Sfera-perm.ru

Сфера Пермь
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Определение активной мощности по счетчику

АКТИВНАЯ, РЕАКТИВНАЯ И ПОЛНАЯ МОЩНОСТИ ЦЕПИ

Умножив стороны треугольников напряжений (см. векторные диаграммы рис. 2.9, б, 2.10, б, 2.11, б) на ток I, получим треугольники мощностей.

Стороны треугольников мощностей соответственно означают:

— Р = UrI = I 2 r — активная мощность цепи, Вт, кВт (рис 2.9, г, 2.10, г, 2.11,г и ж);

— QL = ULI = I 2 xL — реактивная индуктивная мощность цепи, обусловленная энергией магнитного поля, вар, квар (рис. 2.9, г);

— QС = UСI = I 2 хС — реактивная емкостная мощность цепи, обусловленная энергией электрического поля, вар, квар (рис. 2.10, г);

— Q = QL — QС = I 2 x — реактивная мощность цепи, вар, квар (рис 2.11, г и ж), это та мощность, которой приемник обменивается с сетью;

— S = UI = I 2 z — полная мощность цепи. В • А, кВ • А (рис. 2.9, г, 2.10, г, 2.11, г и ж);

— cos φ = r/z = P/S — коэффициент мощности цепи (рис. 2.9, г, 2.10, г, 2.11, г и ж).

Из треугольников мощностей можно установить следующие связи между Р, Q, S и cos φ:

P = S cos φ = UI cos φ;

Q = S sin φ = UI sin φ;

За единицу активной мощности принят ватт (Вт) или киловатт (кВт), реактивной мощности — вольтампер реактивный (вар) или киловольтампер реактивный (квар), полной мощности — вольтампер (ВА) или киловольтампер (кВ • А).

Реактивные (индуктивная, емкостная) мощности, обусловленные соответственно энергией магнитного поля индуктивности и электрического поля емкости, не совершают никакой полезной paботы, однако они оказывают существенное влияние на режим работы электрической цепи. Циркулируя по проводам трансформаторов, генераторов, двигателей, линий передач, они нагревают их. Поэтому расчет проводов и других элементов устройств переменного тока производят, исходя из полной мощности S, которая учитывает активную и реактивную мощности.

Рис. 2.13. Схема включения приборов для измерения активной, реактивной и полной мощностей цепи, а также ее параметров

Коэффициент мощности имеет большое практическое значение: он показывает, какая часть полной мощности является активной мощностью. Полная мощность и коэффициент мощности наряду с другими параметрами являются расчетными величинами и в конечном счете определяют габаритные размеры трансформаторов, генераторов, двигателей и других электротехнических устройств.

Измерение активной, реактивной, полной мощностей и cos φ, а также параметров цепи, например r и L, можно произвести с помощью ваттметра, амперметра и вольтметра, включенных в цепь по схеме, изображенной на рис. 2.13.

Ваттметр измеряет активную мощность Р цепи. Полная мощность цепи равна произведению показаний вольтметра и амперметра.

Активное сопротивление находят из формулы:

Полное сопротивление цепи

Индуктивность L определяют из формулы

Пример 2.1. Приборы, включенные в цепь рис 2.13, показывают Р = 500 Вт, I = 5 А, U= 400 В.

Определить активное сопротивление r и индуктивность цепи L, если частота сети f = 50Гц.

Решение. Активное сопротивление цепи

r = P/I 2 = 500/5 2 = 20 Ом.

Индуктивное сопротивление цепи

Пример 2.2. Определить ток, полную, активную и реактивную мощности, а также напряжения на отдельных участках цепи, изображенной на рис. 2.11, а. если r = 40 Ом. L = 0,382 Гн, С = 35,5 мкФ, U = 220 В, частота сети f = 50 Гц.

Решение. Индуктивное сопротивление цепи

xL = 2πfL = 2 • 3,14 • 50 • 0,382 = 120 Ом.

Емкостное сопротивление цепи

Полное сопротивление цепи

Ток в цепи:

I = U/z = 220/50 = 4,4 А.

Коэффициент мощности цепи:

cos φ = r/z = 40/50 = 0,8.

Полная, активная и реактивная мощности:

S = UI = I 2 z = 220 • 4,4 = 4,42 • 50 = 970 В • А.

Р = S cos φ = I 2 r = 970 • 0,8 = 4,42 • 40 = 775 Вт;

Q = S sin φ = I 2 (xL — xС) = 970 • 0,56 = 4,42 (120 — 90) = 580 вар.

Напряжения на отдельных участках цепи:

Пример 2.3. Определить характер нагрузки, полную, активную и реактивную мощности цепи, в которой мгновенные значения напряжения и тока составляют:

u = 282 sin (ωt + 60°),

i = 141 sin (ωt + 30°).

Решение. Угол начальной фазы напряжения (ψ1 = 60°) больше, чем тока (ψ2 = 30°), поэтому напряжение опережает по фазе ток на угол φ = ψ1 — ψ2 = 60 — 30 = 30° и нагрузка имеет активно-индуктивный характер.

Полная мощность цепи:

Активная мощность цепи:

Р = S cos φ = 20 000 cos 30° = 20 000 ( /2) — 17 300 Вт

Реактивная мощность цепи:

Q = S sin φ = 20 000 sin 30° = 20000 • 0,5 = 10 000 вар.

Счетчики статические трехфазные активной и реактивной электроэнергии SMT

Что такое активная и реактивная электроэнергия на счетчике

С одной стороны, работу тока можно легко посчитать, зная силу тока, напряжение и сопротивление нагрузки. До боли знакомые формулы из курса школьной физики выглядят так.

И здесь нет ни слова про реактивную составляющую.

С другой стороны, ряд физических процессов на самом деле накладывают свои особенности на эти расчёты. Речь идёт о реактивной энергии. Проблемы с пониманием реактивных процессов приходят вместе со счетами за электроэнергию в крупных предприятиях, ведь в бытовых сетях мы платим только за активную энергию (размеры потребления реактивной энергии настолько малы, что ими просто пренебрегают).

Чтобы понять суть физических процессов начнём с определений.

Активная электроэнергия – это полностью преобразуемая энергия, поступающая в цепь от источника питания. Преобразование может происходить в тепло или в другой вид энергии, но суть остаётся одна – принятая энергия не возвращается обратно в источник.

Пример работы активной энергии: ток, проходя через элемент сопротивления, часть энергии преобразует в нагрев. Эта совершённая работа тока и является активной.

Реактивная электроэнергия – это энергия, возвращаемая обратно источнику тока. То есть ранее полученный и учтённый счётчиком ток, не совершив работы, возвращается. Помимо прочего ток совершает скачок (на короткое время нагрузка сильно возрастает).

Тут без примеров сложно понять процесс.

Самый наглядный – работа конденсатора. Сам по себе конденсатор не преобразует электроэнергию в полезную работу, он её накапливает и отдаёт. Конечно, если часть энергии всё-таки уходит на нагрев элемента, то её можно считать активной. Реактивная же выглядит так:

1.При питании ёмкости переменным напряжением, вместе с увеличением U растёт и заряд конденсатора.

2.В момент начала падения напряжения (второй четвертьпериод на синусоиде) напряжение на конденсаторе оказывается выше, чем у источника. И поэтому конденсатор начинает разряжаться, отдавая энергию обратно в цепь питания (ток течёт в обратном направлении).

Читайте так же:
Как определить прошитый счетчик меркурий

3.В следующих двух четвертьпериодах ситуация полностью повторяется, то только напряжение меняется на противоположное.

Ввиду того, что сам конденсатор работы не совершает, принимаемое напряжение достигает своего максимального амплитудного значения (то есть в √2=1,414 раза больше действующего 220В, или 220·1,414=311В).

При работе с индуктивными элементами (катушки, трансформаторы, электродвигатели и т.п.) ситуация аналогична. График показателей можно увидеть на изображении ниже.

Рис. 2. Графики показателей

Ввиду того, что современные бытовые приборы состоят из множества разных элементов с «реактивным» эффектом питания и без него, то реактивный ток, протекая в обратном направлении, совершает вполне реальную работу по нагреву активных элементов. Таким образом, реактивная мощность цепи – по сути выражается в побочных потерях и скачках напряжения.

Очень сложно отделить один показатель мощности от другого при расчётах. А система качественного и эффективного учёта стоит дорого, что, собственно, и привело к отказу от измерения объёма потребления реактивных токов в быту.

В крупных коммерческих объектах наоборот, объем потребления реактивной энергии намного больше (из-за обилия силовой техники, снабжаемой мощными электродвигателями, трансформаторами и другими элементами, порождающими реактивный ток), поэтому для них вводится раздельный учёт.

Как считается активная и реактивная электроэнергия

Большинство производителей счётчиков электроэнергии для предприятий реализуют простой алгоритм.

Здесь из полной мощности S отнимается активная мощность P (в облегчённом для понимания виде).

Таким образом, производителю не обязательно организовывать полностью раздельный учёт.

Что такое cosϕ (косинус фи)

Ввиду того, что большой объем фактически паразитных реактивных токов нагружает сети поставщика электроэнергии, последние стимулируют потребителей снижать реактивную мощность.

Для числового выражения соотношения активной и реактивной мощностей применяется специальный коэффициент – косинус фи.

Вычисляется он по формуле.

Где полная мощность – это сумма активной и реактивной.

Чем ближе показатель к единице, тем меньше паразитной нагрузки на сеть.

Такой же коэффициент указывается на шильдиках электроинструмента, оснащённого двигателями. В этом случае cosϕ используется для оценки пиковой потребляемой мощности. Например, номинальная мощность прибора составляет 600 Вт, а cosϕ = 0,7 (средний показатель для подавляющего большинства электроинструмента), тогда пиковая мощность, необходимая для старта электродвигателя будет считаться как Pномин / cosϕ, = 600 Вт / 0,7 = 857 ВА (реактивная мощность выражается в вольт-амперах).

Применение компенсаторов реактивной мощности

Чтобы стимулировать потребителей эксплуатировать электросеть без реактивной нагрузки, поставщики электроэнергии вводят дополнительный оплачиваемый тариф на реактивную мощность, но оплату взимают только если среднемесячное потребление превысит определённый коэффициент, например, при соотношении полной и активной мощностей составит свыше 0,9, счёт на оплату реактивной мощности не выставляется.

Для того, чтобы снизить расходы, предприятия ставят специальное оборудование – компенсаторы. Они могут быть двух видов (в соответствии с принципом работы):

  • Ёмкостные;
  • Индуктивные.

Монтаж и эксплуатация счетчиков — Принцип действия и устройство

Страница 2 из 7

  1. ПРИНЦИП ДЕЙСТВИЯ И УСТРОЙСТВО

ИНДУКЦИОННЫХ СЧЕТЧИКОВ Рис. 1. Часть диска индукционного двухпоточного прибора. Для измерения расхода электроэнергии в цепях переменного тока промышленной частоты применяются счетчики индукционного типа. Принцип действия этих счетчиков основан на взаимодействии магнитных потоков с индуктированными токами в подвижной части прибора. Подвижная часть выполнена в виде алюминиевого диска, укрепленного на оси. Если алюминиевый диск находится между двумя полюсами электромагнитов Л и В, по катушкам которых протекает переменный ток, то магнитные потоки Фд и Фв пронизывают этот диск и индуктируют в нем токи 1А и /в (рис. 1). Ток 1А, взаимодействуя с магнитным потоком Фв, создает некоторое усилие. Второе усилие получается от взаимодействия тока 1В с магнитным потоком ФА. Образующийся в результате вращающий момент пропорционален величинам этих двух потоков и зависит от угла сдвига между ними. На рис. 2 показаны устройство и схема включения однофазного индукционного счетчика. Счетчик состоит из двух электромагнитов 5 и 8, алюминиевого диска 1, укрепленного на оси 2, подпятника 3 и подшипника 4, которые служат опорами оси, постоянного тормозного магнита 7 и счетного механизма, связанного с осью зубчатой передачей (на рисунке не показан). Обмотка электромагнита 5 включена в цепь параллельно, и его сердечник пронизывает магнитный поток Фи, пропорциональный напряжению сети U. Обмотка электромагнита 8 включена последовательно с нагрузкой, и его сердечник пронизывает магнитный поток СР*, пропорциональный току нагрузки I. Оба магнитных по тока индуктируют в алюминиевом диске вихревые токи, которые, взаимодействуя с магнитными потоками, создают вращающий момент М, пропорциональный произведению этих потоков. Для того чтобы счетчик измерял расход активной энергии, необходимо выполнить условие пропорциональности вращающего момента активной мощности, т. е. М = K1IU cos ф = к1Р, где К1 — коэффициент пропорциональности; ф — угол сдвига между током и напряжением. Рис. 2. Схема устройства идукционного счетчика. Пропорциональность вращающего момента току нагрузки и напряжению сети обеспечивается, как было сказано выше. Пропорциональность вращающего момента cos ф обеспечивается созданием определенного угла сдвига между магнитными потоками. Для этой цели магнитный поток параллельного электромагнита расщепляется на два: рабочий и вспомогательный. Рабочий поток пересекает диск и замыкается. через противополюс, расположенный под диском. Вспомогательный поток замыкается через средний и боковые стержни электромагнита, не пересекая диска. Для дополнительной подгонки угла сдвига служит регулятор 6. Он состоит из нескольких витков медной проволоки, намотанных на магнитопровод электромагнита 8 и замкнутых на петлю из никелиновой проволоки. Петля снабжена винтовым зажимом, перемещением которого и производится регулировка. Под действием вращающего момента диск счетчика придет во вращение. При этом возникает тормозной момент, действующий на диск счетчика. Этот момент создается взаимодействием потока Фт тормозного магнита с вихревыми токами, индуктированными в диске его полем. Так как поток тормозного магнита неизменен, то этот момент пропорционален только частоте вращения диска. Кроме того, два тормозных момента создаются потоками параллельного и последовательного электромагнитов. Для того чтобы результирующий тормозной момент, равный сумме трех указанных, как можно меньше зависел от потока Фг-, тормозной момент постоянного магнита выбирается значительно большим тормозного момента последовательного электромагнита. При этом можно с достаточной точностью считать, что результирующий тормозной момент пропорционален только частоте вращения диска п, т. е. Мт = к2п, где к2— коэффициент пропорциональности. При установившейся частоте вращения диска М=МТ, а следовательно, кР = КчП, откудап, т. е. угловая скорость диска пропорциональна мощности Р цепи, а частота вращения диска пропорциональна израсходованной энергии. Следовательно, числом оборотов диска счетчика можно измерять израсходованную энергию. Комплекс деталей, состоящий из магнитопроводов и обмоток параллельной и последовательной цепи, называют вращающим элементом счетчика. Счетный механизм представляет собой счетчик оборотов. Получивший преимущественное применение для электрических счетчиков роликовый счетный механизм (рис. 3) состоит в основном из зубчатой передачи, нескольких роликов с нанесенными на них цифрами от О до 9 и прикрывающего передачу и ролики алюминиевого щитка с вырезанными в нем окошками для отсчета измеряемой величины. Вращение подвижной части счетчика через систему шестерен передается счетному механизму. Полному обороту первого ролика соответствует поворот следующего за ним (справа налево) ролика только на одну десятую часть оборота. Третий ролик уже сделает одну десятую часть оборота при полном обороте второго и т. д. Чаще всего в роликовых счетных механизмах имеется пять роликов. В зависимости от числа шестерен и их передаточных чисел единице, зарегистрированной счетным механизмом энергии, будет соответствовать определенная частота вращения подвижной части счетчика. Частота вращения подвижной части, которая вызывает изменение счетного механизма на единицу измеряемой величины, называется передаточным числом счетчика. Передаточное число обычно указывается на щитке счетчика. Например: 1 квт-ч — 450 об. диска. Число часов работы счетчика при нормальной нагрузке, необходимое для полной смены всех цифр, называется емкостью счетного механизма. Рис. 3. Роликовый счетный механизм. Для учета электроэнергии в трехфазных трехпроводных цепях (без нулевого провода) применяются двухэлементные счетчики. Трехфазный двухэлементный счетчик состоит как бы из двух помещенных в один корпус однофазных счетчиков, вращающие элементы которых воздействуют на одну общую подвижную часть, соединенную со счетным механизмом (рис. 4). При этом вращающие моменты, созданные каждым элементом, складываются. Счетчик включен по схеме двух ваттметров (схема Арона). Результирующий вращающий момент пропорционален активной мощности трехфазной цепи. Для учета электроэнергии в четырехпроводных цепях (с нулевым проводом) применяются трехэлементные счетчики. Такие счетчики имеют три элемента, воздействующие либо на три диска (например, в счетчике СА4-ТЧ), либо на два диска (например, в счетчике СА4-И672М). Рис. 5. Схема счетчика реактивной энергии СРЗ-И44. Счетчики реактивной энергии по принципу действия и конструкции сходны со счетчиками активной энергии. Рис. 4. Схема устройства трехфазного двухэлементного двухдискового счетчика. Отличие их состоит в том, что суммарный вращающий момент пропорционален синусу угла между током и напряжением. На рис. 5 приведена схема счетчика типа СРЗ, предназначенного для учета реактивной энергии в трехпроводной сети. Как видно из схемы, на параллельные обмотки подаются напряжения «чужих» фаз. В цепь параллельных обмоток включены добавочные сопротивления. Угол сдвига между рабочими магнитными потоками параллельной и последовательной цепей составляет 60°. В эксплуатационном отношении счетчики со сдвигом в 60° удобны тем, что схема их включения не. отличается от схемы включения счетчика активной энергии. В счетчиках реактивной энергии типа СР4-ИТР параллельные обмотки включены так же, как и в счетчике типа СРЗ, но без добавочных сопротивлений (сдвиг 90°). Каждый из последовательных электромагнитов имеет по две обмотки; основную и дополнительную. Дополнительная обмотка намотана в направлении, противоположном основной (рис. 6). Счетчики этого типа применяются как в трехпроводных, так и в четырехпроводных цепях трехфазного тока. Существуют также трехэлементные счетчики реактивной энергии (СР4-И676) со сдвигом фаз потоков в 90°. Рис. 6. Схема счетчика реактивной энергии СР4-ИТР. Эти счетчики являются наиболее рекомендуемыми для учета реактивной энергии в четырехпроводных цепях. По способу включения в сеть счетчики разделяют на счетчики прямого включения (прямоточные), которые включаются без измерительных трансформаторов, и счетчики, включаемые через измерительные трансформаторы. Последние в свою очередь можно разделить на включаемые через измерительные трансформаторы с определенными коэффициентами трансформации и универсальные, т. е. включаемые через любые измерительные трансформаторы. Об определении расхода электроэнергии по показаниям счетчиков различных типов будет сказано ниже. На щитках некоторых счетчиков имеется надпись «со стопором» или «обратный ход застопорен». Диск таких счетчиков может вращаться только в направлении, указанном стрелкой. Допустимая погрешность счетчика определяет его класс точности. Для расчетного учета электроэнергии класс точности счетчиков прямого включения (без измерительных трансформаторов) должен быть для активной энергии не ниже 2,5, а для реактивной энергии не ниже 3. Для счетчиков, включенных через измерительные трансформаторы, класс точности должен быть для активной энергии не ниже 2,0, а для реактивной энергии—не ниже 3. Для присоединений большой мощности (10 Мет и выше) рекомендуется применять счетчики класса точности 1 и выше. Укажем на расшифровку букв в обозначении типа счетчика: С — счетчик; А — активной энергии; Р — реактивной энергии; 3 или 4 — для трехпроводной или четырехпроводной сети; У—универсальный; И — индукционной измерительной системы; П — прямоточный; М — модернизированный. Пример: СА4У-И672М 5а 380в — счетчик активной энергии для включения в четырехпроводную сеть с линейным напряжением 380 в через любые трансформаторы тока.

  • Назад
  • Вперед
Читайте так же:
Сломать счетчик меркурий 201

Измерение активной, реактивной и полной мощности

Мощность является важным фактором для оценки эффективности работы электрооборудования в сети энергосистемы. Использование её предельных значений может привести к перегрузкам сети, аварийным ситуациям и выходу оборудования из строя. Для того чтобы обезопасить себя от этих негативных последствий, необходимо понимать, что такое активная реактивная и полная мощность.

  • Определение мощности
  • Силовой треугольник
  • Расчёт энергии и мощности
    • Характеристики полной S
    • Активная P
    • Реактивная Q
  • Коэффициент эффективности сетей
  • Ёмкостные и индуктивные нагрузки
  • Погашения реактивного влияния в электросетях
  • Управление напряжением и реактивной мощностью

Определение мощности

Мощность, которая фактически потребляется или используется в цепи переменного тока, называется активной, в кВт или МВт. Мощность, которая постоянно меняет направление и движется, как по направлению в цепи, так и реагирует сама на себя, называется реактивной, в киловольт (kVAR) или MVAR.

Очевидно, что мощность потребляется только при сопротивлении. Чистый индуктор и чистый конденсатор её не потребляют.

В чистом резистивном контуре ток находится в фазе с приложенным напряжением, тогда как в чистом индуктивном и ёмкостном контуре ток смещён на 90 градусов: если индуктивная нагрузка подключена в сеть, он теряет напряжение на 90 градусов. При подключении ёмкостной нагрузки происходит смещение тока на 90 градусов в обратную сторону.

В первом случае создаётся активная мощность, а во втором — реактивная.

Силовой треугольник

Полная мощность — это векторная сумма активной и реактивной мощности. Элементы полной мощности:

  • Активная, P.
  • Реактивная, Q.
  • Полная, S.

Реактивная мощность не работает, она представлена как мнимая ось векторной диаграммы. Активная мощность работает и является реальной стороной треугольника. Из этого принципа разложения мощностей понятно, в чём измеряется активная мощность. Единицей для всех видов мощности является ватт (W), но это обозначение обычно закрепляется за активной составляющей. Полная мощность условно выражается в ВА .

Читайте так же:
Счетчик затвора nikon d750

Единица для Q составляющей выражается как var, что соответствует реактивному вольт-амперу. Она не передаёт никакой чистой энергии нагрузке, тем не менее она выполняет важную функцию в электрических сетях. Математическая связь между ними может быть представлена векторами или выражена с использованием комплексных чисел, S = P + j Q (где j — мнимая единица).

Расчёт энергии и мощности

Средняя мощность P в ваттах (W) равна энергии, потребляемой E в джоулях (J), делённой на период t в секундах (секундах): P (W) = E (J) / Δ t (s).

Когда ток и напряжение находятся на 180 градусов по фазе, PF отрицательный, нагрузка подаёт электроэнергию в источник (примером может служить дом с солнечными батареями на крыше, которые подают питание в энергосистему). Пример:

  • P составляет 700 Вт, а фазовый угол составляет 45, 6;
  • PF равен cos (45, 6) = 0, 700. Тогда S = 700 Вт / cos (45, 6) = 1000 В⋅А.

Отношение активной к полной мощности называется коэффициентом мощности (PF). Для двух систем, передающих такое же количество активной нагрузки, система с более низким PF будет иметь большие оборотные токи из-за электроэнергии, которая возвращается обратно. Эти большие токи создают большие потери и снижают общую эффективность передачи. Схема с более низким PF будет иметь большую полную нагрузку и более высокие потери для одинакового количества активной нагрузки. PF = 1, 0, когда есть фазный ток. Он равен нулю, когда ток приводит или отстаёт от напряжения на 90 градусов.

Например, PF =0,68 и означает, что только 68 процентов от общего объёма поставленного тока фактически выполняют работу, остальные 32 процента являются реактивными. Производители коммунальных услуг не берут с потребителей плату за её реактивные потери. Однако если в источнике нагрузки клиента есть неэффективность, которая приводит к тому, что PF падает ниже определённого уровня, коммунальные услуги могут взимать плату с клиентов, чтобы покрыть увеличение использования топлива на электростанциях и ухудшение линейных показателей сети.

Характеристики полной S

Формула полной мощности зависит от активной и реактивной мощности и представлена как энергетический треугольник (Теорема Пифагора). S = (Q 2 + P 2) 1 / 2, где:

  • S = полная (измерение в киловольт-ампер, кВА);
  • Q = реактивная (реактивность на киловольтах, kVAR);
  • P = активная (киловатт, кВт).

Она измеряется во вольт-амперах (В⋅А) и зависит от напряжения, умноженного на весь поступающий ток. Это векторная сумма P и Q составляющих, которая подсказывает, как найти полную мощность. Однофазная сеть: V (V) = I (A) x R (Ω).

Напряжение V в вольтах (V) эквивалентно току I в амперах (A), умноженному на импеданс Z в омах (Ω):

Активная P

Это мощность, которая используется для работы, её активная часть, измеряемая во Вт и является силой, потребляемой электрическим сопротивлением системы. P (W) = V (V) x I (A) x cos φ

Реактивная Q

Она не используется для работы в сети. Q измеряется в вольт-амперах (VAR). Увеличение этих показателей приводит к уменьшению коэффициента мощности (PF). Q (VAR) = V (V) x I (A) x sin φ.

Коэффициент эффективности сетей

PF определяется размерами P и S, его вычисляют по теореме Пифагора. Рассматривается косинус угла между напряжением и током (несинусоидальный угол), фазовая диаграмма напряжения или тока от энергетического треугольника. Коэффициент PF равен абсолютному значению косинуса комплексного энергетического фазового угла (φ): PF = | cosφ | Эффективность энергосистемы зависит от коэффициента PF и для повышения эффективности использования в энергосистеме необходимо его увеличивать.

Ёмкостные и индуктивные нагрузки

Сохранённая энергия в электрическом и магнитном полях в условиях нагрузки, например, от двигателя или конденсатора, вызывает смещение между напряжением и током. Поскольку ток протекает через конденсатор, накапливание заряда вызывает возникновение противоположного напряжения на нём. Это напряжение увеличивается до некоторого максимума, продиктованного структурой конденсатора. В сети с переменным током на конденсаторе постоянно меняется напряжение. Конденсаторы называются источником реактивных потерь и, таким образом, вызывают ведущий PF.

Индукционные машины являются одними из наиболее распространённых типов нагрузок в электроэнергетической системе. Эти машины используют индукторы или большие катушки проволоки для хранения энергии в виде магнитного поля. Когда напряжение сначала проходит через катушку, индуктор сильно сопротивляется этому изменению тока и магнитного поля, что создает задержку времени с максимальным значением. Это приводит к тому, что ток отстаёт от напряжения по фазе.

Индукторы поглощают Q и, следовательно, вызывают запаздывающий PF. Индукционные генераторы могут подавать или поглощать Q и обеспечивать меру управления системными операторами по потоку Q и по напряжению. Поскольку эти устройства оказывают противоположное воздействие на фазовый угол между напряжением и током, их можно использовать для отмены эффектов друг друга. Обычно это принимает форму конденсаторных банков, используемых для противодействия запаздывающим PF, вызванным асинхронными двигателями.

Погашения реактивного влияния в электросетях

Активная реактивная и полная мощность определяет PF главный фактор для оценки эффективности использования электроэнергии в сети энергосистемы. Если PF высокий, то, можно сказать, что более эффективно электроэнергия используется в энергосистеме. Поскольку PF плох или уменьшается, эффективность использования электроэнергии в энергосистеме снижается. Низкий PF или снижение его обусловлены различными причинами. Для повышения PF существуют специальные способы коррекции.

Использование конденсаторов является наилучшим и эффективным способом повышения эффективности сети. Метод, известный как реактивная компенсация, используется для уменьшения кажущегося потока мощности на нагрузку за счёт уменьшения реактивных потерь. Например, для компенсации индуктивной нагрузки шунтирующий конденсатор устанавливается вблизи самой нагрузки. Это позволяет потреблять конденсатором всю Q и не передавать их по линиям передачи.

Читайте так же:
Счетчик двоичный схема к155ие2

Эта практика экономит энергию, потому что она уменьшает количество энергии, которое требуется, для выполнения того же объёма работы. Кроме того, она позволяет использовать более эффективные конструкции линий электропередачи с использованием меньших проводников или меньшего количества проводников с разъёмами и оптимизировать конструкцию трансмиссионных вышек.

Чтобы поддерживать напряжение в оптимальном диапазоне и предотвращать явления нестабильности, в оптимальных местах по всей сети энергосистемы устанавливаются различные устройства для фазовой регулировки, а также используются различные методы реактивного управления.

Предложенная система делит традиционный метод на управление напряжением и Q:

  • управление напряжением для регулировки напряжения вторичной шины подстанций;
  • регулирование Q для регулирования напряжения первичной шины.

В этой системе на подстанциях установлены два типа устройств для взаимодействия контроля напряжения и контроля Q.

Управление напряжением и реактивной мощностью

Это два аспекта одного воздействия, которые поддерживают надёжность и облегчают коммерческие транзакции в сетях передачи. На силовой системе переменного тока (AC) напряжение контролируется путём управления производством и поглощением Q. Существует три причины, по которым необходим такой вид управления:

  1. Оборудование энергосистемы предназначено для работы в диапазоне напряжений, обычно в пределах ± 5% от номинального напряжения. При низком напряжении оборудование работает плохо, лампочки обеспечивают меньшую освещённость, асинхронные двигатели могут перегреваться и быть повреждёнными, а некоторые электронные устройства не будут работать вообще. Высокие напряжения могут повредить оборудование и сократить срок его службы.
  2. Q потребляет ресурсы передачи и генерации. Чтобы максимизировать реальную мощность, которая может быть передана через перегруженный интерфейс передачи, потоки Q должны быть минимизированы. Аналогичным образом производство Q может ограничить реальную мощность генератора.
  3. Движущая реактивность в передающей сети несёт реальные потери мощности. Для восполнения этих потерь должны компенсироваться мощность и энергия.

Система передачи является нелинейным потребителем Q в зависимости от загрузки системы. При очень низкой нагрузке система генерирует Q, которая должна поглощаться, а при большой нагрузке система потребляет большое количество Q, которую необходимо заменить. Требования к Q системы также зависят от конфигурации генерации и передачи. Следовательно, системные реактивные требования меняются во времени по мере изменения уровней нагрузки и моделей нагрузки и генерации.

Работа системы имеет три цели управления Q и напряжениями:

  1. Она должна поддерживать достаточное напряжение во всей системе передачи и распределения как для текущих, так и для непредвиденных условий.
  2. Обеспечить минимизацию перегрузки реальных потоков энергии.
  3. Стремиться минимизировать реальные потери мощности.

Объёмная энергетическая система состоит из множества единиц оборудования, любая из которых может быть неисправна. Таким образом, система предназначена для того, чтобы выдерживать выход из строя отдельного оборудования, продолжая работать в интересах потребителей. Вот почему электрическая система требует реальных резервов мощности для реагирования на непредвиденные обстоятельства и поддержания резервов Q.

Активная мощность

Активная мощность – это часть общей, потреблённой от источника. Пришедшая впрок потреблена нагрузкой. Пишут, что электрическая энергия обязана превратиться в другие виды, не это главное. Реактивная энергия отражается обратно к источнику. Прочее – тема сегодняшнего разговора.

Основные понятия

Когда на уроке физики учитель рассказывает про закон Ома, он оперирует с активными составляющими тока и напряжения. Значит, их сдвиг фаз равен нулю. И мощность выходит активная. Вычисляется как произведение тока на напряжение. На уроке физики мощность превращается в тепло на абстрактном сопротивлении. В жизни это, как правило, негативный эффект потери энергии на проводах. Полезными считаются:

  1. Превращение тока в движение ротора двигателя.
  2. Обогрев помещений.
  3. Иллюминация (освещение).
  4. Розжиг конфорки плиты.
  5. Формирование на выходе блока питания нормативных напряжений.

Примеров масса. К примеру, трансформатор подстанции считается нагрузкой для ГЭС. На ЛЭП теряются тепло и звук, часть мощности отражается. Последняя носит название реактивной, описывает реакцию цепи, содержащей индуктивности (в случае трансформатора) или ёмкости, на внешнее воздействие. Некоторое время элементами мощность накапливается, потом отдаётся в обратном направлении. Возникает вопрос – зачем использовать подобные “вредящие” реактивные элементы.

  1. Реактивные элементы преобразуют виды энергии, что часто требуется. К примеру, для гальванической развязки цепей разного вольтажа применяется трансформатор. Без катушек индуктивности собрать его нет возможности. Аналогичным образом конденсаторы нужны для фильтрации.
  2. Использование реактивных элементов не всегда во вред. Считается хорошим тоном, если предприятие потребляет отражённую собственным оборудованием мощность. За превышение лимита над разрешённым уровнем реактивной мощности возможен штраф за перегрузку ЛЭП и трансформаторов подстанции. Чтобы подобного избежать, индуктивное сопротивление двигателей уравнивают ёмкостным сопротивлением конденсаторных установок. Образуется колебательный контур, реактивная мощность циркулирует исключительно по цепям предприятия, нанося немалый урон, по большей части, осаждаясь теплом на проводке.

Всё, написанное выше, даёт понятие в простейшем виде о происходящих в сети процессах. Учащиеся не в силах объяснить рассматриваемые понятия. Допустим, процесс заряда конденсатора. Напряжение на нем отстаёт от тока. Реактивная ли мощность? Если после заряда конденсатор отключится, завод не оштрафуют. Но мощность все-таки реактивная – у тока и напряжения разная фаза:

P = IU cosφ, где φ – угол сдвига фаз между напряжением и током.

Что такое угол сдвига фаз

Никола Тесла видел мир, как эфир, заполненный колебаниями разных частот. Из гармоник образуется материя. Тесла напророчил, к примеру:

  • Появление сети интернет.
  • Центральные выпуски новостей по радио и телевидению.
  • Охват планеты энергетическими сетями.

Это сегодня кажется окружающий мир простым. Тесла предвидел мир спустя сотню лет. Колебание в физике и радиотехнике удобно представить в виде вектора (направленного отрезка), вращающегося вокруг начала координат со скоростью, равной собственной частоте. Круговая частота находится, как ω = 2 Пи f. Параметр применяется в ряде формул.

Когда источник тока формирует мощность, ток и напряжение вращаются синхронно с нулевым сдвигом фаз. Разумеется, реальность сильно отличается от идеала, но происходящее понятно. Для напряжения вторичной обмотки трансформатора записывается выражение:

E2 = I2R2 + U2 + I2 2 Пи L, где:

  • I2 – ток вторичной обмотки, чуть отстаёт от напряжения, но не на 90 градусов;
  • U2 – выходное напряжения на обмотке, вместе с I2 поставляется предприятиям и иным потребителям;
  • I2R2 – потери теплом на омическом сопротивлении вторичной обмотки (находится по закону Ома);
  • I2 2 Пи L – реактивная составляющая напряжения, как видно из рисунка, откладывается перпендикулярно току, становясь причиной наличия сдвига фаз.
Читайте так же:
Аскуэ с одним счетчиком

Итак, индуктивное сопротивление приводит к тому, что потребителям отгружается некачественная энергия. Чтобы выправить ситуацию, ставят на подстанции блоки конденсаторов. Тогда реактивные сопротивления уравновесят друг друга, и реактивная мощность станет циркулировать лишь по территории подстанции. Это плохо, но таков принцип действия электромагнитной индукции. Потребителям поставщик отгрузит чистую активную мощность без сдвигов фаз.

Как уже говорилось выше, предприятия потребят часть мощности, но неизбежно влияние паразитных эффектов. Пора вспомнить определение, данное вначале. Отдельные источники утверждают, что активная мощность преобразуется в прочие виды энергии. Когда компенсаторная установка наберётся реактивной мощности, потом отдаёт её на индуктивности не до бесконечности. Реактивная мощность рассеивается постепенно в виде тепла на кабелях. Некорректно говорить о неких превращениях. Подытожим:

  1. В промышленности реактивной мощностью называют энергию, отдаваемую обратно по цепи питания. Эффект от начала и до конца сегодня негативный.
  2. В физике реактивная мощность появляется немедленно при возникновении сдвига фаз. Не всегда паразитный эффект.

Два определения тесно связаны, нераздельно присутствуют в литературе. Осталось добавить, что не всегда компенсаторные установки требуется ставить на подстанции. Сопротивление ЛЭП носит ярко выраженный ёмкостной оттенок. Негативный эффект уравновешивается при умелом проектировании. Присутствует иногда необходимость в установке реакторов, чтобы избежать ряда негативных моментов.

Активная мощность трёхфазного тока

Активная мощность трёхфазной сети равна сумме по каждой из фаз. Величина выражается через линейные величины. При симметричном потреблении ток через нейтраль не наблюдается, мощность выражается соотношениями, представленными на скрине. Формулы простые для понимания. В симметричной системе токи по фазам равны, как и напряжения, прямо суммируются. Возникает коэффициент 3.

В свою очередь линейное напряжение при включении треугольником, составляющее в обычном случае 380 В, больше фазного в корень из трёх раз. Для токов отличий нет, они равны фазным. Схема звезда обусловливает равенство линейного напряжения фазному, когда токи больше фазных. Поэтому в последней формуле коэффициент равен корню из трёх.

Знатоки заметят, что схема звезда работает при пониженных напряжениях, следовательно, потребляемый ток уменьшится. Но речь здесь идёт о выводе соотношений для одинаковой мощности. В этих условиях, если уменьшилось напряжение, повышается ток. Для вычисления реактивной мощности представленное выражение нужно умножить на синус угла, а не на косинус. Полная мощность равна гипотенузе треугольника, ограниченного указанными величинами. Вычисляется простым перемножением напряжения и тока на корень из трёх без участия угла.

Единицы измерения

Сказанное выше прямо показывает, что активная мощность в реальных системах неотделима от реактивной. Сообразно этому находится множество применений описанной особенности. Первым шагом считается введение отдельных величин для отображения обоих показателей:

  1. Активная мощность измеряется в ваттах. Так преподаётся на уроках физики. Мощность показывает, как правило, счётчик, установленный в электрическом щитке на лестничной клетке.
  2. Полная мощность выражается в вольт-амперах. Это геометрическая сумма активной и реактивной составляющей. Полная мощность демонстрирует, за что платит предприятие. Отражённая энергия не несёт пользы, исключительно экономические потери.
  3. Реактивная мощность выражается в варах. Иногда буквы пишут заглавными, получается: кВАР, ВАР и пр. Реактивная мощность измеряется счётчиками предприятий для разных целей: особенности тарификации поставщика, настройка системы компенсации индуктивного сопротивления оборудования конденсаторными установками.

Из формул, приведённых выше, заключаем, что косинус угла сдвига фаз напряжения и тока численно равен отношению активной мощности к полной, а синус – реактивной к полной.

Измерение мощности

Для каждого вида мощности собственный измеритель. Добавим, что принцип физический используется одинаковый, но устройство приборов отличается. К примеру, аналоговые модели работают на принципе, открытом зимой 1819-1820 гг. Гансом Эрстедом. Точнее говоря, влияние проводника на стрелку компаса замечали прежде, но не привлекали столько внимания, как случилось осенью 1820 года. Когда научный мир узрел, что электричество и магнетизм связаны.

Итак, в основе аналоговых измерительных приборов лежал мульпликатор Иоганна Швейггера (сентябрь 1820 года): ток проходил через катушку из проволоки и отклонял стрелку в установленном направлении. Показания считывались по циферблату и заносились в таблицы вручную.

Современные приборы работают иначе. В перспективе измеритель упростится до единственного процессора, выполняющего дискретные преобразования Фурье и вычисляющего необходимые величины. Понятно, что важно найти сдвиг фаз и ток, напряжение априорно задано. Создатели измерителей знают, что по ГОСТ вольтаж способен гулять на 10% в обе стороны. Следовательно, нельзя считать напряжение априорно заданным, величина также измеряется.

Потом остаётся лишь перемножить по формулам, приведённым выше. В аналоговых приборах коэффициенты задаются передаточными числами механизмов, числом витков и пр. В цифровых обходится без затруднений, в наличии масса алгоритмов для расчёта. Использованные формулы появились гораздо раньше, нежели создали первую ЭВМ. И мир находился в ожидании сообразных приложению вычислительных мощностей.

Аналоговый ваттметр включает основные части:

  1. Неподвижная катушка напряжения. Для Эрстеда это звучало бы странно, любая катушка создаёт магнитный поток при помощи тока. Напряжение ни при чём. Для измерительных цепей тщательно рассчитываются коэффициенты, параллельно участку цепи ставится высокоомное сопротивление (конструктивно входит в ваттметр), которым ограничивается ток. Не напряжение! Малый ток управляет магнитным потоком. Отклонение стрелки пропорционально напряжению. Это принцип измерения обоснован законом Ома для участка цепи.
  2. Неподвижная катушка тока включена прямо в цепь. Поэтому сопротивление предвидится минимальным. На высоких напряжениях сигнал снимается измерительным трансформатором. Передаточный коэффициент его рассчитан не по напряжению, как случается, а по току. Зная коэффициент пропорциональности, легко найти искомую величину. Следовательно, ваттметр настраивается на используемый трансформатор, либо априорно задано единственное значение. Тогда настройка не требуется, но приходится выбрать тот трансформатор, передаточный коэффициент которого соответствует требованиям.

Подвижная рамка со стрелкой показывает результат на циферблате. Неподвижные катушки расположены в перпендикулярных плоскостях. Рамка выполняется из металлического сплава, либо берется катушка индуктивности. Конструкция просчитана так, что отклонение стрелки приобретает нужный коэффициент пропорциональности и показывает либо синус угла сдвига фаз (для реактивной мощности), либо косинус (для активной мощности).

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector