Sfera-perm.ru

Сфера Пермь
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Параметрический стабилизатор тока схема включения

Параметрические стабилизаторы напряжения постоянного тока

В качестве РЭ, как правило, используют полупроводниковые стабилитроны, которые работают на обратном участке ВАХ – участке пробоя. Условное обозначение стабилитрона и его ВАХ приведены на рис.4.2

Рисунок 4.2 – Стабилитрон и его ВАХ

На рисунке 4.2 показаны три стабилитрона первый – обычный, с рабочей областью (1) и напряжением стабилизации вольт, второй – стабистор с рабочей областью (3) и вольт, третий – двухсторонний стабилитрон с симметричной ВАХ (третий и первый квадранты). На рабочем участке (1) значительным изменениям тока соответствует слабое изменение напряжения стабилизации . Если превысить , то мощность, рассеиваемая на стабилитроне превысит допустимую ( участок 4). При токе меньше стабилитрон выходит из режима стабилизации. Участок (2) является рабочим для других приборов – ограничителей напряжения, которые считаются приборами защиты, а не стабилизации.

К параметрам стабилитрона относятся:

а) напряжение стабилизации и пределы его изменения ;

б) номинальный ток и пределы его изменения ;

в) максимальная мощность ;

г) дифференциальное сопротивление на рабочем участке

; (4.10)

е) температурный коэффициент напряжения (ТКН) .

Последний показатель рассмотрим подробнее. Полупроводники очень чувствительны к температуре и их ВАХ существенно изменяются, как показано на рис.4.3. Для p-n перехода (диода) температурный коэффициент напряжения (ТКН) обычно составляет примерно .

Рисунок 4.3 – Температурные отклонения ВАХ

Это недопустимо большая величина. Значительно улучшить температурную стабильность можно путём последовательного включения переходов с ТКН разного знака (рис.4.4).

Рисунок 4.4 – Температурная компенсация ВАХ стабилитрона

Число термокомпенсирующих переходов может быть любым, но они увеличивают дифференциальное сопротивление. Поскольку, наименьшими дифференциальными сопротивлениями обладают стабилитроны с напряжением стабилизации около 6…7 вольт, то прецизионные (термокомпенсированные) приборы, выпускаются на напряжение 9…10 вольт при ТКН порядка [14,28] .

Шкала напряжений стабилизации, выпускаемых стабилитронов очень широка – от единиц до сотен вольт, токи стабилизации – от долей миллиампер до единиц ампер. Ёмкость перехода около 1…7 пФ, поэтому стабилитроны практически безинерционны на частотах до единиц мегагерц.

Дискретность напряжения стабилизации создаёт неудобства при построении многоканальных ВУ, что привело к появлению интегральных стабилитронов с управляемым напряжением стабилизации [28]. Их условное обозначение и эквивалентная схема приведены на рис.4.5.

Рисунок 4.5 – Интегральный стабилитрон

Диапазон напряжений стабилизации 2,5…36 вольт при токе до 150мА, что перекрывает большинство применений стабилитронов в РЭА.

Основная схема параметрического стабилизатора приведена на рис.4.6.

Рисунок 4.6 – Параметрический стабилизатор

При заданных минимальном и максимальном значениях рабочая точка на ВАХ стабилитрона не должна выходить за пределы рабочего участка (точки А и В рис.4.2).

Коэффициент стабилизации по входному напряжению:

, (4.11)

где – дифференциальное сопротивление стабилитрона;

– коэффициент передачи постоянной составляющей со входа

Если пренебречь током внутреннего потребления ( ), то . Чем больше , тем лучше, но сильно увеличивать нельзя, т.к. рабочая точка может уйти на нерабочую часть ВАХ или потребуется увеличивать , что приведет к снижению . Внутреннее сопротивление стабилизатора определяется в основном стабилитрона, набор которых далеко не бесконечен.

КПД параметрического стабилизатора равен

(4.12)

и обычно составляет из-за потерь в балластном резисторе . Поэтому такую схему применяют для маломощных нагрузок.

Если требуется повысить стабильность выходного напряжения, то применяются каскадные или мостовые схемы стабилизаторов, которые приведены на рис. 4.7а,б соответственно.

В каскадных стабилизаторах результирующий коэффициент стабилизации и КПД равен произведению этих коэффициентов отдельных звеньев

(4.13)

.

Рисунок 4.7 – Разновидности параметрических стабилизаторов

а) каскадный; б) мостовой

Выходное сопротивление определяется только дифференциальным сопротивлением последнего стабилитрона (VD2). Повышение коэффициента стабилизации в мостовых схемах достигается за счёт компенсации. Теоретически, коэффициент стабилизации по напряжению может быть равен бесконечности, если обеспечить равенство . (4.14)

В этой схеме возможно получение очень низких выходных напряжений и малых температурных коэффициентов ( меньше чем у отдельного стабилитрона) за счёт использования стабилитронов с мало отличающимися температурными коэффициентами. Повышение коэффициента стабилизации связано с уменьшением КПД. Повысить стабильность и КПД позволяет использование токостабилизирующего двухполюсника – ТД (простейшего стабилизатора тока). Его схема показана на рис. 4.8.

Рисунок 4.8 – Токостабилизирующий двухполюсник

В схеме эмиттерного повторителя (рис.4.8), независимо от напряжение на резисторе RЭ неизменно, равно и, по закону Ома, ток тоже будет неизменным. Получили двухполюсник – простейший стабилизатор тока ( ЕК изменяется, а ток IЭ не меняется). Его включают в схему параметрического стабилизатора вместо балластного резистора, как показано на рис.4.9 .

Рисунок 4.9 – Параметрический стабилизатор с токостабилизирующим двухполюсником

В схеме рис. 4.9 основным является стабилитрон VD2, а VD1– элемент двухполюсника (ТД) служит для фиксации потенциала базы транзистора.

В качестве токостабилизирующего двухполюсника можно использовать полевой транзистор, как показано на рис.4.10.

Рисунок 4.10 – Параметрический стабилизатор с токостабилизирующим

двухполюсником на полевом транзисторе

Применение двухполюсника позволяет стабилизировать ток через и существенно повысить стабильность выходного напряжения в широких пределах изменения . Температурная нестабильность здесь такая же, как и в основной схеме параметрического стабилизатора (определяется стабилитроном VD2,).

Для повышения мощности (тока) в нагрузке можно использовать эмиттерный повторитель (рис.4.11).

.

Рисунок 4.11 – Параметрический стабилизатор с эмиттерным повторителем

На рис.4.11а,б приведена одна и та же схема. Параметрический стабилизатор RVD1 нагружен базовым током транзистора. Ток нагрузки примерно в раз больше, но выходное напряжение меньше напряжения стабилитрона на величину падения на базовом переходе транзистора и температурная стабильность за счёт последнего хуже.

Дата добавления: 2017-09-01 ; просмотров: 2111 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Параметрический стабилизатор напряжения

Любой электронной схеме требуется стабилизированное напряжение, необходимое для питания входящих в её состав активных элементов (транзисторов, микросхем и т. п.). Несмотря на большое разнообразие видов линейных источников в основе всех их лежит классический параметрический стабилизатор напряжения (смотрите рис. ниже).

При построении большинства таких устройств используется нелинейный полупроводниковый элемент – диод, называемый в этом случае стабилитроном.

Порядок включения

Классический стабилизатор на стабилитроне относится к простейшему виду устройств данного класса и является самым дешёвым и лёгким в исполнении. Своеобразная «расплата» за эту простоту – невысокий стабилизирующий эффект, сильно зависящий от величины нагрузки и наблюдаемый в очень узком диапазоне.

Читайте так же:
Микросхема регулируемый стабилизатор тока

Входящий в состав стабилизатора напряжения полупроводниковый элемент (стабилитрон) представляет собой выпрямительный диод, включенный в обратном направлении. Благодаря этому, рабочая точка элемента может быть установлена на нелинейном участке вольтамперной характеристики (ВАХ) с резко уходящей вниз ветвью.

Дополнительная информация. Её точное положение задаётся величиной балластного резистора Rо (смотрите схему выше).

С примером типовой вольтамперной характеристики стабилитрона можно ознакомиться на приводимом ниже рисунке.

Принцип работы параметрического стабилизатора на стабилитроне (ПСН) неразрывно связан с видом обратной ветви характеристики стабилитрона, имеющей следующие особенности:

  • При значительных изменениях тока через прибор напряжение на этом участке колеблется совсем в небольших пределах;
  • Путём выставления величины токовой составляющей можно установить рабочую точку по центру обратной ветви;
  • За счёт выбора напряжения стабилизации в фиксированной зоне ВАХ удаётся расширить динамический диапазон изменения тока стабилитрона (или его дифференциального сопротивления).

Обратите внимание! Именно из-за возможности выставления фиксированных параметров в этой схеме она получила своё название – параметрическая.

Принцип работы

Суть работы стабилизатора напряжения удобнее всего пояснить на примере диода, включённого в цепь постоянного тока. Когда напряжение на нём имеет прямую полярность (плюс подключён к аноду, а минус – к катоду), полупроводниковый переход смещён в проводящем направлении и пропускает ток.

При обратном порядке подачи полярности n-p переход закрыт и поэтому тока практически не проводит. Но если продолжать увеличивать обратное напряжение между электродами, то в соответствии с его ВАХ можно достичь точки, в которой диод вновь начинает пропускать поток электронов (но уже в другую сторону за счёт пробоя перехода).

Важно! Полупроводниковый элемент в этом случае работает в режиме обратных напряжений, значительно превышающих по величине прямое падение на нём (0,5-0,7 Вольта).

Обратный ток в данной ситуации может считаться рабочим параметром, изменяющимся в пределах регулировки напряжения, а сам диод, работающий в режиме обратного включения, носит название стабилитрона.

Основные параметры

При изучении функционирования параметрического стабилизатора напряжения особое значение придаётся техническим характеристикам самого регулирующего прибора. К ним следует отнести:

  • Напряжение стабилизации, определяемое как падение потенциала на нём при протекании тока средней величины;
  • Максимальное и минимальное значения тока, пропускаемого через обратно смещенный переход;
  • Допустимая рассеиваемая мощность на приборе Pmax.;
  • Проводимость перехода в динамическом режиме (или дифференциальное сопротивление стабилитрона).

Последний параметр определяется как отношение приращения напряжения ΔUCT к вызвавшему его изменению стабилизирующего тока ΔICT.

Относительно первых двух параметров следует заметить, что для разных образцов полупроводниковых диодов они могут сильно различаться по своей величине (в зависимости от мощности прибора). Напряжение стабилизации для большинства современных стабилитронов варьируется в диапазоне от 0,7 до 200 Вольт.

Допустимая мощность рассеяния определяется уже перечисленными ранее параметрами и также сильно зависит от типа элемента. Это же можно сказать и о дифференциальном сопротивлении, в определённой мере влияющем на эффективность процесса стабилизации.

Схема параметрического стабилизатора

Особенности схемы

Полное схемное представление стабилизатора параметрического типа, в котором стабилитрон выполняет функцию опорного элемента, приводится на размещённом ниже рисунке.

Рабочая схема стабилизатора

Эту схему можно рассматривать как делитель напряжения, состоящий из резистора R1 и стабилитрона VD с подключённой в параллель нагрузкой RН.

При изменениях входного потенциала соответственно будет меняться и ток через стабилитрон; при этом величина напряжения на нём (а значит и на нагрузке) останется практически неизменной. Её значение будет соответствовать напряжению стабилизации при колебаниях входного тока в некоторых пределах, определяемых характеристиками диода и величиной нагрузки.

Расчёт рабочих параметров

Исходными данными, согласно которым осуществляется расчет стабилизатора параметрического типа, являются:

  • Подаваемое на вход питание Uп;
  • Напряжение на выходе Uн;
  • Выходной номинальный ток IH=Iст.

С учётом этой информации рассчитаем искомую величину, воспользовавшись функцией онлайн-калькулятора, например.

В качестве примера положим:

Uп=12 Вольт, Uн=5 Вольт, IH=10 мА.

Исходя из этих данных, вводимых предварительно в онлайн-калькулятор или вручную, выбираем стабилитрон типа BZX85C5V1RL с напряжением стабилизации 5,1 Вольт и дифференциальным сопротивлением порядка 10 Ом. С учётом этого вычисляем величину балластного сопротивления R1, определяемую следующим образом:

R1= Uо–Uн/Iн+Iст =12-5/0,01+0,01= 350 Ом.

Таким образом, весь расчет параметрического стабилизатора сводится к определению номинала балластного резистора R1 и выбору типа стабилитрона (исходя из того, на какое рабочее напряжение он рассчитан).

Возможности по увеличение мощности

Выходная мощность стабилизатора параметрического типа определяется максимальным током стабилитрона и его допустимой мощностью Pmax, которую при желании можно увеличить. Для этого следует дополнить схему транзисторным элементом, включаемым параллельно или последовательно с нагрузкой. Соответственно этому различают стабилизаторы параллельного и последовательного типа, в которых транзистор выполняет функцию усилителя постоянного тока.

Рассмотрим каждую их этих схем более подробно.

Параллельный стабилизатор

В схеме стабилизатора параллельного типа транзистор используется как эмиттерный повторитель, включённый параллельно нагрузке (смотрите рисунок ниже).

Схема стабилизатора параллельного типа

Дополнительная информация. В этой схеме резистор R1 может располагаться как со стороны коллектора, так и в эмиттере транзистора.

Напряжение на нагрузочном резисторе Rн составляет:

Схема работает по принципу отвода излишков тока через открытый переход К-Э транзистора, на базе которого постоянно присутствует напряжение (Uст). В этой схеме IСТ является одновременно базовым током транзистора, вследствие чего его величина в нагрузке может в h21e раз превышать исходное значение, то есть транзистор в данном случае работает как усилитель по току.

Последовательный стабилизатор

ПСН, собранный по последовательной схеме, представляет собой тот же эмиттерный повторитель на транзисторе VT, но с сопротивлением нагрузки Rн, включённым последовательно с переходом К-Э (смотрите рисунок).

Схема последовательного ПСН

Выходное напряжение устройства в данной ситуации равно:

В этой схеме любые колебания тока в нагрузке приводят к противоположным по знаку изменениям напряжения на базе транзистора. Подобная зависимость вызывает открывание или закрывание перехода Э-К, что означает автоматическую стабилизацию выходного напряжения.

В заключение описания отметим, что как в последовательной, так и в параллельной схеме ПСН стабилитрон используется в качестве источника опорного напряжения, а транзистор – как усилитель тока.

Читайте так же:
Пусковой ток стабилизаторов напряжения

Видео

Параметрический стабилизатор тока схема включения

Стабилизатором напряжения (СТН) называют устройство, поддерживающее с определенной точностью неизменным напряжение на нагрузке. Другими словами, стабилизатор напряжения — это устройство, на выходе которого напряжение остается неизменным при воздействии дестабилизирующих факторов.

Стабилизаторы бывают параметрические (ПСН) и компенсационные (КСН). Параметрический стабилизатор наиболее простой. Его работа основана на свойствах полупроводникового диода, а точнее на одной из его разновидностей — стабилитрона. Типичная наипростейшая схема параметрического стабилизатора приведена на рисунке 1.

Рис. 1 — Параметрический стабилизатор напряжения

В стабилитронах используется явление электрического лавинного пробоя. При этом в широком диапазоне изменения тока через диод напряжение изменяется на нем очень незначительно. Входное напряжение через ограничительный резик Rбал подводится к параллельно включенным стабилитрону и сопротивлению нагрузки. Поскольку напряжение на стабилитроне меняется незначительно, то и на нагрузке оно будет иметь тот же характер. При увеличении входного напряжения практически все изменение Uвх передается на Rбал, что приводит к увеличению тока в нем. Увеличение этого тока происходит за счет увеличения тока стабилизации при почти неизменном токе нагрузки. Другими словами, все изменение входного напряжения поглощается в ограничительном (балластном) резике.

Часто стабилитрон работает в таком режиме, когда напряжение источника гуляет (т. е. нестабильно), а сопротивление нагрузки постоянно. Для нормального режима стабилизации сопротивление резика Rогр должно иметь определенное значение. Если напряжение Uвх гуляет от Umin до Umax, то для расчета Rогр можно воспользоваться формулой:

где Uвх.ср = 0.5(Uвх.min + Uвх.max) — среднее значение напряжения источника, Iср. = 0.5(Imin + Imax) — средний ток стабилитрона, Iн = Uн/Rн — ток нагрузки. При изменении входного напряжения в ту или иную сторону будет изменяться ток стабилитрона, на напряжение на нем, следовательно и на нагрузке будет оставаться постоянным.

Коли все изменения напряжения источника гасятся в Rогр, то наибольшее изменение напряжения (Uвх. max — Uвх.min = ΔUвх) должно соответствовать наибольшему возможному изменению тока, при котором еще сохраняется стабилизация (Imax — Imin = ΔIст). Отсюда следует, что стабилизация будет осуществляться только при соблюдении условия:

Бывает режим стабилизации, когда входное напряжение постоянно, а сопротивление нагрузки изменяется, т. е. гуляет от Rн.min до Rн.max. Для такого режима Rогр определяется по формуле:

Иногда необходимо получить такое напряжение, на которое стабилитрон не рассчитан. В этом случае применяют последовательное соединение стабилитронов. Тогда напряжение стабилизации будет соответствовать сумме напряжений стабилизаций последовательно включенных стабилитронов.

Помимо рассмотренной схемы применяют каскадное включение стабилитронов. Говоря проще, берут несколько вышерассмотренных схем и включают одну за другой. При этом напряжение стабилизации предыдущего стабилитрона должно быть больше, чем следующего. Такие схемы применяют для увеличения коэффициента стабилизации. Бывает еще и мостовая схема, называемая мостовой параметрический стабилизатор. Теоретически у такой схемы коэффициент стабилизации стремится к бесконечности (хотя в это верится с трудом).

К сожалению большой мощи с вышерассмотренной схемы не снять. Поэтому придумали ниже приведенную схемку, которая проста до безобразия.

Рис. 2 — Параметрический стабилизатор напряжения с усилителем мощности

Как видим, ничего сложного. Просто нагрузку воткнули через транзистор, включенный по схеме ОК, выполняющего роль усилителя мощности.

Ахтунг: Как-то один препод втулял на полном серьезе, что схема на рисунке 2 — компенсационный стабилизатор напряжения. Тогда меня чуть не вывернуло. Не ведитесь на такую фигню. Про КСН чуть ниже. Там и будет понятно отличие ПСН от КСН.

Такая схема при малых и средних токах нагрузки работает как стабилизатор, а при больших токах нагрузки — как транзисторный фильтр (если параллельно стабилитрону влепить кондер). Если параллельно стабилитрону влепить переменный (подстроечный) резик, то выходное напряжение становиться регулируемым. Можно также влепить параллельно нагрузке кондер. Кондеров вообще можно повтыкать несколько штук, не повредит. Для уменьшения высокочастотной (ВЧ) составляющей выходного напряжения параллельно нагрузке втыкают кондер емкостью 0,01. 1 мкФ. Это касается любых источников питания. В умных книжках пишут, что кондер должен быть керамический, хотя и бумажные, слюдяные, пленочные и прочие работают ничтяково.

Тип транзистора в схеме на рисунке 2 выбирается из учета мощности нагрузки. Например, для питания усилка (особенно большой мощности), когда ток нагрузки велик, втыкают составной транзистор. Составной транзистор — это когда берут два (или больше) транзистора и коллектор или эмиттер одного подключают к базе другого, а оставшийся вывод первого транзистора соединяют с оставшимся выводом следующего. На рисунке ниже это намного понятнее:


Это составной транзистор

И это составной транзистор

Теперь ясно? Вся фишка в том, что у составного транзистора коэффициент передачи равен произведению коэффициентов передачи каждого транзистора. То есть берем два говяненьких транзистора с коэффициентом усиления, скажем, 100, делаем составной и получаем транзистор с коэффициентом передачи 10 000. Суть ясна?

Итак, для больших токов используют составные транзисторы, ну а для питания парочки микросхем подойдет транзистор средней и малой мощности. Даже 315-е работают вполне удовлетворительно.

Бывает ешчё куча всяких схем ПСН, но наиболее употребительные две вышерассмотренные. Ну понятно, наверное, чтобы получить напряжение обратной полярности, просто переворачиваем стабилитрон вверх ногами (на рис.1), а транзистор втыкаем другого типа проводимости ( рис.2; был n-p-n, ставим p-n-p). Полярность кондеров тоже необходимо поменять, не забывая при этом поменять полярность входного напряжения.

Компенсационные стабилизаторы напряжения

Компенсационный стабилизатор напряжения (КСН) работает по иному принципу, нежели ПСН. Из названия видно, что КСН чего-то там компенсирует. В общем-то принцип действия КСН основан на изменении сопротивления регулирующего элемента в зависимости от управляющего сигнала. А вот и определение из книжки — КСН относятся к стабилизаторам непрерывного действия и представляют собой устройства автоматического регулирования, которые с заданной точностью поддерживают напряжение на нагрузке независимо от изменения входного напряжения и тока нагрузки. КСН бывают последовательного и параллельного типа. Для рывка рассмотрим структурную схему типичного КСН последовательного типа.

Читайте так же:
Стабилизаторы напряжения тока реферат

Рис. 3 — КСН последовательного типа

РЭ — это регулирующий элемент, в качестве которого чаще всего используется транзистор ( биполярный или полевой), СУ — схема управления — собственно управляет работой РЭ. Иногда вместо СУ изображают усилитель постоянного тока (УПТ). Его задача — усилить сигнал рассогласования и подать его на РЭ. Д — делитель напряжения, ИОН — источник опорного напряжения. В качестве ИОН применяют схему параметрического стабилизатора. Источник опорного напряжения и делитель объединяют в так называемый измерительный элемент (ИЭ). Из-за включения РЭ последовательно с нагрузкой схема так и называется — последовательная.

Итак, источник опорного напряжения (ИОН) задает опорное напряжение, поступающее на вход СУ. С делителя часть выходного напряжения (соизмеримого с напряжением ИОН) также подается на вход схемы управления (СУ). В результате сравнения выходного напряжения (или его части) с опорным СУ управляет РЭ, сопротивление которого меняется в ту или иную сторону. Короче, если, к примеру, напряжение на входе скакнуло, эта фигня, естественно, передается на выход. Сигнал с делителя напряжения подается на схему управления и та, в свою очередь, сравнивая напряжение с ИОН, дает команду РЭ увеличить (уменьшить) сопротивление. В результате на нагрузке напряжение остается постоянным. Кроме того, измерительный элемент выделяет пульсации выпрямленного напряжения, поступающие на РЭ, который достаточно хорошо сглаживает их. При рассмотрении принципиальной схемы все станет ясней.

Параллельную схему КСН рассмотрим только в структуре. Ее изображение приведено на рисунке 4.

Рис.4 — КСН параллельного типа

Принцип действия такого стабилизатора основан на изменении проводимости РЭ (опять же, в соответствии с управляющим сигналом), вызывающее изменение падения напряжения на балластом резике. Эта схема хорошо работает при небольшом импульсном изменении тока нагрузки. Её основное достоинство — при импульсном изменении тока нагрузки не происходит изменения тока, потребляемого от сети.

Ну а теперь перейдем к самому главному: к схемам. Очень простая и понятная, так сказать, типичная схема приведена на рисунке 5.

Рис.5 — Принципиальная схема КСН.

Итак, разберем все деталюшки. Функции РЭ выполняет транзистор VT1. ИОН образован резиком R1 и стабилитроном VD1 (как видим, это параметрический стабилизатор). Делитель, соответственно, состоит из резиков R2-R4. На транзисторе VT2 собран усилитель постоянного тока (УПТ). ИОН задает для УПТ образцовое напряжение, которое вводится в цепь эмиттера транзистора VT2. На базу транзистора поступает напряжение с делителя. Если изменяется выходное напряжение, а соответственно, и напряжение на базе транзистора VT2, который сравнивая это напряжение с напряжением на эмиттере, задает РЭ такой режим работы, что сопротивление его перехода изменяется, и напряжение на нагрузке остается постоянным. С помощью резика R3 можно регулировать выходное напряжение.

В качестве регулирующего элемента при малом токе нагрузки (не больше 0,1-0,2 А) используются одиночные транзисторы. При больших токах нагрузки ставят составные и так называемые тройные составные транзисторы.

Такая схема обладает защитой от короткого замыкания (КЗ). При КЗ обесточивается стабилитрон VD1 и транзисторы VT1, VT2 закрываются. Правда злоупотреблять этим не следует (т. е. ради интереса замыкать плюс с минусом). Защита от КЗ кратковременная. Но работает!

На практике один из вариантов такой схемы можно встретить с резиком между коллектором и эмиттером РЭ. Он необходим для нормальной работы стабилизатора при отрицательных температурах. Иногда пишут, что резик, шунтирующий переход коллектор-эмиттер РЭ, служит для запуска стабилизатора. Ну в принципе, наверное, понятно, что для смены полярности необходимо поменять тип транзисторов, направление включения стабилитрона и, соответственно, полярность включения кондеров (на схеме не показаны).

Итак, практическая схема вышеописанного стабилизатора приведена ниже:

Эта схема содрана с блока питания магнитофона приставки «Карат МП-201С» и, как видно, отличие состоит лишь в кондерах и резике R1. Резиком R4 подстраивают выходное напряжение. Подбирая стабилитрон VD1 можно изменять выходное напряжение ( при изменении входного, соответственно). При этом надо менять сопротивление резика R1. Две черточки на его корпусе обозначают мощность, т. е. 2 Вт. При больших токах нагрузки резик R1 греется. Естественно, транзистор VT1 необходимо установить на радиатор, площадью хотя бы 50 см 2 , т. к. и он может «пыхнуть».

Одной из разновидностей схем такого рода является так называемая схема с «холодным» коллектором. Её отличием является то, что регулирующий транзистор включается в цепь общего провода, а не «горячего». А это значит, что изолировать транзистор от радиатора или радиатор от корпуса устройства не надо, чего не скажешь о схемах на рисунках 5 и 6. В этих схемах транзисторы вылетают, как с добрым утром, если забыли изолировать коллектор (для тех, кто в танке, коллектор мощных транзисторов электрически соединен с корпусом транзистора или его частью для лучшего теплового контакта). На рисунке 7 эта схема и показана. Схема слизана с журнала Радио аж за 1984 год (Радио №12/1984).

Рис. 7 — КСН с «холодным» коллектором

Как видно, практически никаких отличий от предыдущей схемы. В качестве регулирующего использован составной транзистор КТ827А. Его можно легко заменить двумя — КТ815 и КТ819. Недостаток схемы — меньший ток нагрузки, нежели у схемы на рисунке 6. Да к тому же для такого стабилизатора необходим отдельный выпрямитель . Другими словами, если нужно несколько стабилизаторов, то для каждого придется забабахать свой выпрямитель. Зато все регулирующие транзисторы можно поставить на один теплоотвод, не изолируя их.

Стабилизаторы тока и напряжения: параметрические и компенсационные, их параметры и характеристики

Стабилизатором напряжения называется устройство, автоматически поддерживающее напряжение на нагрузке при изменении в определенных пределах таких дестабилизирующих факторов, как напряжение первичного источника, сопротивление нагрузки, температура окружающей среды. Существует три вида стабилизаторов: параметрические, компенсационные и импульсные.

Параметрический стабилизатор напряжения (ПСН) использует элементы, в которых напряжение остается неизменным при изменении протекающего через них тока. Такими элементами являются стабилитроны, в которых при изменении тока в очень широких пределах падение напряжения изменяется на доли процента. Параметрические стабилизаторы применяются, как правило, в качестве источников опорного (эталонного) напряжения в мощных компенсационных стабилизаторах или для стабилизации напряжения в высокоомных цепях (когда Rн велико).

Читайте так же:
Что значит стабилизатор тока

Основным параметром стабилизатора является коэффициент стабилизации – отношение относительного изменения напряжения на входе к относительному изменению напряжения на выходе:

Недостатками ПСН являются:

— малый КПД (из-за использования балластного резистора и значительного дополнительного тока через стабилитрон);

— малый коэффициент стабилизации Kст (для его увеличения включают два каскада ПСН);

— невозможность регулирования выходного напряжения;

Компенсацтонный стабилизатор напряжения (КСН) представляет собой систему автоматического регулирования (рис. 2.38). Он также относится к СН непрерывного действия. Сущность компенсационного метода стабилизации напряжения состоит в том, что в процессе работы с помощью измерительного устройства ИУ осуществляется сравнение выходного напряжения с опорным или эталонным, вырабатываемым источником опорного напряжения ИОН. Разностное напряжение усиливается усилителем У и подается на регулирующий элемент РЭ, сопротивление которого изменяется прямо пропорционально изменению выходного напряжения.

Uвх
У
РЭ
ИУ
ИОН
Uвых

КСН имеют КПД более высокий, чем ПСН, но все равно небольшой из-за потери значительной мощности на РЭ, работающего в активном режиме.

В рассмотренных стабилизаторах напряжения регулирующий транзистор всегда открыт, а само регулирование осуществляется путем изменения степени его открытия, т.е. линейно. Поэтому такие стабилизаторы называются линейными.

Существует два основных типа стабилизаторов тока. Один из них допускает произвольное изменение тока до пороговой вели­чины, выше которой прирост потребляемого тока невозможен. Это ограничители тока, полезные в качестве схем защиты. Дру­гой тип стабилизаторов тока поддерживает ток постоянным независимо от больших изменений в сопротивлении нагрузки. Они называются источниками постоянного тока (ИПТ).

UВХ
б)
IВХ
IВЫХ

Ограничители тока обычно основаны на использовании опе­рационного усилителя или усилителя на транзисторе, восприни­мающего напряжение на резисторе, включенном последователь­но в цепь выхода. Резистор должен иметь очень малое сопротив­ление (несколько миллиом при больших токах), в противном случае из-за увеличения последовательного сопротивления ста­билизация напряжения будет сильно ухудшаться. Если напряжение на последовательном резисторе превышает порог, уста­новленный конструктором, то включается усилитель тока.

Основным параметром стабилизаторов тока, кроме выходного сопротивления, является коэффициент ста­билизации выходного тока, равный отношению относительного приращения входного тока к относительному приращению тока на­грузки, т. е.

Основные параметры и харак – ки усилителей. Классы усиления. Обратные связи в усилителях, их влияние на работу усилителя.

Усилителем называют устройство, предназначенное для усиления параметров электрического сигнала (напряжения, тока, мощности).

Основными параметрами усилителя являются:

KU = Uвых / Uвх – коэффициент усиления напряжения;

KI = Iвых / Iвх – коэффициент усиления тока;

KP = Pвых / Pвх = UвыхIвых / UвхIвх = KUKI – коэффициент усиления мощности;

Rвх и Rвых – соответственно входное и выходное сопротивления усилителя.

класс «A» — линейный, усиление происходит на линейном участке ВАХ (вольт-амперная характеристика), отсуствие переходных искажений, но низкий кпд (10-20%), т.е. данный класс неэкономичный в смысле расходования энергии и нагрева; класс «В» — лампы или транзисторы работают в ключевом режиме, т.е. усиливают только свою полуволну сигнала в линейном режиме. Это как бы 2 отдельных класса А (для каждой полуволны свой). Высокая экономичность, но возрастают переходные искажения за счёт неидеальности «стыковки» верхней и нижней полуволн сигнала; класс «С» этот класс усиления применяется только в ВЧ технике, т.к. для звуковой техники он малопригоден из-за больших переходных искажений сигнала. Рабочая точка выходного каскада смещена далеко за пределы области отсечки так, что транзистор открывается только при максимумах входного сигнала. В ВЧ схемах правильная форма сигнала восстанавливается на нагрузке — резонансном контуре. Эффективность данного усилителя очень высока. класс «AB» — компромиссный: за счёт начального смещения уменьшаются переходные искажения сигнала («стыковка» ближе к идеальной), но теряется экономичность и возникает опасность сквозного тока, потому, что транзистор (лампа) противоположного плеча полностью не закрывается. класс «D» — это особый класс на основе ШИМ. Выходные элементы работают полностью в ключевом режиме. Сигнал, полученный с помощью ШИМ, выделяется специальным фильтром нижних частот. Достоинства — очень высокая экономичность, недостатки — ВЧ импульсные помехи, которые необходимо подавлять. класс Е — если усилители класса D работают на основе ШИМ, то класс E — в ключевом режиме. В основном используется опять же, в ВЧ аппаратуре. класс G — более эффективная версия режима AB. Используется источник питания с разными напряжениями. Активный элемент подключается к источнику питания соответствующей величины, в зависимости от амплитуды сигнала. Таким образом, уменьшается напряжение на транзисторах, что приводит к снижению рассеиваемой мощности. класс Н — похож на класс G, за исключением способа реализации высоковольтной ступени источника питания. Напряжение питания отслеживает напряжение сигнала, оставляя на транзисторе небольшое напряжение, необходимое для работы. Для модуляции напряжения питания используется что-то типа ключевого усилителя класса D. класс T — похож на класс D, но с использованием цифровой коррекции сигнала.

Обратной связью в усилителе (в целом) или же в отдельно взятом каскаде называется такая связь между входом и выходом, при которой часть энергии усиленного сигнала с выхода передаётся на вход.

Обратная связь оказывает большое влияние на параметры усилительных каскадов. При обратной связи по напряжению сигнал обратной связи пропорционален напряжению на выходе усилителя. Есть и обратные связи по току — в них сигнал обратной связи снимается обычно с резистора, включенного последовательно с нагрузкой. В этом случае падение напряжения на этом резисторе (а следовательно, и напряжение обратной связи) пропорционально току нагрузки. Обратная связь характеризуется важным параметром — глубиной А. Он определяет, во сколько раз изменяются параметры усилителя при введении обратной связи. Глубина обратной связи по напряжению определяется как А = 1 — росК0, где Рос — коэффициент, указывающий, какая часть напряжения подается в виде сигнала обратной связи, К0 — коэффициент усиления усилителя. Классификация: По способу своего возникновения обратная связь может быть: 1.Внутренней 2.Паразитной 3.Искусственной По признаку петлевого усиления: 1.Положительную ОС (ПОС) 2.Отрицательную ОС (ООС)
В зависимости от способа подключения ОС к выходу усилителя: 1.Ос по току 2. Ос по напряжению.

Читайте так же:
Дроссель как стабилизатор тока
|следующая лекция ==>
Расчет выпрямителей: выбор схемы выпрямления, типа вентилей, мощности и коэф. Трансформации|Однокаскадный усилитель га биполярном транзисторе по схеме с ОЭ. Принцип действия, назначение элементов схемы

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Характеристики микросхемы TL431

Микросхема TL431 по своим техническим характеристикам которые указаны в datasheet является регулируемым стабилизатором, гарантирующим хорошую температурную стабильность. Если использовать два внешних резистора в качестве делителя, микросхема способна обеспечить стабильное напряжение на участке от 2,5 до 36 В. Так же TL431 может использоваться совместно с низковольтными МДП транзисторами для создания очень экономичных стабилизаторов. Кроме этого она часто используется в импульсных блоках питания использующих оптронную пару для развязки высоковольтных цепей.

Цоколевка

Существует пять разновидностей корпусов, в которых выпускается микросхема TL431. Это ТО-92, SOT-23, SOT-25, SOT-89 и SOP-8. Расположение выводов показано на рисунке, представленном ниже:

Технические характеристики

Рассмотрим максимально допустимые характеристики микросхемы TL431. Если при работе они будут превышены, то прибор выйдет из строя. Длительная эксплуатация устройства с параметрами, близкими к предельным, также опасна для него. Значения этих параметров представлены ниже:

  • наибольшее возможное напряжение между анодом и катодом – 37 В;
  • диапазон токов, протекающих через катод на протяжении длительного времени – от -100 до +150мА;
  • диапазон токов на входе (управляющем электроде) устройства – от -0,05 до +10 мА;
  • максимальная рассеиваемая мощность зависит от типа корпуса:
  • SOT-89 – 0.8 Вт;
  • ТО-92 – 0,78 Вт;
  • SO-8 – 0.75 Вт;
  • SOT-23 – 0,33 Вт;
  • SOT-25 – 0,5 Вт.
  • диапазон рабочих температур – от -25 до +85 О С;
  • предельно допустимая температура кристалла – +150 О С;
  • диапазон температур при которых может хранится изделие — -65 до +150 О С.

В технической документации производители приводят диапазон рекомендуемых рабочих характеристик. Напряжение на катоде VKA может изменяться от минимального, равного управляющему VREF, до максимального 36 В. Катодный ток должен находиться в пределах от 1 до 100 мА.

При конструировании нового устройства следует также обращать внимание на электрические характеристики. Измерение производилось при температуре TC= 25°C. Остальные параметры тестирования приведены в колонке «Режимы измерения».

Аналоги

Существует отечественная микросхема, похожая по своим параметрам на рассматриваемую, это 142ЕН19. Полным аналогом TL431 является IR943N. Среди устройств с одинаковыми выводами, но немного отличающимися электрическими параметрами можно назвать HA17431A, KIA431. Если нет других альтернатив, для замены можно попробовать использовать APL1431. Однако в этом случае возможно придётся изменить монтажную плату.

Производители

Первая микросхема TL431 изготовлена американской фирмой Texas Instruments в далеком 1977 году и с тех пор завоевала популярность. Сейчас ее производством занимаются множество зарубежных компаний: Texas Instruments, ON Semiconductor, Unisonic Technologies, STMicroelectronics, IK Semicon Co, HTC Korea TAEJIN Technology, NXP Semiconductors, Microsemi Corporation, Motorola, Fairchild Semiconductor, Analog Intergrations Corporation, Guangdong Kexin Industrial, Diodes Incorporated, Wing Shing Computer Components, KEC(Korea Electronics), SHIKE Electronics, Calogic, Continental Device India Limited, Sangdest Microelectronic (Nanjing), SeCoS Halbleitertechnologie GmbH, Hotchip Technology, Foshan Blue Rocket Electronics, Compact Technology, GUANGDONG HOTTECH INDUSTRIAL, Sames, Kersemi Electronic, Sirectifier Global, Shenzhen Jin Yu Semiconductor, Nanjing International Group, DONGGUAN YOU FENG WEI ELECTRONICS. На Российском рынке представлена продукция таких компаний: Diodes Incorporated, Texas Instruments, STMicroelectronics, NXP Semiconductors, ON Semiconductor, Fairchild Semiconductor, Unisonic Technologies.

Скачать datasheet на TL431 можно кликнув на подсвеченное название производителя.

Схема включения

Разберёмся, как работает TL431, для чего посмотрим на структурную схему включения. Если действующее напряжение на входе не превышает опорное (Vref), на выходе ОУ также небольшое напряжение, поэтому транзистор закрыт. Величина тока протекающего через него невелика, не больше 1 мА. Когда напряжение действующее на входе нарастает и превышает Vref, открывается ОУ. Таким образом через транзистор начинает течь ток.

Параметрический стабилизатор

Чтобы задать напряжение, в выходной цепи стабилизатора должен находиться делитель напряжения, состоящий из двух резисторов R1 и R2. Разность потенциалов на выходе устройства при этом равна:

где Vref – опорное напряжение, для рассматриваемой микросхемы TL431 равно 2,5 В.

При увеличении соотношения между резисторами R1/R2 растет выходное напряжение. Зная величину напряжения действующего на выходе и задавшись значением R2, можно определить сопротивление R1:

Величина сопротивления R3 подбирается также, как и для устройств с стабилитроном. Устанавливать конденсатор на выходе схемы не рекомендуется, чтобы предотвратить паразитную генерацию.

Компенсационный стабилизатор

Компенсационный стабилизатор работает же, как и при использовании стабилитрона. В них для уравновешивания разницы напряжений действующих на входе и выходе используется мощный транзистор. Однако точность стабилизации в устройствах с TL431 будет выше. Здесь величина сопротивления R1 рассчитывается на наименьший ток 5 мА. R2 и R3 рассчитываются так же, как и для параметрического стабилизатора.

Рассмотренный выше стабилизатор не может работать с выходными токами равными единицам или даже десяткам ампер. Чтобы построить мощный блок питания нужно использовать усилительный каскад с двумя транзисторами, включёнными как в схеме эмиттерного повторителя.

Ниже представлена схема работы стабилизатора напряжения TL431. Здесь R2 ограничивает ток, текущий через базу VT1. Резистор R3 нужен для компенсации обратного коллекторного тока VT2. Конденсатор С1 используется для увеличения стабильности работы на больших частотах.

Стабилизатор тока

Приведём схему стабилизатора тока на TL431. Здесь на сопротивлении R2, при помощи обратной связи, установлено напряжение 2,5 В. Тогда ток на нагрузке будет равен Iн=2,5/R2 (током базы пренебрегаем). При подстановке в данную формулу величины сопротивления в омах получим ток в амперах, а если в килоомах, ток будет в миллиамперах.

Если у вас остались вопросы по TL431, по ее характеристикам или вы не можете найти нужный datasheet то пишите об этом в комментариях, мы обязательно Вам поможем.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector