Sfera-perm.ru

Сфера Пермь
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Нагрузочный ток стабилизатора напряжения

Виды стабилизаторов и их отличия, устройства, функции

Содержание:

  1. 1. Электромеханические стабилизаторы
  2. 2. Электронные стабилизаторы
  3. 3. Общие элементы конструкции
  4. 4. Однофазные и трехфазные

Стабилизаторы напряжения обеспечивают постоянство питающего тока при изменениях в электрической сети. Они одинаково хорошо выполняют эту функцию, независимо от того, как меняются показатели: быстро или медленно. Причем к характеристикам сети относится не только напряжение. Приборы эффективны при изменениях силы тока и сопротивления. Поэтому они обеспечивают не только сохранность техники, но и пожаробезопасность в помещении. Например, возросшее сопротивление нагрузки может привести к перегреву проводов, расплавлению изоляции и к короткому замыканию.

Устройства для регулирования напряжения известны более 60 лет. Первоначально, особенно в быту, чаще встречались электромагнитные стабилизаторы. В настоящее время в продаже в основном представлены устройства электромеханического и электронного типа.

Электромеханические стабилизаторы

В основе конструкции — автотрансформатор с отводами, переключение которых происходит автоматически. По сути, он представляет собой катушку с витками медной проволоки. Второй элемент — электромагнитный механизм с ползунком. Схематично его работу можно описать следующим образом: если входное напряжение сети снижено, ползунок движется вверх по отводам до тех пор, пока на выходе не будет получено нормальное значение. Если оно повышено, он перемещается вниз. Роль ползунка-токосъемника в стабилизаторах выполняют графитовые щетки. Они поддерживают выходное напряжение с высокой точностью (до 2%), и его регулировка производится плавно. Это их главные преимущества. В отдельных стабилизаторах, например, у выпускаемых компанией «Ресанта», используется не одна, а две графитовые щетки. Благодаря этому увеличивается площадь контакта. Такой прибор быстрее регулирует напряжение.

Некоторые модели электромеханического типа с мощностью свыше 30 кВт могут оснащаться дополнительным трансформатором. Не смотря на наличие движущихся частей, устройства этого типа работают бесшумно. Они обладают высокой перегрузочной способностью.

Выбирая данное оборудование, можно значительно упростить расчет: к полученной средней мощности оборудования добавить ее четвертую часть и получить, таким образом, характеристику будущего стабилизатора. Это значит, что допустимо взять минимальный запас по мощности стабилизатора и заплатить при этом меньшую стоимость при покупке. Техническое преимущество заключается в том, что устройство не вносит искажений в сеть и само не чувствительно к подобным явлениям. Благодаря высокой точности оно подходит для защиты аудиоаппаратуры, медицинских и измерительных приборов.

Недостатками электромеханических стабилизаторов является износ движущихся частей. Эти детали требуют регулировки, ухода и замены в процессе эксплуатации. Отмечается небольшое отставание в их реагировании на изменения показателей сети. Мощные устройства имеют большие габариты и значительный вес. Они требовательны к условиям эксплуатации. Температура воздуха в помещении, где находится стабилизатор, не должна опускаться ниже -5 и не подниматься выше 40 градусов.

Диапазоны характеристик электромеханических стабилизаторов

ПроизводительМощность, кВтВходное напряжение, Вт
Ресанта0,5-100140-260
240-430 (трехфазный)
Elitech0,5-30160-250
280-430
Калибр0,5-30160-250
Sturm0,5-30140-250

Электронные стабилизаторы

Приборы этого типа называют дискретными, так как они ступенчато регулируют входное напряжение. В их конструкцию также заложен автотрансформатор, но вместо графитовых щеток применяют реле или полупроводники (тиристоры и симисторы).

Работают электронные стабилизаторы следующим образом: каждая обмотка на трансформаторе добавляет на выходе определенное напряжение (4,4 — 22 В для однофазных). Для регулировки входного напряжения реле или электронные ключи быстро включают соответствующую обмотку. Из-за ступенчатого регулирования точность у разных приборов составляет от 2 до 10%. Эта величина зависит от количества обмоток. Допустим, каждая прибавляет по 17,6 В (точность стабилизатора 8%) при входном напряжении 195 Вт переключаются две обмотки и на выходе получится 230,2 Вт. Такой стабилизатор регулирует быстро, но не точно. Если в характеристиках указано 2%, то в том же примере мы получим на выходе 221,4 Вт. Правда, обмоток уже получается 6, и поэтому регулировка в этом случае происходит дольше. Кроме того, большее число электронных ключей повышает стоимость системы, не увеличивая ее надежности.

Невысокая точность не говорит о том, что одни модели значительно уступают другим. Для бытовой техники десятипроцентное отклонение входящего напряжения не нарушает нормального рабочего режима. Через такие устройства можно подключать холодильники, плиты, насосы, т. е. все, что работает с электродвигателем или нагревательным элементом. Если защита требуется для домашнего кинотеатра или компьютера, рекомендуется выбрать более точное устройство.

Электронные стабилизаторы имеют цифровое управление. Все необходимые элементы находятся на одной микросхеме, это позволяет уменьшить вес и габариты прибора. На корпусе есть цифровой дисплей, на котором отображаются входное и выходное напряжение.

Преимущества электроники — в отсутствии движущихся деталей, что снимает проблему механического износа. Долговечность зависит только от качества тиристоров или симисторов, принцип работы надежен. Условия эксплуатации позволяют пользоваться некоторыми моделями при низких температурах: от -20 и ниже.

Существенный недостаток электронных стабилизаторов в низкой перегрузочной способности. Короткое замыкание или большие нагрузки могут вывести электронные ключи из строя. Поэтому выбирать стабилизатор рекомендуется с хорошим запасом мощности.

Сравнительная характеристика стабилизаторов

Параметры сравненияЭлектромеханическиеЭлектронные
Коммутирующий элементграфитовые щеткиреле, тиристоры, симисторы
Регулированиеплавноеступенчатое
Мощность, кВт0,5-1000,5-36
Точность2-3%1,2-10%
Механический износестьотсутствует
Перегрузочная способностьвысокаянизкая
Диапазон входного напряжения, Вт140-260
240-430 (трехфазный)
140-260
Условия эксплуатации, градусы-5 — +40-20 — +45
Уровень шуманизкий

Общие элементы конструкции

  • защита по выходному напряжению — если напряжение сети меньше или больше рабочего диапазона стабилизатора, нагрузка отключается. Стабилизатор продолжает работать, а после того, как напряжение изменится, включает нагрузку,
  • защита от превышения тока — не позволит подключить к стабилизатору нагрузку, которая будет больше, чем его мощность,
  • защита от грозовых разрядов,
  • защита от короткого замыкания,
  • тепловая защита от перегрева обмотки трансформатора отключает устройство, что предупреждает возможные повреждения,
  • байпас — проводит ток напрямую без стабилизации, позволяет экономить электроэнергию, когда техника отключена,
  • вольтметр определяет входное и выходное напряжение, амперметр измеряет ток на выходе, пользователь может контролировать работу прибора,
  • фильтрация сетевых помех,
  • мониторинг работы сети с компьютера, подключение пульта дистанционного контроля — предусмотрен разъем для подключения с помощью кабеля (некоторые модели Штиль).
Читайте так же:
Сетевой выпрямитель стабилизатор напряжения тока

Однофазные и трехфазные

Стабилизаторы применяют в квартирах, на дачах, в коттеджах. По типу сети их подразделяют на две группы. В каждой группе есть модели электромеханического и электронного типа.

Там, где напряжение 220 В, используют однофазные стабилизаторы напряжения. Их мощность от 0,5 до 30 кВт. Такой диапазон позволяет выбрать устройство для защиты одного прибора или всей техники в доме. В сети 380 В возможны комбинации из трехфазных и однофазных стабилизаторов. Мощность первых составляет от 3-30 кВт и выше. Такие устройства представляют собой три однофазных стабилизатора, которые могут быть скомпонованы под одним корпусом или раздельно. Техническое решение модели более 100 кВт представляет собой три трансформатора на одном сердечнике. Устройства предназначены для защиты отдельных единиц техники, а так же они могут устанавливаться в загородных домах, офисах, на предприятиях для защиты всей сети.

Стабилизаторы напряжения и тока

Этим устройством называют электрический прибор, автоматически обеспечивающий поддержание напряжения (тока) нагрузки с заданной точностью. Электронные приборы могут нормально работать при вариации питающего напряжения 0,1 – 3,0%, а иногда и того меньше.

Стабилизаторы классифицируют по ряду признаков:

1. По роду стабилизируемой величины – стабилизаторы напряжения и тока.

2. По способу стабилизации – параметрические и компенсационные стабилизаторы.

Широкое применение получили компенсационные стабилизаторы, которые подразделяются на стабилизаторы непрерывного и импульсного регулирования. Стабилизация достигается за счет введения отрицательной обратной связи между выходом и регулирующим элементом, который изменяет свое сопротивление так, что компенсирует возникшее отклонение выходной величины.

Качество работы стабилизатора оценивают следующими коэффициентами:

1. Коэффициент стабилизации по напряжению: .

2. Коэффициент стабилизации по току: .

3. К.П.Д. стабилизатора , где РН – мощность нагрузки; РП – мощность потерь.

Параметрические стабилизаторы напряжения и тока. Схема такого устройства имеет вид:

Рисунок 15. 14Схема параметрического стабилизатора напряжения

на стабилитроне (а) и вольт — амперные характеристики Rб при ∆Uвх

параметрического стабилизатора (б)

С помощью такого простейшего стабилизатора, в котором применяется полупроводниковый стабилитрон VD, можно обеспечить стабилизацию напряжения от единиц до нескольких сотен вольт при токах от единиц мА до одного ампера. Если необходимо стабилизировать U 1000, η = 0,5 – 0,6. Аналогично параметрическому стабилизатору, компенсационный стабилизатор включают между сглаживающим фильтром и нагрузочным резистором.

Рисунок 15.16Схемы компенсационного стабилизатора напряжения на биполярных

транзисторах (а) и операционном усилителе (б)

Рисунок 15.17Схема компенсационного стабилизатора тока на биполярных

Компенсационные стабилизаторы непрерывного действия выпускаются в виде ИМС и применяются в качестве индивидуальных стабилизаторов отдельных блоков. В то же время общие источники ВП выполняют нестабилизированными.

Импульсные стабилизаторы постоянного напряжения (ИСПН) имеют η = 0,80 – 0, 85, меньше габариты и массу. Это достигается использованием транзистора в режиме ключа, что позволяет получить прямоугольные импульсы, которые затем сглаживаются фильтром. Мощность потерь на транзисторе стремится к нулю и получают высокий К.П.Д. Изменение длительности импульсов или частоты их следования позволяет поддерживать Uвых = const.

Импульсные стабилизаторы постоянного напряжения по способу управления регулирующим элементом разделяют на релейные (двухпозиционные) и с широтно–импульсной модуляцией (ШИМ). Частоты переключений регулирующего транзистора равны 2 – 50 кГц.

Рисунок 15.18Принципиальная электрическая схема релейного импульсного

стабилизатора постоянного напряжения

Управляемые выпрямители

Часто от выпрямителей требуется не только преобразовать переменное напряжение в постоянное, но и плавно изменять значение выпрямленного напряжения. Это можно осуществить либо в цепи переменного тока (регулируемые трансформаторы, реостаты, имеющие низкий КПД); либо в цепи выпрямленного тока, что более экономично и удобно. Управляемыми выпрямителями называют выпрямители, у которых управление выпрямленным током (напряжением) происходит в процессе выпрямления.

Основными элементами современных управляемых выпрямителей являются транзисторы и тиристоры. Ниже на рисунке 15.19представлена схема простейшего однофазного однополупериодного выпрямителя на тиристоре. Управление напряжением на выходе управляемого выпрямителя сводится к управлению моментом открытия (включения) тиристора. Это осуществляется путём сдвига фаз между анодным напряжением тиристора и напряжением, подаваемым на управляющий электрод тиристора. Такой сдвиг фаз называют углом управления и обозначают α, а способ управления называют фазовым.

Рисунок 15.19Схема (а) и диаграммы изменения во времени напряжений и тока (б)

однофазного однополупериодного управляемого выпрямителя

Управление значением угла α осуществляют с помощью фазовращающей R2С – цепи, которая позволяет изменить угол управления от 0 до 180 0 . При этом значение выпрямленного напряжения может изменяться от наибольшего его значения до нуля (для α = 0 – 90 0 значение выпрямленного напряжения изменяется от наибольшего значения до его половины). Резистором R1 изменяют напряжение, подаваемое на управляющий электрод тиристора. Диод обеспечивает подачу на управляющий электрод положительных однополярных импульсов.

Оптимальной формой управляющего сигнала для тиристора является короткий импульс с крутым фронтом. Для формирования таких импульсов и их сдвига во времени служат специальные импульсно-фазовые системы управления. Изменение угла управления осуществляют ручным или автоматическим способом, что обеспечивает изменение выпрямленного напряжения в необходимых пределах.

На рисунке 15.20изображена схема однофазного двухполупериодного управляемого выпрямителя с импульсно-фазовым блоком управления (ИФБУ).

Рисунок 15.20Схема однофазного двухполупериодного управляемого выпрямителя

с импульсно-фазовым управлением

Сдвиг управляющих импульсов по отношению к анодному напряжению производится вручную с помощью мостового фазовращателя. Выходное напряжение фазовращателя поступает на вход усилителей-ограничителей, причём, отрицательные полуволны этого напряжения срезаются VD1, VD2. Усиленное напряжение дифференцируется цепочками С1R1, С2R2; а диоды VD3, VD4 делают их однополярными (положительными).

Трёхфазные управляемые выпрямители – это выпрямители средней и большой мощности. Работу такого выпрямителя иллюстрирует схема выпрямителя с нулевым выводом. Изменение угла управления в сторону уменьшения или увеличения приводит к изменению средних значений выпрямленных напряжений и тока.

Рисунок 15.21Схема (а) и динамические диаграммы напряжений и токов (б)

трёхфазного управляемого выпрямителя с нулевым выводом

На рисунке 15.22 приведена схема трёхфазного мостового управляемого выпрямителя. В него входят шесть тиристоров.

Рисунок 15.22Схема трёхфазного мостового управляемого выпрямителя

Тиристоры VS1 – VS3 объединены в катодную группу, а тиристоры VS4 – VS6 — в анодную группу. Так же как и в неуправляемом выпрямителе здесь одновременно работают два тиристора: один – из анодной группы, другой – из катодной группы. При этом управляющий сигнал, подаваемый на тиристор катодной группы, опережает на 180 0 управляющий сигнал, поступающий на тиристор анодной группы. В отличие от трёхфазного управляемого выпрямителя с нулевым выводом режим «прерывистого» тока возникает при

Читайте так же:
Стабилизаторы напряжения тока реферат

Принцип работы импульсного стабилизатора напряжения

Импульсный стабилизатор напряжения – это устройство, обладающее высоким коэффициентом полезного действия и незначительно выделяющее тепло. Он может создавать нагрузочный ток в широких пределах и при этом не обладает значительным весом и габаритами.

Общая информация

Что он собой представляет? Стабилизатор может выполнять свой функционал благодаря изменению продолжительности импульсов. Кроме этого доступна функция управления их частотой. Благодаря этому выделяют так называемое широтное регулирование. Еще оно называется частотно-импульсным. Это значит, что устройства работают в комбинированном режиме. На выходе стабилизатора напряжение представлено в виде пульсации. Поэтому оно не подходит для того, чтобы питать потребитель. Прежде чем подавать питание, его необходимо выровнять. Для этой цели используются емкостные фильтры. Для вычисления средней величины напряжения используется четыре параметра:

  • продолжительность периода;
  • сопротивление потребителя;
  • продолжительность импульса;
  • идущий ток по нагрузке (в амперах).

В зависимости от индуктивности он может перестать течь по фильтру до начала следующего импульса. В таком случае говорят о том, что он переменный. Если он и дальше протекает, то ток является постоянным. Если импульсы незначительны, то лучше выбрать переменный. Но при существовании повышенной чувствительности подойдет только постоянный ток (это и оборачивается значительными потерями в проводах и обмотке дросселя).

Строение прибора

Итак, теперь известно, что собой представляет импульсный стабилизатор напряжения. Принцип работы этого устройства связан с его строением. Прибор состоит из:

  • выравнивающего фильтра (он корректирует импульс напряжения на выходе);
  • устройства преобразования;
  • генератора;
  • сравнивающего устройства (оно подает сигналы разности между входом и выходом).

Как осуществляется работа?

Всегда возможна ситуация, когда используется только два элемента: преобразователь и фильтр. Однако стоит учитывать, что на практике длительное функционирование без устройства сравнения и задающего генератора не идет. Причем, два последние используются для корректировки процесса работы. Поэтому работают все четыре составные части. При этом напряжение, что формируется на выходе, передается на сравнивающее устройство. Оно сопоставляет его с базовым значением. Таким образом формируется пропорциональный сигнал. Он передается непосредственно на генератор.

Принципиальная специфика устройства

Рассматривая работу импульсного стабилизатора напряжения особенно следует отметить процесс регулирования. Осуществляется он с помощью генератора. В нем разностный аналоговый сигнал преобразовывается в пульсации, обладающие переменной продолжительностью и постоянной частотой. Но, так происходит не всегда. Если предусмотрена возможность частотно-импульсного регулирования, то их продолжительность является постоянным значением. Работа генератора зависит от свойств передаваемого сигнала. Созданные им импульсы передаются на элементы преобразователя. При этом транзистор регулирования функционирует в режиме ключа. Изменив интервал или частоту импульсов можно поменять нагрузочное напряжение. Все зависит от свойства управляющих импульсов. Если устройство построено на релейном принципе, то стабилизирующий сигнал создается с помощью триггера. Давайте рассмотрим этот вариант более подробно.

Релейный принцип работы

Функционирование импульсного стабилизатора напряжения в данном случае выглядит следующим образом: на транзистор, что выступает в роли ключа, подается постоянное напряжение. Он открывается. Напряжение на выходе повышается. Сравнивающее устройство начинает определять сигнал разности. При достижении определенного верхнего предела меняется состояние триггера. В результате осуществляется коммутация регулирующего транзистора на отсечку. После этого напряжение на выходе будет уменьшаться. В случае, если оно дойдет до нижнего предела, то сравнивающее устройство опять определит сигнал разности, поменяется состояние триггера. Транзистор снова войдет в насыщение. Разность потенциалов начнет повышаться, как и напряжение на выходе. Будет сразу же запущен процесс выравнивания.

Настраивается предел срабатывания для триггера благодаря корректировке амплитуды значений напряжения на используемом сравнивающем устройстве. И так постоянно будет идти замкнутый цикл. Импульсный стабилизатор напряжения тока релейного типа обладает повышенной скоростью, что отличает его от приборов, в которых используется широтное и частотное регулирования. Данный факт является их самым значительным преимуществом. Но такой подход всегда обеспечивает импульсы на выходе прибора. Это недостаток.

Что собой представляет импульсный повышающий стабилизатор напряжения?

И где они применяются? Такие устройства жизненно необходимы в случае нагрузок, разница которых больше, нежели напряжение на выходе приборов. Как они работают? В стабилизаторе не предусматривается гальваническая изоляция питания и нагрузки. Первоначально вступает в насыщение транзистор. Затем ток идет по цепи по накопительному дросселю от положительного полюса. При этом копится энергия в магнитном поле. Нагрузочный ток может привести к разряду емкости используемого конденсатора. А что будет, если отключить выключающее напряжение с транзистора? При этом он перейдет в положение отсечки. В результате на дросселе возникнет электродвижущая сила самоиндукции.

Также возникнет последовательная коммутация с напряжением входа и движение в сторону потребителя. Это значит, что ток будет идти по нашей катушке индуктивности (дросселю). В этот момент ее магнитное поле будет выдавать энергию. Следует отметить, что емкость конденсатора будет ее резервировать, чтобы поддерживать напряжение после того, как транзистор войдет в режим насыщения. Следует учитывать, что дроссель необходим для резервной энергии, поэтому в фильтре питания он работать не должен.

Стабилизатор с использованием триггера Шмитта

Это самый простой вариант устройства. Для него характерен наименьший набор компонентов. Основную роль в конструкции играет триггер, в состав которого входит компаратор. Основной его задачей является сравнение выходной разности потенциалов с максимально допустимым значением. Принцип действия такого устройства заключается в том, что при увеличении напряжения осуществляется коммутация триггера в позицию ноль. Это сопровождается размыканием электронного ключа. И в одно время должен разряжаться только дроссель. Когда напряжение на нем будет доходить до наименьшего значения, то осуществляется коммутация на единицу. Ключ замыкается и ток проходит.

Следует отметить, что подобные устройства являются довольно простыми, однако используются они только в отдельных случаях.

Читайте так же:
Регулируемый стабилизатор тока для зарядных устройств

Что собой представляет понижающий импульсный стабилизатор напряжения?

Устройства этого типа являются мощными и компактными приборами питания. Они обладают низкой чувствительностью к наводкам потребителя, постоянным напряжением одного значения. При этом, гальваническое изолирование входа и выхода практически отсутствует. Выходное питание таких устройств всегда меньше входного напряжения.

Собрать своими руками импульсный стабилизатор напряжения такого типа довольно просто. Если кратко, то принципиальная схема выглядит следующим образом: подключается напряжение, что используется для управления истоком и затвором транзистора. Он должен перейти в положение насыщения. Проходит ток от положительного полюса к выравнивающему дросселю и нагрузке. В прямом направлении он не протекает. При отключении управляющего напряжения выключается ключевой транзистор. После этого он пребывает в положении отсечки. Электродвижущая сила индукции выравнивающего дросселя преграждает путь для изменения тока, идущего по цепи. При этом он проходит через нагрузку, идет по общему проводнику и возвращается на дроссель. В результате понижается уровень напряжения.

Инвертирующий стабилизатор

Это устройство применяется для обслуживания потребителей с постоянным напряжением. Его особенностью является то, что полярность конструкции противоположна направлению разности потенциалов на выходе устройства. Импульсный стабилизатор постоянного напряжения может показывать значения и выше, и ниже того, что есть в сети питания. Это зависит от настройки стабилизатора. Гальваническая изоляция для сети питания и нагрузки не предусмотрена.

Как же работает такое устройство? Первоначально необходимо подключить управляющую разность потенциалов. Это открывает транзистор между затвором и истоком. Он откроется, и начнет поступать ток от плюса к минусу. При этом дроссель будет резервировать энергию благодаря магнитному полю. При отключении разности потенциалов управления от ключа транзистора он будет закрываться. При этом резервная энергия конденсатора и магнитного поля расходуется для нагрузки.

О преимуществах и недостатках

Отвлечемся от конкретных конструкций, и неважно, что у нас есть: импульсный стабилизатор высокого напряжения или низкого, мы рассмотрим, что же они собой представляют в общих чертах с позиции сильных и слабых сторон. Итак, преимущества:

  • несложно достичь выравнивания;
  • компактные размеры;
  • широкий интервал для стабилизации;
  • высокий коэффициент полезного действия;
  • устойчивость выходного напряжения;
  • плавное подключение.

Увы, не обошлось без недостатков, среди них можно выделить следующие нюансы:

  • сложная конструкция;
  • наличие большого количества специфических компонентов, что негативно сказывается на надежности конструкции;
  • приборы сложно ремонтировать;
  • образовывается много помех для выбора необходимой частоты;
  • часто возникает потребность использовать компенсирующие устройства мощности.

Заключение

При создании конструкции, несмотря на то, что она не самая легкая, можно вносить коррективы. Благо, при наличии опыта это не так уж и сложно. Хочется создать регулируемый импульсный стабилизатор напряжения, который будет работать в различных диапазонах? Это возможно. Но необходимо хорошо подумать над тем, как же это реализовать. Добавить диод, информирующий световым сигналом о работе устройства? Проще простого! Рассмотренные схемы несложно усовершенствовать, достаточно только проявить терпение, усидчивость и понимание того, что следует делать.

Калькулятор расчёта мощности стабилизатора напряжения

МОЩНОСТЬ СТАБИЛИЗАТОРА НАПРЯЖЕНИЯ КАКУЮ ВЫБРАТЬ ДЛЯ ДОМА, ДАЧИ, ГАЗОВОГО КОТЛА?

Устройство, которое имеет электродвигатель — его мощность нужно умножить на 3 (из-за использования большего тока при запуске двигателя).

Например: холодильник на 400Вт x 3 = 1200Вт. Для подбора ему стабилизатора, следует учитывать мощность не 400, а 1200 Вт.

Более детальный пример выбора стабилизирующего устройства описан на странице ниже.

Немаловажно при выборе мощности стабилизатора для дома или дачи учитывать то, что у некоторых приборов пусковой ток в несколько раз превышает номинальный (это происходит из-за потребления большего тока при запуске двигателя). Примером таких устройств могут быть приборы с асинхронными двигателями — холодильники, насосы, компрессоры. Для их нормального функционирования нужен стабилизатор, чья мощность в 2-3 раза превышает потребляемую.
Для того чтобы правильно рассчитать мощность стабилизатора необходимо сложить мощность всех потребителей включаемых одновременно с учетом пусковых токов.

Вы можете самостоятельно произвести расчёт мощности через калькулятор, или обратиться к нашим услугам,
либо позвонить по телефону +7 (495) 137-59-53 и получить бесплатную консультацию по выбору стабилизатора для сети 220 или 380 вольт. Задать свой вопрос можно написав нам через чат сайта или на почту: kupitstabilizator.ru@gmail.com, для ответа укажите свои контакты по которым с вами лучше связаться.

В калькуляторе — мощность Ватт и количество электроприборов можно менять на свои .

ВЫБРАТЬ СТАБИЛИЗАТОР ДЛЯ ГАЗОВОГО КОТЛА МОЖНО В КАЛЬКУЛЯТОРЕ МОЩНОСТИ ЗДЕСЬ

ДИАГНОСТИКА СЕТИ Диагностика вашей электросети и рекомендации по выбору оптимального стабилизатора напряжения. Производится осмотр сети, замер напряжения при минимальном и максимальном энергопотреблении, оценивается характер колебаний напряжения и дается развернутая консультация по выбору оборудования.

УСТАНОВКА СТАБИЛИЗАТОРОВ НАПРЯЖЕНИЯ Монтаж и подключение стабилизатора(ов) в вашей электросети. В состав работ входит предпродажная проверка приобретаемого оборудования, демонтаж старого оборудования и монтаж нового, подключение к электросети, пуско-наладочные работы.

Пример определение точной суммарной мощности однофазного и трехфазного напряжения

Прежде чем приобрести стабилизирующее устройство для сети с одной фазой, следует определить суммарную мощность всех энерго потребителей, которые будут подключены к стабилизатору. Допустим, планируется осуществить его установку прямо на входе, обеспечив энергией весь дом. В таком случае следует выяснить величину активной мощности каждого устройства, после чего все значения сложить.

Стандартный набор устройств:

(Мощность современных устройств может быть больше, в таком случае нужно делать подсчет исходя из ваших показателей)

• Телевизор — 300 В;

Общая активная мощность — 3000 В.

При этом пылесос и холодильник имеют электродвигатели. Для запуска двигателей требуется ток, величина которого превышается номинальное значение в 3-5 раз. Поэтому их мощность (пылесоса 1000 и холодильника 400) нужно умножить на это число 3 = 4200 В).

После этого необходимо найти полную мощность, которая отличается от активной на величину коэффициента мощности (cosф). Данное значение указывается в технических паспортах устройств, однако в среднем оно равняется 0,75, для утюгов и прочего нагревательного оборудования — 1, для энергосберегающих лампочек — 0,9. Для пересчета активную мощность нужно разделить на cosф.

• Телевизор — 300 / 0,75 = 400 ВА;

• Компьютер — 300 / 0,75 = 660 ВА;

Читайте так же:
Стабилизатор тока с низким падением напряжения

• Холодильник — (400×3) / 0,75 = 1600 ВА;

• Пылесос — (1000×3) / 0,75 = 4000 ВА;

• Утюг — 550 / 1 = 550 ВА;

• Освещение — 450 / 0,9 = 500 ВА.

Общая мощность равняется 7450 ВА = 7,5 кВт.

На следующем этапе с помощью мультиметра необходимо определить величину минимального сетевого напряжения в наиболее загруженный период.

К примеру, это число равняется 180 В.

Нормальное функционирование стабилизатора возможно лишь, если при его выборе учитывался нижний предел напряжения.

Бытовые электроприборы потребляют не только активную мощность, но и реактивную. Это возникает в результате индуктивности. Если электроприбор оборудован мощным двигателем, то при его включении резко возрастает напряжение. Учитывайте это. Если выбирать стабилизатор по мощности самого электроприбора, которая указана в документации, то в момент такого пика стабилизатор напряжения может попросту не справиться с нагрузкой. Также учитывается коэффициент трансформации. При идеальных условиях он равен нулю. Если происходит просадка или скачок в сети, то стабилизатор его выравнивает. Эта зависимость отображена в таблице.

В данном случае минимальное напряжение равняется 180 В, что соответствует коэффициенту 1,2. Если же значение равняется 170 В, используется коэффициент 1,3.

Определяем мощность:

7,5 умножить на 1,2 = 9 кВт

Однако всегда необходимо оставлять запас мощности. Поэтому полученное число умножаем на коэффициент запаса, который равняется 1,25:

9 умножить на 1,25 = 11,25 кВт

При таких показателях нужно выбирать стабилизатор с мощностью от 12 кВт.

Пример выбора стабилизатора напряжения для трехфазной сети

В результате из имеющегося ассортимента стабилизаторов выбирается наиболее подходящий вариант с мощностью выше полученного значения.

  • ГЛАВНАЯ
  • УСЛУГИ
  • ГАРАНТИЯ
  • ОПЛАТА и ДОСТАВКА
  • КОНТАКТЫ
  • ВОПРОСЫ-ОТВЕТЫ

Каждый товар магазина сертифицирован, имеет официальную гарантию фирмы производителя.

© 2008-2021 Интернет-магазин стабилизаторов
Стабилизаторы напряжения, инверторы, ИБП, АКБ.
Энергия, Rucelf, Штиль, Voltron, Classic, Ultra.

Подключаем стабилизатор напряжения к сети

Стабилизатором напряжения называется специальное электрическое оборудование, задача которого — повысить качество электропитания, в частности обеспечить стабильное значение выходного напряжения, сделав его не зависимым от колебаний входного. Чтобы собственная техника работала эффективно и безопасно, необходимо грамотно подходить к вопросу выбора данного агрегата (учитываются все параметры, включая нагрузочные и другие). Выбрать стабилизатор — только часть вопроса, его также следует грамотно подключить, что необходимо для защиты техники от просадок по напряжению, помех и прочих аварийных ситуаций в сети. В этой статье ознакомимся с вопросом как подключить стабилизатор напряжения своими руками.

Выбираем тип защиты

Современный рынок электроприборов предлагает два типа стабилизаторов напряжения: стационарный (для всего дома) и мобильный (обслуживает один или несколько электроприборов). Также, в зависимости от условий эксплуатации, стационарные агрегаты делятся на однофазные и трехфазные. Установка стабилизатора напряжения имеет определенные отличия: подключение к 220 В или к 380 В.

В загородном доме или квартире, как правило, устанавливается однофазная модель, защищающая всю сеть от перегрузок.

Определяемся с местом установки

Установка своими руками стабилизатора напряжения в доме требует особого внимания, так как при неправильном монтаже в худшем случае прибор выйдет из строя, в худшем — произойдет возгорание. Рекомендации при самостоятельном монтаже следующие:

  • Необходимо выбрать сухую и хорошо вентилируемую комнату, так как самая частая причина выхода оборудования из строя — образование в его корпусе конденсата;
  • Если изделие устанавливается в нише, то окружающие его отделочные материалы должны быть пожаробезопасными (металл, стекло, кирпич и так далее);
  • Между самой техникой и стенками следует соблюсти зазор не меньше чем в 10 см;
  • Если установка производится к стене, то подставка или анкера должны быть достаточно крепкими, чтобы выдержать вес стабилизатора.

Необходимое оборудование для подключения

Кроме самого стабилизатора напряжения, потребуются прочие вспомогательные материалы:

  • Трехжильный кабель ВВГнГ-Ls. Провод должен иметь то же сечение, что и у вводного кабеля на рубильнике или автомате главного ввода. Обуславливается это тем, что он будет выдерживать всю нагрузку;
  • Выключатель трехпозиционного типа, для обеспечения возможности пустить электропитание в обход стабилизатора, например, для его обслуживания или замены. По сравнению с классическими выключателями, это устройство характеризуется тремя состояниями: включен 1 потребитель, выключен, включен 2 потребитель. При желании, обходятся использованием классического модульного автомата, но данная схема имеет один нюанс — при отключении от стабилизатора потребуется каждый раз обесточивать дом, чтобы перекинуть провода. Конечно, доступны такие режимы как байпас или транзит, но это требует соблюдения строгой последовательности. Наличие трехпозиционного выключателя позволяет одним движением отсечь агрегат, при этом оставив дом со светом;
  • Рекомендуется, чтобы в схеме был учтен прибор УЗО или дифференциальный автомат. Словом, требуется защита от утечек тока.

Где купить

Максимально быстро приобрести устройства стабилизации можно в ближайшем специализированном магазине. Оптимальным же, по соотношению цена-качество, остаётся вариант покупки в Интернет-магазине АлиЭкспресс. Обязательное длительное ожидание посылок из Китая осталось в прошлом, ведь сейчас множество товаров находятся на промежуточных складах в странах назначения: например, при заказе вы можете выбрать опцию «Доставка из Российской Федерации»:

Этапы установки стабилизатора

Подключение стабилизатора напряжения к электросети — несложная процедура, но она требует, чтобы человек немного разбирался в электромонтажных работах.

Чтобы правильно и безопасно осуществить подключение, следует придерживаться нескольких несложных, но обязательных правил, о которых пойдет речь ниже. Так, действия следующие:

  • В первую очередь выбирается место установки. Современные стабилизаторы бывают настенными (подбирается место крепления) и напольными. Устанавливается агрегат после счетчика электроэнергии. Стоит отметить, что дополнительного повышения расходов энергии не стоит ждать, так как оборудование само по себе потребляет в среднем 20–30 Вт. Не рекомендуется устанавливать стабилизатор перед счетчиком — это запрещено и может вызвать проблемы с энергонадзором;
  • Большая часть стабилизаторов, в особенности напольные модели, оснащены клеммной колодкой или клеммником. Разъем представляет собой четыре клеммы, посредством которых подключаются провода: две входные (фаза и земля) — идут от распределительного щитка и две выходные (тоже фаза и земля) — к ним подключают нагрузку;
  • Стабилизатор напряжения своими руками подключить не сложно, но прежде чем приступать к работам, следует убедиться, что на агрегате нет визуальных механических повреждений, его сборка надежна, а провода качественно подключены. Далее обесточивается линия, отключается напряжение на счетчике, проверяются номинальные характеристики автомата, расположенного на входе (показатель должен быть выше, чем мощность самого стабилизатора);
  • Отключаются все потребители электроэнергии, и подключается сам стабилизатор. Здесь заводится фаза в специальный разъем под клемму;
  • Проделывается та же работа, что и в предыдущем пункте, только вместо фазы от счетчика подключается нулевой провод к разъему в приборе.

Обратите внимание! Стабилизатору требуется постоянное надежное подключение, что следует проверять не реже, чем раз в год. Бывает, что обнаруживается плохой контакт, что необходимо сразу исправлять (может потребоваться более жесткая фиксация). Если пренебречь этим, то есть вероятность возгорания изоляции, что может повлечь за собой возникновение пожара.

Как подключить мощный однофазный стабилизатор на 220 В

Прежде чем представить схему, необходимо вспомнить, что электросети на 220 В оборудованы двумя проводами. Первый — фаза, второй — ноль. Чтобы правильно их определить потребуется специальная индикаторная отвертка. Процедура проверки выглядит следующим образом. Берется отвертка, большой палец прислоняется к металлическому выступу на ручке, а рабочая поверхность присоединяется к оголенному электропроводу, по которому проходит ток. Если лампочка на отвертке загорается, значит это фаза, если нет — ноль.

Читайте так же:
Трансформаторы тока стабилизаторы напряжения

Теперь разберемся с самой схемой. При подключении однофазного стабилизатора нужно обратить внимание, что он имеет несколько мест крепления, куда присоединяются кабеля. Многие попросту не понимают, что куда следует подключать.

Из данной группы существует два типа агрегатов. Первые имеют ноль и по одной фазе (для входа и выхода). Вторые имеют фазу-вход и фазу-выход вместе с ноль-вход и ноль-выход. Они имеют вид зажимов с соответствующей подписью.

В первой ситуации берется фазовая жила, идущая от счетчика, и подключается к разъему фаза-вход, а нулевая — к нулю. При этом имеется два выходящих электрокабеля, идущих к потребителям: первый подключается к фазе-выход, второй — к нулю.

Во второй ситуации кабеля фаза и ноль закрепляются над соответствующими зажимами «фаза» и «ноль». Выходящие, в свою очередь, крепятся к фазе-выход и нулю-выход.

Важно обратить внимание, чтобы провода были надежно закреплены, не болтались. Иначе есть вероятность, что они со временем начнут перегреваться, что уже небезопасно. Схема подключения стабилизатора напряжения в частном доме представлена ниже.

Подключение стабилизатора напряжения на 220 В в квартирном в щитке производится по аналогичной схеме непосредственно после счетчика электроэнергии.

Подключение стабилизатора к 380 В

Если рассматривать конструкцию агрегата, то трехфазный стабилизатор выполнен в виде трех однофазных устройств, где каждое отвечает за стабилизацию однофазного напряжения. Прежде чем приступать к монтажным работам, необходимо внимательно ознакомиться с прилагаемой инструкцией и строго следовать всем ее пунктам.

Отталкиваясь от способа подключения, трехфазные стабилизаторы бывают двух видов. Первый тип оборудования характеризуется тремя модулями на три клеммы, к которым и подключаются провода. К клеммам подключаются вход и выход «фазы» и нулевой кабель (ввод, три модуля и цепь питания). Каждый отдельный модуль соединяется с однофазной сетью.

Агрегат второго типа тоже имеет три однофазных стабилизатора, где у каждого по 4 клеммы для подключения проводов. Помимо входа и выхода «фазы» к ним также подключается вход и выход «нуля». Это позволяет нулевому проводу ввода питания работать отдельно от нулевого провода стабилизированной электросети.

К трехфазной сети можно подключить три однофазных агрегата или один трехфазный. Каждый вариант имеет свои преимущества.

  • Для каждой фазы появляется возможность подобрать оборудование индивидуальной мощности;
  • Отталкиваясь от условий эксплуатации, для каждой фазы подбирается определенный вид агрегата;
  • Три однофазных прибора выйдут несколько дешевле, по сравнению с одним трехфазным;
  • Однофазные модели легче транспортировать;
  • Если потребуется сервисное обслуживание, то отключается только тот прибор из трех, который требует вмешательства.

Преимущество подключения трехфазного агрегата в аналогичную сеть:

  • Без проблем подключается потребитель на три фазы.
    При этом имеются определенные недостатки, которые следует брать во внимание:
  • Стабилизаторы данного вида только электромеханические, а это может стать проблемой при частых скачках напряжения;
  • Сложности транспортировки. Обуславливается не только весом и габаритами, но и тем, что перевозить их допускается только в вертикальном положении;
  • Нельзя распределять мощность по фазам в зависимости от потребителя.

Особенности подключения стабилизатора Ресанта 10000

Прежде чем приступать к монтажу следует убедиться, что учитываются все условия эксплуатации данного прибора. Так, есть ограничения в температуре, при которой разрешается работа устройства: от +5 до +40 градусов Цельсия. Показатель влажности не должен быть более 80%.

Важно, чтобы устройство имело доступ к воздуху. С этой целью вокруг него обязательно оставляется свободное пространство (5–10 см). Если это напольная модель, ее следует расположить от стены на расстоянии в 50 см. Данное правило актуально и для любых легковоспламеняющихся предметов, которые будут стоять рядом со стабилизатором. Солнечные лучи не должны попадать на агрегат. В обязательном порядке производится заземление стабилизатора.

Рассмотрим само подключение. Ресанта 10000 имеет 5 клемм. Две имеют обозначение «L» — фазы, другие две «N» — нейтральные провода. Пятая отводится под заземление.

В первую очередь устройство заземляется. Далее подключают «вход», при этом фаза подсоединяется к клемме «L». Нейтральный провод соединяется с нейтральной клеммой.

Далее включается оборудование и проверяется наличие напряжения на выходе. После этого агрегат выключается. Если на выходе имеется напряжение, подключаются выходные кабеля по тому же принципу, что и входящие.

Если же выходного напряжения нет, то нужно проверить, правильно ли подключены входные провода.

Заключение

Стабилизаторы напряжения — то оборудование, которое необходимо в условиях современного мира, в котором с каждым годом потребители пользуются все большим количеством электроприборов. Чтобы вся техника работала эффективно и при этом была в безопасности от аварийных ситуаций и используется данное электронное оборудование. Но важно не только правильно выбрать стабилизатор, но и грамотно его установить, придерживаясь схем и инструкций.

Видео по теме

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector