встроенным генератором ЗЧ НА1. Когда на резисторе R1 падение напряжения достигнет 0,5. 0,6 В, транзистор VT1 откроется, на светодиод HL1 и капсюль НА1 поступит напряжение питания.

Поскольку капсюль для светодиода является активным элементом, ограничивающим ток, режим работы светодиода в норме. Благодаря применению мигающего светодиода капсюль также будет звучать прерывисто — звук будет слышен во время паузы между вспышками светодиода.

В этой схеме можно достичь еще более интересный звуковой эффект, если вместо капсюля НА1 включить прибор КРІ-4332-12, который имеет встроенный генератор с прерыванием. Таким образом звук в случае перегрузки будет напоминать сирену (этому способствует сочетание прерываний вспышек светодиода и внутренних прерываний капсюля НА1).

Такой звук достаточно громкий (слышно в соседнем помещении при среднем уровне шума), обязательно будет привлекать внимание людей.

Индикатор перегорания плавкого предохранителя

Еще одна схема индикатора перегрузки представлена на рис. 3. В тех конструкциях, где установлен плавкий (или иной, например, самовосстанавливающийся) предохранитель, часто требуется визуально контролировать их работу.

Здесь применен двухцветный светодиод с общим катодом и соответственно тремя выводами. Кто на практике испытывал эти диоды с одним общим выводом, знают, что они функционируют несколько иначе, чем ожидается.

Шаблон мышления в том, что казалось бы, зеленый и красный цвета будут появляться у светодиода в общем корпусе соответственно при приложении (в нужной полярности) напряжения к соответственным выводам R или G. Однако, это не совсем так.

Рис. 3. Световой индикатор перегорания предохранителя.

Пока предохранитель FU1 исправен, к обоим анодам светодиода HL1 приложено напряжение. Порог свечения корректируется сопротивлением резистора R1. Если предохранитель обрывает цепь питания нагрузки, то зеленый светодиод гаснет, а красный остается светить (если напряжения питания совсем не пропало).

Поскольку допустимое обратное напряжение для светодиодов мало и ограничено, то для указанной конструкции в схему введены диоды с разными электрическими характеристиками VD1— VD4. То, что к зеленому светодиоду последовательно включен только один диод, а к красному три, объясняется особенностями светодиода AЛC331A, замеченными на практике.

При экспериментах оказалось, что порог напряжения включения красного светодиода меньше, чем у зеленого. Чтобы уравновесить эту разницу (заметную только на практике), количество диодов неодинаково.

Читайте так же:
Счетчик однофазный электронный счетчик цэ2726

При перегорании предохранителя к зеленому светодиоду (G) прикладывается напряжение в обратной полярности.

Номиналы элементов в схеме даны для контроля напряжения в цепи 12 В. Вместо светодиода AЛC331A допустимо применять другие аналогичные приборы, например, КИПД18В-М, L239EGW.

Литература: Андрей Кашкаров — Электронные самоделки.

Перегрузка по току электросчетчика

+7 (499) 391-49-12, +7 (926) 27-55-064, e-mail: info@bertronic.ru

  • Корзина
  • Карта сайта

Товар добавлен в корзину

Товаров в корзине на сумму

  • Главная
  • Новости
  • Магазин
      • Преобразователи частоты
      • Опции ПЧ
      • Устройства плавного пуска
      • Опции УПП
      • Тормозные опции
      • Фильтры
      • Запасные части
      • Принцип действия
      • Доп.оборудование
      • Руководства по эксплуатации
      • Каталоги применений
      • Программное обеспечение
      • Сертификаты
      • Весогабариты
      1. Главная
      2. Сайт о преобразователях частоты
      3. Читальный зал
      4. Устройство и принцип действия
      5. Защита от перегрузок по току и перегрева.

      Заказать online

      • Преобразователи частоты (921)
      • Устройства плавного пуска (254)
      • Тормозные опции (26)
      • Фильтры (271)
      • Опции ПЧ (186)
      • Опции УПП (21)
      • Запасные части (53)
      • Комиссионка (2)
      Электронная защита частотного преобразователя от перегрузки по току и/или перегрева двигателя.

      Частой причиной аварийного отключения преобразователей частоты, является перегрузка (OL) и/или перегрев (OH) двигателя. Эти неисправности относятся к программной защите преобразователей частоты и основаны в первую очередь на измерении выходного тока. Поэтому когда Вы слышите от продавцов преобразовательной техники, что у данной модели есть «электронная защита от перегрузки», то знайте, что она есть у всех известных нам серийно выпускаемых моделей преобразователей.

      Принудительный останов двигателя с индикацией ошибки перегрузки и перегрева может быть из-за работы на пониженной частоте или из-за потребления двигателем тока выше его номинального значения (записанного в преобразователе). Поэтому так важно записать значение тока с шильдика двигателя в определенную уставку инвертора. Программа, зашитая в преобразователь, математически рассчитывает температуру двигателя исходя из значений выходной частоты и выходного тока.

      Давайте рассмотрим несколько случаев изображенных в таблице (выписки из Руководства по эксплуатации ПЧ Веспер модели EI-9011 ч.2, стр.52):

      1. Стандартный двигатель охлаждаемый крыльчаткой на валу, с нагрузкой (моментом на валу) не более 100%, т.е. ток потребляемый двигателем не превышает номинального (график 1). В таких условиях работает большинство электродвигателей управляемых преобразователем частоты.

      К примеру, если взять стандартный (50 Гц) двигатель, то согласно графику при его работе близкой к номинальной частоте вращения он будет работать продолжительное время. Однако, с уменьшением частоты должна уменьшаться и нагрузка. Объясняется это тем, что крыльчатка стандартного асинхронного двигателя рассчитана на охлаждение при работе на 50 Гц, при частоте работы ниже, охлаждение становится менее эффективно. Если же частота вращения двигателя больше его номинального значения, то перегрузка наступит гораздо раньше, независимо от работы крыльчатки на валу, т.к. при этом потребляется повышенный ток.

      2. Стандартный двигатель охлаждаемый крыльчаткой на валу, с нагрузкой (моментом на валу) более 100%, т.е. ток потребляемый двигателем больше номинального (график 2). В этом случае двигатель является перегруженным и его работа продлится не более 60 секунд.

      3. Специальный двигатель (предназначенный для работы с преобразователем частоты, т.е. с установленным вентилятором обдува), с нагрузкой не превышающей 100% (график 3). Такая ситуация отличается от графика 1 только тем, что при работе на пониженных частотах будет продолжительной даже при номинальной нагрузке, т.к. охлаждение является независимым. При работе на повышенной частоте ситуация не отличается от стандартного двигателя.

      4. Специальный двигатель (предназначенный для работы с преобразователем частоты, т.е. с установленным вентилятором обдува), с нагрузкой более 100% (график 4). Двигатель остановится через минуту.

      Исходя из вышесказанного, имеется возможность отключить защиту двигателя при работе на пониженных частотах — в константе (уставке) «выбор двигателя» нужно поставить «специальный электродвигатель для преобразователей частоты с независимым вентилятором обдува». Тоже самое следует сделать если ваш двигатель охлаждается водой и хладагентом, например погружной насос или компрессор. В этом случае остановка двигателя с индикацией перегрузки, возможно, только если превышен номинальный ток двигателя. При этом необходимо организовать независимую защиту двигателя от перегрева, например, установив термореле.

      Внимание. Этот пример описан для преобразователя частоты фирмы Веспер модели EI-9011. Для других преобразователей смысл остается таким же, т.к. основана защита на параметрах стандартных асинхронных двигателей. Различия могут быть только в цифрах. Вопросы относительно рекомендованных частот работы двигателей должны быть адресованы производителям этих самых двигателей.

      Пониженное напряжение: правильно ли электросчетчик отсчитывает потребленную мощность

      Счетчик при низком напряжении — счёт в чью пользу?

      Вопросы: errors of the electricity meter and Electricity meter and The Metrology — погрешности электрического счётчика (техника) и Метрологии (наука):

      • 1. влияние низкого напряжения на работу электросчетчиков
      • 2. можно ли не платить за электроэнергию при постоянно низком напряжении в сети

      Упало напряжение в сети. Теперь электрический счётчик будет считать меньше, чем фактически потреблено электрэнергии?

      Влияние Electricity Distributor на точность платёжных расчётов по счётчику

      Measurement uncertainty — погрешность измерения электросчётчика зависит от отклонения напряжения от номинального значения, синусоидальности тока в сети, коэффициента мощности cos φ, частоты и пр.

      Естественно, что менеджмент электродистрибютера никогда не допустит подсчёта электроэнергии в пользу потребителя электричества — то есть, реальная погрешность счётчика для большинства пиковых и дневных киловатт*часов является положительной. Таков современный мир.
      Погрешность электросчётчика обязана в пользу и на пользу электрической компании.

      В этой статье — о цифровых счётчиках электроэнергии, без мотора-диска — иначе ЗАЧЕМ интенсивно заменяли электромеханические счётчики на электронные?
      ⁈ ответ: владельцу пломбы на электросчетчике легче его настроить так, чтобы ему за мошенничество ничего не было, а потребителю было невозможно воровать электроэнергию «безконтактным» магнитом, через пространство ⁈

      Подозрение на неправильный отсчет электричества цифровым электросчётчиком со стороны потребителя электроэнергии, на переплату за электроэнергию при низком напряжении вполне обоснован.

      Низкое напряжение — здесь: напряжение ниже стандарта, в разных странах различно, как правило +-10% от номинального напряжения (Rated voltage — Vref):
      Для стандарта 230 вольт — напряжение ниже 207 вольт;
      Для стандарта 220 вольт — напряжение ниже 198 вольт.

      Что делают электрораспределительная компания (electricity retailer, энергосбыт), когда потребители потребители увеличивают потребление энергии?

      Правильно, снижают напряжение в сети, ‘по физическому закону Ома’. Таким образом, когда потребители берут много электроэнергии, на входе электрораспределтельной компании — от магистральных высоковольтных сетей — потребление увеличивается на меньший процент мощности, чем если бы электрораспределители поддерживали номинальное напряжение.

      Теперь посмотрим с точки зрения метрологии. Класс точности (если быть правильным, то это класс погрешности) электросчётчиков раньше был 2.5, теперь — 1.0. То есть погрешность электрических счётчиках была 2,5%, потом стали применять электросчётчики с погрешностью 1,0%.

      Платить на полпроцента больше или меньше — для домашних потребителей это мизер. Ну какая разница: 30 евро в счёте за электричество или 29,85? Однако для electricity retailers центы от сотен тысяч, миллионов потребителей складываются в десятки тысяч, сотни тысяч евро за месяц. Мелочь? Но эта мелочь — деньги из воздуха.

      Кроме того, уменьшая пиковую потребляемую мощность потребителей методом снижения напряжения в электросети, эти электро-мошенники получают возможность экономить на своём оборудовании: электроподстанциях, трансформаторах, кабелях-проводах.

      Электросчётчик — это прибор взаимных расчётов, то есть к нему должен быть доступ двух сторон, по-справедливости. Но пломба на счётчике стоит только от одной стороны, безо всякой взаимности.

      Пломба — не государственной или независимой поверки, а самого продавца. Можем ли мы, потребители, полностью доверять продавцу? Нет, по демократическому принципу «сдержек и противовесов» мы, потребители, платящие деньги, обязаны сомневаться, а дело второй стороны — доказывать что всё по-честному.

      Но!
      Первая сторона — потребители — сторона не может, а
      вторая сторона- энергосбытовые компании — не доказывает, а создает впечатление, что якобы всё по справедливости.

      Существует теоретически арбитр — «палата мер и весов», однако на практике поверка одноразовых бытовых счётчиков делегирована изготовителю электросчётчиков.

      Кроме того, электросчётчик, как правило, принадлежит продавцу электричества. И продавец электричества заказывает счетчики десятками тысяч штук. Так какой электрический счётчик выберет electricity retailer?

      Ведь потребленное электричество не взвесишь на контрольных весах, как уголь, или не измеришь как разгруженные дрова — в кубиках.
      (Хотя и для отопительного газа, и для угля, и для дров у продавцов энергии существуют свои фокусы. Подробнее

      Так какую модель электрического счётчика выберет electricity retailer?

      «Энергосбыт» выберет модель электросчётчика для клиента, у которого погрешность сдвинута в положительную сторону, то есть показания счётчика — в пользу продавца:
      а) при недостаточном напряжении
      б) при большом потребляемом токе.
      Казалось бы, в целом по диапазону измерений — показания равномерны: там плюс, здесь минус. Однако в деньгах явный перевес в пользу продавца:

      а) когда наступает низкое напряжение?
      Когда потребление электричества максимальное, а значит — максимален доход.

      б) когда потребление тока максимально?
      Когда потребитель жжёт много электричества?
      И тогда за квт•ч электрокомпания с него берет больше.

      Как электрокомпания убеждает покупателя электричества в справедливости

      Например, мое электропотребление считает электрический цифровой счётчик модели Iskra ME 162 — D1A42 — M3K0 230 V 50 Hz.

      Вольтаж счётчика 230 вольт — мы такого напряжения не видим. Обычно напряжение бывает 190-220 вольт, иногда 185, иногда 225. А полновесное напряжение 232 вольта было в те дни, когда напряжение за месяц упало в среднем до 170 вольт, и мы вызывали неоднократно электриков для замера.

      Так вот, технические паспорта не прикладывают к счётчикам «навалом» для компании ЭнергоПро. Нашел datasheet-ы на счётчик в интернете. А там.
      Там нет рабочего диапазона напряжений, когда его погрешность соответствует классу 1.0.
      Там нет метрологических данных, графика зависимости:

      погрешности счётчика от коэффициента мощности (cos φ — активная/реактивная мощность)
      погрешности счётчика от напряжения в сети
      погрешности счётчика от бросков тока, напряжения — ни в виде частотных графиков, ни в виде импульсных несинусоидальных характеристик.

      Отсутствует самое интересное — характеристики точности измерения количества реальной электроэнергии.
      Такие данные в интернете я вообще для потребительских счетчиков не нашел, зато нашел комплексную оценку точности измерений Comparison of End‐User Electric Power Meters for Accuracy. Это — не электросчётчики, по которым выписывают счета за электричество, но принцип работы у них тот же, и заявленные точности не принципиально хуже.

      Через испытуемые приборы включали различные реальные бытовые нагрузки:
      компьютеры, люминисцентные лампы, блоки питания, омическую нагрузку и прочее.
      И оказалось, что вместо заявленных классах точности 1.0, 2.5 наблюдается погрешнось аж 15% — Table 3. Summary of the measurements.

      Так что не будет удивительно, если при пониженном напряжении переплата за электричество составляет и 20%, и 50% — только за счет «правильной» погрешности эл. счётчиков реального электрического тока, у которого сдвинут коэффициент мощности, электричество имеет несинусоидальный вид (броски, импульсные нагрузки и пр. нелинейности).

      Но это — цветочки, ягодки — в электроприборах. Низкая светоотдача ламп, перегоревшие электродвигатели, необходимость платить за UPS и стабилизаторы напряжения. Подробнее

      Можно ли не платить за электроэнергию при постоянно низком напряжении в сети

      Если электрораспределительная компания предлагает такой бонус «Низкое напряжение — БЕСПЛАТНО», то можно и не платить.
      🙂
      Во всех иных случаях пониженного напряжения энерго утверждает, что напряжение в пределах нормы. То есть, клиент не прав, и должен доказывать обратное. А как доказать?
      О! Это нужно найти и нанять независимого полномочного измерителя, и чтобы он записывал показания правильного вольтметра в период, когда напряжение ниже нормы. Как понимаете, «электрики всех мастей» — это тесно связанная между собой гильдия, и найти прибор, удовлетворит прокуратуру (это нарушение прав потребителей, перетекающее в хищение в особокрупных размерах) эээ.
      Вероятно, встанет намного дороже уплаченной в «энерго» суммы.
      Но для сознательных людей с гражданской активностью мерило — не деньги, а «справедливость». Пишите на сайт об успехах и неуспехах.

      голоса
      Рейтинг статьи
    Ссылка на основную публикацию
    Adblock
    detector