Sfera-perm.ru

Сфера Пермь
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Модуль стабилизатор напряжения с ограничением по току

Интегральный стабилизатор напряжения в техвыводном корпусе
с фиксированным выходным напряжением и его применение

Широкое применение в электронике нашли интегральные стабилизаторы напряжения и особенно один их вид — стабилизаторы с фиксированным выходным напряжением в трехвыводных корпусах. Они хороши тем что не требуют внешних элементов (кроме конденсаторов фильтров), регулировок и имеют широкий диапазон токов в нагрузках. Не буду приводить здесь их технические характеристики, а приведу только основные данные и схемы возможного применения.

Стандартные линейные стабилизаторы выпускаются многими производителями и имеют не одно обозначение, мы рассмотрим их на примере наиболее характерного типа:

  • серия L78 ( для положительных напряжений ),
  • и серия L79 ( для отрицательных напряжений ).

В свою очередь стандартные регуляторы делятся на:

  • слаботочные с выходным током в районе 0,1 А (L78Lхх) — вид на рис. 1а ,
  • со средним значением тока порядка 0,5 А (L78Мхх) — вид на рис. 1б,
  • сильноточные 1. 1,5 А (L78хх) — вид на —рис.1в.

Невысокая стоимость, простота применения и большое разнообразие выходных напряжений и корпусов делают эти компоненты весьма популярными при создании простых схем электропитания. Надо отметить, что эти регуляторы обладают рядом дополнительных функций, обеспечивающих безопасность функционирования. К ним относятся защита от перегрузки по току и температурная защита от перегрева микросхемы.

Микросхемы серии 78xx

Это серия ИМС линейных стабилизаторов с фиксированным выходным напряжением — 78xx (также известная как LM78xx).

Их популярность связана, как уже говорилось выше, с их простотой использования и относительной дешевизной. При указании определённых микросхем серии, «xx» заменяется на двухзначный номер, обозначающий выходное напряжение стабилизатора (к примеру, микросхема 7805 имеет выходное напряжение в 5 вольт, а 7812 — 12В). Стабилизаторы 78-ой серии имеют положительное относительно земли рабочее напряжение, а серия 79xx отрицательное, имеет аналогичную систему обозначений. Их можно использовать для обеспечения и положительного, и отрицательного напряжений питания нагрузок в одной схеме.

Кроме того, их популярность серии продиктована несколькими преимуществами перед другими стабилизаторами напряжения:

  • Микросхемы серии не нуждаются в дополнительных элементах для обеспечения стабильного питания, что делает их удобными в использовании, экономичными и эффективно использующими место на печатной плате. В отличие от них большинство других стабилизаторов требуют дополнительные компоненты или для установки нужного значения напряжения, или для помощи в стабилизации. Некоторые другие варианты (например, импульсные стабилизаторы) требуют не только большого количества дополнительных компонентов, но могут требовать большой опыт разработки.
  • Устройства серии обладают защитой от превышения максимального тока, а также от перегрева и коротких замыканий, что обеспечивает высокую надёжность в большинстве случаев. Иногда ограничение тока также используется и для защиты других компонентов схемы,
  • Линейные стабилизаторы не создают ВЧ помех, в виде магнитных полей рассеяния и ВЧ пульсаций выходного напряжения.

К недостаткам линейных стабилизаторов можно отнести более низкий КПД по сравнению с импульсными, но при оптимальном расчете он может превышать 60%.

Структура интегрального стабилизатора показана на рис. 2

Требование к применению стабилизаторов:

    падение напряжения на нем не должно быть ниже 2 вольт,

    максимальный ток через него, не должен превышать указанного в соотношении:

    P — допустимая мощность рассеяния микросхемы, U in-out — падение напряжения на микросхеме ( U in-out = Ui n — U out ).

    Типовая схема включения стабилизатора напряжения в техвыводном корпусе
    с фиксированным выходным напряжением

    Типовая схема включения интегрального стабилизатора напряжения в трехвыводном корпусе с фиксированным выходным напряжением показана на рис. 3.

    Мы видим, микросхемы подобного типа не требуют дополнительных элементов, кроме конденсаторов фильтрующих напряжение — которые фильтруют питающее напряжение и защищают стабилизатор от помех проникающих с нагрузки и от источника питающего напряжения.

    Для обеспечения устойчивой работы микросхем серии 78хх во всем диапазоне допустимых значений входных и выходных напряжений и токов нагрузки рекомендуется применять шунтирующие вход и выход стабилизатора конденсаторы. Это должны быть твердотельные (керамические или танталловые) конденсаторы емкостью до 2 мкф на входе и 1 мкф на выходе. При использовании алюминиевых конденсаторов их емкость должна быть более 10 мкф. Подключать конденсаторы необходимо как можно более короткими проводниками как можно ближе к выводам стабилизатора.

    Диапазон применения данного типа линейных стабилизаторов напряжения можно расширить используя простой прием, приподняв на заданный уровень напряжения V1 вывод GND стабилизатора. Это приводит к росту выходного напряжения на величину равную V1 .

    Это можно сделать несколькими способами:

    Подъем напряжения на выходе интегрального стабилизатора с фиксированным напряжением с помощью: а) резистора на котором возникает падение напряжения на резисторе R 1 за счет протекания тока потребления стабилизатора I , б)падение напряжение на резисторе R1 создается током потребления стабилизатора I1 и током делителя I2 (возможно регулирование), в) стабилизатора напряжения.

    Варианты применения интегрального стабилизатора с фиксированным напряжением

    Микросхемы позволяют создавать множество схем на основе стабилизаторов.

    Регулировка выходного напряжения

    Как я уже писал выше (см. рис. 5б) линейные стабилизаторы позволяют изменять выходное напряжение. Подробная схема показана на рис. 7.

    По той же схеме возможно и функциональное регулирование выходного напряжения.

    Например возможно регулирование выходного напряжения в зависимости от температуры для применения в системах стабилизации температуры — термостатах. В зависимости от типа температурного датчика он может включаться вместо резисторов R1 или R2 .

    Параллельное включение стабилизаторов

    Линейные стабилизаторы допускают параллельное включение для увеличения тока нагрузки, но при этом надо выровнять токи потребления. Обычно это делается с помощью небольшого резистора включенного между выходом стабилизатора и общей нагрузкой (рис. 8а). Другой вариант — применение для этой цели диодной сборки (рис. 8б). Данная схема приводит к несколько большей потери напряжения, но позволяет защитить систему от выхода из строя при выходе из строя (при КЗ) одного из стабилизаторов.

    Стабилизатор тока

    Для питания некоторых нагрузок требуется источник стабильного тока. Это например цепочки светодиодов.

    Регулятор скорости вращения вентилятора системы вентиляции компьютера

    Данный регулятор имеет ту особенность, что (для устойчивой раскрутки вентилятора) в начальный момент времени на вентилятор подается полное напряжение (12В). После того как конденсатор С1 зарядится напряжение на выходе будет определяться резистором R 2.

    Читайте так же:
    Стабилизатор напряжения тока схемы защита по току
    Стабилизатор с плавным выходом на номинальное напряжение

    Данная схема отличается тем, что в начальный момент времени напряжение на выходе стабилизатора равно 5В (для данного типа), после чего напряжение плавно поднимается до величины определяемой регулирующими элементами.

    Модуль стабилизатор напряжения с ограничением по току

    Бесплатная техническая библиотека:
    ▪ Все статьи А-Я
    ▪ Энциклопедия радиоэлектроники и электротехники
    ▪ Новости науки и техники
    ▪ Архив статей и поиск
    ▪ Ваши истории из жизни
    ▪ На досуге
    ▪ Случайные статьи
    ▪ Отзывы о сайте

    Справочник:
    ▪ Большая энциклопедия для детей и взрослых
    ▪ Биографии великих ученых
    ▪ Важнейшие научные открытия
    ▪ Детская научная лаборатория
    ▪ Должностные инструкции
    ▪ Домашняя мастерская
    ▪ Жизнь замечательных физиков
    ▪ Заводские технологии на дому
    ▪ Загадки, ребусы, вопросы с подвохом
    ▪ Инструменты и механизмы для сельского хозяйства
    ▪ Искусство аудио
    ▪ Искусство видео
    ▪ История техники, технологии, предметов вокруг нас
    ▪ И тут появился изобретатель (ТРИЗ)
    ▪ Конспекты лекций, шпаргалки
    ▪ Крылатые слова, фразеологизмы
    ▪ Личный транспорт: наземный, водный, воздушный
    ▪ Любителям путешествовать — советы туристу
    ▪ Моделирование
    ▪ Нормативная документация по охране труда
    ▪ Опыты по физике
    ▪ Опыты по химии
    ▪ Основы безопасной жизнедеятельности (ОБЖД)
    ▪ Основы первой медицинской помощи (ОПМП)
    ▪ Охрана труда
    ▪ Радиоэлектроника и электротехника
    ▪ Строителю, домашнему мастеру
    ▪ Типовые инструкции по охране труда (ТОИ)
    ▪ Чудеса природы
    ▪ Шпионские штучки
    ▪ Электрик в доме
    ▪ Эффектные фокусы и их разгадки

    Техническая документация:
    ▪ Схемы и сервис-мануалы
    ▪ Книги, журналы, сборники
    ▪ Справочники
    ▪ Параметры радиодеталей
    ▪ Прошивки
    ▪ Инструкции по эксплуатации
    ▪ Энциклопедия радиоэлектроники и электротехники

    Бесплатный архив статей
    (500000 статей в Архиве)

    Алфавитный указатель статей в книгах и журналах

    Бонусы:
    ▪ Ваши истории
    ▪ Викторина онлайн
    ▪ Загадки для взрослых и детей
    ▪ Знаете ли Вы, что.
    ▪ Зрительные иллюзии
    ▪ Веселые задачки
    ▪ Каталог Вивасан
    ▪ Палиндромы
    ▪ Сборка кубика Рубика
    ▪ Форумы
    ▪ Голосования
    ▪ Карта сайта

    Дизайн и поддержка:
    Александр Кузнецов

    Техническое обеспечение:
    Михаил Булах

    Программирование:
    Данил Мончукин

    Маркетинг:
    Татьяна Анастасьева

    Перевод:
    Наталья Кузнецова

    При использовании материалов сайта обязательна ссылка на https://www.diagram.com.ua


    сделано в Украине

    Регулируемый стабилизатор напряжения с ограничением по току

    В предлагаемой вниманию читателей статье описан регулируемый импульсный стабилизатор напряжения с ограничением по току. Устройство позволяет не только питать различную аппаратуру стабильным напряжением от 2 до 25 В, но и заряжать различные аккумуляторы стабильным током до 5 А.

    Описываемый блок питания позволяет регулировать стабилизированное выходное напряжение и максимальный ток в нагрузке. Его можно использовать как для питания и налаживания радиоаппаратуры, так и для зарядки различных аккумуляторов. Устройство работает в двух режимах: в случае питания аппаратуры — как стабилизатор напряжения с защитой от перегрузок, а при зарядке аккумуляторов — как стабилизатор тока с ограничением по напряжению. Источник питания прост в использовании, не боится перегрузок и замыкания выхода, имеет световую индикацию режима работы и высокий КПД. Схема устройства показана на рис. 1.

    • Выходное напряжение, В. 2. 25
    • Ток нагрузки, А. 0. 5


    (нажмите для увеличения)

    Такие параметры, как нестабильность, пульсации и КПД, во многом определяются режимом работы и поэтому не приведены. По желанию характеристики можно изменить без значительных изменений устройства. Например, если необходимо получить больший выходной ток, следует поставить датчик тока — резистор R14 большей мощности, а также увеличить сопротивление переменного резистора R5. Для уменьшения пульсаций целесообразно на выходе установить LC-фильтр, однако это приведет к снижению КПД.

    Блок питания содержит следующие узлы: внутренний стабилизатор «отрицательного» напряжения VT1VD1R1 с фильтром С4; внутренний стабилизатор «положительного» напряжения VT2VD2R2 с фильтром С5; узел ограничения тока DA1.1R3-R7R10R 14; узел ограничения напряжения DA1.2VD3R15- R18; формирователь импульсов DD1.2DD1.3; индикаторы состояния DD1.1HL1R12 и DD1.4HL2R13; коммутирующий транзистор VT3; конденсаторы входного С1-C3, промежуточного С7, С8 и выходного С6 фильтров.

    Рассмотрим работу устройства в режиме стабилизации напряжения. При включении на стабилитроне VD3 появляется напряжение, часть которого с движка переменного резистора R16 (которым регулируют выходное напряжение) поступает на инвертирующий вход ОУ DA1.2. Поскольку коммутирующий транзистор VT3 закрыт, конденсаторы С6-С8 разряжены и напряжение на неинвертирующем входе ОУ DA1.2, снимаемое с движка подстроенного резистора R18, близко к +UBX. На выходе ОУ появляется высокий уровень, что приводит к включению излучающего диода оптрона U1.4. В результате откроется фототранзистор оптрона U1.2 и на нижнем по схеме входе элемента DD1.2 появится высокий уровень. Следовательно, на выходе элемента DD1.3 — также высокий уровень, который откроет коммутирующий транзистор VT3.

    Через дроссель L1 начинает протекать ток нагрузки и зарядки конденсаторов С6-С8. Напряжение на конденсаторах и на подстроечном резисторе R18 начинает увеличиваться. В какой-то момент напряжение на неинвертирующем входе ОУ DA1.2 станет меньше, чем на инвертирующем. На выходе ОУ DA1.2 появится низкий уровень. Излучающий диод U1.4 и фототранзистор U 1.2 оптрона закроются. На нижнем по схеме аходе элемента DD1.2 и на входах элемента DD1.4 высокий уровень сменится низким. Коммутирующий транзистор закроется, а включившийся светодиод HL2 будет сигнализировать о том, что устройство работает в режиме стабилизации напряжения. По мере разрядки на нагрузку напряжение на конденсаторах С6-С8 и, соответственно, на подстроечном резисторе R18 будет уменьшаться. И как только напряжение на неинвертирующем входе станет больше, чем на инвертирующем, процесс повторится.

    Напряжение с датчика тока — резистора R14 поступает на входы ОУ DA1.1. Как только ток нагрузки превысит установленное значение, напряжение на неинвертирующем входе ОУ DA1.1 станет меньше, чем на инвертирующем. На его выходе появится низкий уровень, и включенный излучающий диод оптрона U1.3 выключится. Фототранзистор оптрона U1.1 закроется. На верхнем по схеме входе элемента DD1.2 и на входах элемента DD1.1 высокий уровень сменится низким. В результате коммутирующий транзистор закроется, а включившийся светодиод HL1 просигнализирует о работе блока питания в режиме стабилизации тока. По мере разрядки конденсаторов С7, С8 ток через резистор R14 будет уменьшаться, что приведет к увеличению напряжения на неинвертирующем входе ОУ DA1.1 и затем к открыванию транзистора VT3. При повторном увеличении тока нагрузки процесс повторится. Ток стабилизации устанавливают переменным резистором R5.

    Читайте так же:
    Стабилизатор тока из электронной нагрузки

    Большая часть деталей блока питания смонтирована на плате из односторонне фольгированного стеклотекстолита, чертеж которой показан на рис. 2. Коммутирующий транзистор VT3 и диод VD4 размещают на теплоотводе размерами 60x90x7 мм .


    (нажмите для увеличения)

    Устройство можно питать от сетевого трансформатора с действующим напряжением на вторичной обмотке 20. 25 В который обеспечит необходимый ток нагрузки. В авторском варианте в выпрямителе использованы диодные сборки КД227ГС.

    Дроссель L1 изготавливают на основе магнитопровода Б36. Обмотка содержит 20 витков провода ПЭВ 1,35. Готовую катушку заливают эпоксидной смолой. При сборке магнитопровода между чашками устанавливают немагнитную прокладку 0,3. 0,5 мм.

    Если напряжение питания устройства значительно отличается от указанного на схеме, следует учесть, что сопротивление резисторов R1 и R2 рассчитывают из условия обеспечения тока стабилитронов VD1 и VD2 в пределах 3. 10 мА. При существенном увеличении питающего напряжения возможно значительное возрастание мощности, рассеиваемой на транзисторах VT1 и VT2, — их следует установить на теплоотводы. Если конденсаторы фильтров не удастся расположить на плате (из-за больших габаритов), их целесообразно разместить отдельно, увеличив общую емкость конденсаторов С1-C3 до 10000-15000 мкФ, а конденсатора С6 — до 4700 мкФ.

    Конденсатор С7 — ниобиевый или танталовый (К52-9, К53-27) на номинальное напряжение не менее 32 В. Транзистор IRFZ44N допустимо заменить на IRF540N, хотя он требует более интенсивного охлаждения. Светодиоды HL1 и HL2 — любые, обеспечивающие необходимую индикацию. Желательно, чтобы они были разного цвета.

    Налаживание блока питания начинают при отключенном транзисторе VT3. Сначала подают напряжение на вход и проверяют работу внутренних стабилизаторов. Напряжение на конденсаторе С4 должно быть в пределах 15. 16 В, а на конденсаторе С5 — 8. 9 В. Незначительные отклонения не окажут заметного влияния на работу устройства. Транзисторы VT1 и VT2 при любом режиме не должны сильно нагреваться.

    После этого налаживают узел ограничения тока. Движок переменного резистора R5 устанавливают в левое по схеме положение, соответствующее минимальному току. Затем подстроечным резистором R3 выравнивают напряжения на входах ОУ DA1.1: следует найти такое положение, при котором с началом поворота движка резистора R5 светодиод HL1 выключался, а в крайнем левом по схеме положении включался. При такой настройке переменным резистором R5 можно изменять максимальный выходной ток от О до 5 А. Если все же получить максимальный ток 5 А не удастся, следует увеличить сопротивление резистора R5 и повторить налаживание.

    Затем подключают коммутирующий транзистор VT3 и налаживают узел ограничения напряжения. Движок переменного резистора R5 устанавливают в положение, при котором светодиод HL1 выключен. Движок подстроечного резистора R18 устанавливают в верхнее, а движок переменного резистора R16 — в среднее по схеме положение, соответствующее половине максимального напряжения. Подстроечным резистором R18 устанавливают половину максимального выходного напряжения, которое должен обеспечивать блок питания. При этом к выходу необходимо подключить нагрузку, например, резистор сопротивлением 100 Ом и мощностью 2 Вт.

    Следует помнить, что максимальное выходное напряжение не должно сильно отличаться от действующего переменного напряжения на вторичной обмотке сетевого трансформатора.

    По окончании налаживания целесообразно провести калибровку резисторов R5 и R16. Для этого при выключенном блоке питания движок резистора R16 необходимо установить в среднее, движок резистора R5 — в крайнее левое положение, подключить к выходу амперметр и подать напряжение питания. Далее, перемещая движок резистора R5, увеличить ток в цепи до какого-либо значения, например 1 А, и установить соответствующую риску напротив стрелки ручки резистора и т. д. Затем, заменив амперметр на вольтметр, откалибровать резистор R16. При некоторых навыках, используя полученные шкалы и индикаторы HL1 и HL2, можно без измерительных приборов достаточно точно устанавливать напряжение и ток нагрузки, зарядный ток аккумуляторов и определять на них напряжение, устанавливать предельные режимы работы, ограничивая ток и напряжение в заданных интервалах.

    В заключение хотелось бы отметить, что максимальное напряжение сток-исток полевого транзистора IRFZ44N (VT3) — 55 В, максимальный ток стока — 49 А, сопротивление открытого канала — 0,022 Ом. Так что, в принципе, у описанного блока питания имеются возможности для «разгона». Кроме того, дополнив устройство RS-триггером, получим автомат, который отключится при возникновении перегрузки либо по достижении необходимого напряжения, когда блок используется как зарядное устройство.

    Смотрите другие статьи раздела Стабилизаторы напряжения.

    Читайте и пишите полезные комментарии к этой статье.

    Модуль стабилизатор напряжения с ограничением по току

    Введение
    Каждое последующее поколение компьютерных систем требует больше общей мощности и более низких напряжений питания, чем его предшественник. Это ориентирует разработчиков источников питания проектировать устройства с большими выходными токами при малых габаритах их конечного исполнения. Однако при высоких плотностях мощности, даже при низких выходных напряжениях, одним из основных приоритетов становится проблема рассеивания тепла. Причем, когда речь идет о линейных стабилизаторах напряжения, необходимых в приложениях с требованиями низкого уровня шума по цепям питания, проблема выделения таким источником питания тепла поднимается на верхнюю позицию списка приоритетов. Увеличить ток от источника питания и при этом сократить тепловыделение единичной микросхемы поможет параллельное включение стилизаторов напряжения с малым собственным падением напряжения на регулирующем элементе, так называемых LDO (Low Dropout). Их параллельное включение уменьшает размеры общего решения, поскольку избавляет конструкторов печатных узлов от использования радиаторов — ведь тогда температура каждого элементарного стабилизатора в этой связке не выходит за рамки спецификации.
    В статье показано, как организовать параллельное включение с дополнительным преимуществом по рассеиванию тепла 3‑A VLDO (Very Low Dropout) стабилизаторов напряжения типа LT3033 [2], предлагаемых компанией Analog Devices Inc. (далее — ADI) и разработанных командой Power by Linear. Устройства отличаются очень низким падением напряжения на регулирующем элементе и предназначены для приложений, в которых требуются токи более 3 А. Преимущество стабилизаторов напряжения LT3033 заключается в том, что их легко подключить параллельно и сбалансировать по току благодаря встроенной функции контроля (Output Current Monitor) и программированному управлению ограничением выходного тока (Programmable Current Limit).
    Микросхема линейного стабилизатора напряжения LT3033 преобразует входные напряжения в диапазоне 1,14−10 В в выходное напряжение от 0,2 В с токами нагрузки до 3 А. При этом падение напряжения на регулирующем элементе стабилизатора составляет лишь 95 мВ при полной нагрузке. Во время работы ток покоя достигает 1,8 мА, а при отключении не превышает 22 мкА. Программируемый предел установки выходного тока, а также встроенная тепловая защита придают стабилизатору LT3033 необходимую устойчивость для работы в приложениях с высоким током и низким напряжением питания.

    Читайте так же:
    Стабилизатор напряжения 220в постоянного тока

    Общие сведения о включении и особенностях использовании линейного VLDo-стабилизатора LT3033
    На рис. 1 показан пример типового включения стабилизатора на‑ пряжения LT3033, обеспечивающий от источника питания в 1,2 В выходное напряжение 0,9 В при токе в нагрузке до 3 А.

    Ограничение тока в широком температурном диапазоне с точностью до ±12% программируется подключением резистора от вывода ILIM к GND (на рис. 2 не указан). Однако необходимо учитывать, что этот верхний предел тока может быть снижен внутренним ограничением с обратной связью, когда дифференциальное напряжение между входом и выходом превышает 5 В.
    В стабилизаторе напряжения LT3033 слежение за выходным током (Output Current Monitor) обеспечивается подключением вывода IMON к GND через резистор R5. Вывод IMON является коллектором транзистора Q2, который играет роль токового зеркала и отражает ток выходного транзистора Q1 стабилизатора LT3033 в соотношении 1:2650. Падение напряжения на резисторе пропорционально выходному току стаби‑ лизатора, если оно не выше значения VOUT более чем на 400 мВ. Для расчета тока следует использовать формулу, где RIMON — это R5 на рис. 2:

    Через токовое зеркало данная функция монитора выходного тока позволяет разделять его для нескольких микросхем LT3033, помогая организовывать их параллельное включение с равномерной токовой нагрузкой.
    Несмотря на небольшие габариты (корпус QFN с 20 выводами, размером 3*4 мм, рис. 1), микросхема стабилизатора напряжения LT3033 включает и ряд защитных функций, в том числе внутреннее ограничение тока с обратной связью, защиту от перегрева и от обратного тока, а также от переполюсовки по входу.

    Использование двух LT3033 параллельно для приложений с током нагрузки до 6 A
    Для приложений, требующих ток более 3 А, несколько стабилизаторов напряжения LT3033 могут быть подключены параллельно благодаря встроенной в них функции токового монитора. На рис. 3 показаны две включенные параллельно микросхемы LT3033, которые с двумя дополнительными NPN‑ транзисторами типа 2N3904 организованы для формирования выходного напряжения 1,5 В при токе в нагрузке до 6 А. Выводы IN и OUT микросхем, соответственно, связаны. Один стабилизатор напряжения LT3033 действует как ведущий, управляя подчиненным ему вторым, ведомым, стабилизатором. Контакты IMON в сочетании с токовым зеркалом, выполненным на NPN‑транзисторах, создают объединенный усилитель, который вводит ток в делитель обратной связи ведомого стабилизатора напряжения LT3033 так, чтобы уравнять токи IMON от каждого LT3033. Резисторы номиналом по 100 Ом в цепях эмиттеров, для того чтобы гарантировать хорошее согласование транзисторов в токовом зеркале, обеспечивают падение напряжение в 113 мВ при полной нагрузке. Выходное напряжение ведомого LT3033 установлено на 1,35 В, что на 10% ниже, чем требуемое на выходе схемы. Это позволяет гарантировать, что ведущий LT3033 останется в режиме контроля выходного напряжения, что, собственно, и обеспечивает ему ведущую роль в данной связке. Резисторы обратной связи ведомого стабилизатора напряжения разделены на секции, чтобы обеспечить достаточный запас для ведомого. Комбинация последовательно включенных конденсатора емкостью 10 нФ и резистора номиналом 5,1 кОм, добавленная к выводу IMON ведомого устройства, образует частотно зависящую цепочку, которая компенсирует амплитудно‑частотную характеристику (АЧХ) контура обратной связи.

    Рис. 4. Сравнение выходного тока каждого LDO-стабилизатора с применением дискретных и согласованных NPN-транзисторов:
    а) выходной ток каждого LDO-стабилизатора при использовании двух транзисторов типа 2N3904;
    б) выходной ток каждого LDO-стабилизатора при использовании транзисторной сборки MAT14.

    Рассогласование в распределении тока снижается благодаря установке параллельных LDO-стабилизаторов и монолитной транзисторной сборки MAT14 компании ADI

    Особенности и преимущества линейных стабилизаторов LT3033 компании ADI
    Основные технические характеристики:
    • Диапазон входных напряжений: 0,95−10 В.
    • Падение напряжения на регулирующем элементе: 95 мВ.
    • Выходной ток: 3 А.
    • Регулируемое выходное напряжение: от 200 мВ до 9,7 В.
    • Одиночный конденсатор плавного пуска и снижения выходного шума.
    • Возможность использования керамических конденсаторов по выходу.
    • Возможность регулировки нагрузки в пределах от 1 мА до 3 А.
    • Ток потребления: 1,9 мА.
    • Ток при отключении: 22 мкА.
    • Защита по току с обратной связью.
    • Программируемое ограничение выходного тока.
    • Монитор выходного тока.
    • Тепловая защита с гистерезисом.
    • Защита от обратного втекающего тока.
    • Корпус QFN‑20 3*4 мм.
    Функциональные особенности микросхем LT3033 включают программируемое ограничение тока, флаг соответствия напряжения (Power Good, PWRGD), защиту от перегрева и втекающего тока по выходу, что позволяет использовать их в устойчивых к окружающей среде и надежных решениях. Кроме того, системы с батарейным питанием, выигрывают от низкого собственного потребления тока микросхемы LT3033, сверхнизкого тока в режиме ожидания (при отключении, вход управления предусмотрен) и защиты от переполюсовки по входу.
    Микросхемы линейных стабилизаторов напряжения LT3033 были разработаны практически для любого конечного приложения и сегмента рынка. Основными областями применения являются схемы питания программируемых пользователем вентильных матриц FPGA, постстабилизаторы для импульсных DC/DC‑преобразователей, линейные стабилизаторы для датчиков ячеистой сети и устройств «Интернета вещей» с питанием от батарей и аккумуляторов, а также беспроводные модемы.

    Заключение

    Микросхема LT3033, предлагаемая компанией ADI под торговой маркой Power by Linear, — это VLDO‑стабилизатор с максимальным током нагрузки 3 A, выполненный в корпусе с габаритными размерами всего 3*4 мм. Схемное решение VLDO‑стабилизаторов LT3033 благодаря встроенной функции контроля выходного тока позволяет включать их параллельно для приложений с высоким током. С типичным падением напряжения на регулирующем элементе стабилизатора при полной нагрузке лишь в 95 мВ микросхемы LT3033 оптимальны для приложений с высоким током при низком входном и низком выходном напряжении, обеспечивая сопоставимую электрическую эффективность с импульсными стабилизаторами. Дополнительные сведения о микросхеме LT3033 доступны по ссылке [2], а общие сведения о линейных стабилизаторах с низким и сверхнизким собственным падением напряжения — в справоч‑ ном руководстве [4] и на сайте компании Analog Devices Inc. [5].

    Читайте так же:
    Стабилизатор тока с реле

    Регулирующий стабилизатор напряжения на LT1083

    Регулирующий стабилизатор напряжения LT1083 7,5 А хорошо знаком многим радиолюбителям. Они доступны по цене, просты в использовании, безопасны и надежны в эксплуатации. Многие из них ограничивают ток до 1 А. Для более высоких потребностей существуют другие решения, столь же простые и дешевые.

    Мощный регулирующий стабилизатор напряжения

    Эта статья познакомит вас с прибором, использующим стабилизатор напряжения Analog Devices LT1083. Регулятор (см. символ и распиновку на рисунке 1) позволяет регулировать положительное напряжение и обеспечивает ток до 7,5 А с большим КПД. Внутренние схемы рассчитаны на работу с перепадом напряжения до 1v между входом и выходом. Максимальное падение напряжения составляет 1,5v при условии предельного тока на выходе. Для нормальной работы требуется выходной конденсатор 10 мкФ. Вот некоторые из его примечательных характеристик:

    • регулируемое выходное напряжение;
    • ток до 7,5 ампер;
    • корпус ТО220;
    • ограниченная мощность рассеивания;
    • предельное дифференциальное напряжение 30В.

    Он может использоваться для различных схем, таких как импульсные регуляторы, регуляторы постоянного тока, высокоэффективные линейные регуляторы и зарядные устройства. Модель, рассмотренная в этом руководстве, имеет переменное и настраиваемое выходное напряжение. Существуют две другие модели, LT1083-5 и LT1083-12, которые стабилизируют выход на уровне 5 и 12 вольт соответственно.


    Рисунок 1: регулятор LT1083

    Схема для применения минимального выходного напряжения 5 В

    На рисунке 2 показана схема применения регулятора 5 В. Входное напряжение всегда должно быть больше 6,5 В. Напряжение питания схемы, конечно, не должно быть слишком высоким, так как вся мощность в конечном итоге будет излишне рассеиваться в виде тепла, что резко снизит эффективность прибора.

    Регулирующий стабилизатор напряжения подключен через свои три контакта к входу, выходу и к резистивному делителю напряжения, который определяет значение выходного напряжения. Настоятельно рекомендуется наличие двух конденсаторов, один на входе и один на выходе.

    Схема имеет функцию стабилизации выходного напряжения ровно на уровне 5 В. По этой причине делитель состоит из двух резисторов с точностью 1%, первый из которых имеет сопротивление 121 Ом, а второй — 365 Ом. Очевидно, что замена двух пассивных компонентов на подстроечный резистор или потенциометр реализует систему питания переменного напряжения.


    Рисунок 2: минимальная, но отлично работающая схема устройства с выходным напряжением 5 В

    На рисунке 3 показаны результаты первого измерения тока нагрузки и мощности, рассеиваемой встроенным стабилизатором. Моделирование проводилось путем тестирования различных значений нагрузок с импедансом от 1 до 20 Ом. Очень важным фактом является необычайное постоянство выходного напряжения (всегда ровно 5 В), даже если нагрузка испытывает резкие колебания.

    Фактически, ток, протекающий через нагрузку, очень изменчив вместе с мощностью, рассеиваемой встроенным регулятором. Таким образом, оставаясь в пределах рабочих ограничений, установленных производителем, регулятор является исключительно стабильным и безопасным.


    Рисунок 3: Результаты измерений на схеме регулятора 5 В.

    Схема регулирующего стабилизатора напряжения рассчитана на работу с падением напряжения до 1 В. Этот дифференциал не зависит от тока нагрузки, и благодаря низкому значению конечная конструкция может быть очень эффективной. На рисунке 4 показан график входного напряжения между 0 В и 8 В (красный график) и выходного напряжения (синий график). Между этими двумя напряжениями существует эффективное падение напряжения около 1 В, как указано в характеристиках производителя.


    Рисунок 4: график входного, выходного и падающего напряжения

    Выходное напряжение интегрального (со значениями, используемыми для резистивного делителя) очень стабильно, даже если используется нагрузка другого объекта, как видно на графике (рисунок 5).


    Рисунок 5: график показывает стабильность выхода, которая не зависит от используемой нагрузки.

    Эффективность намного выше, когда входное напряжение приближается к желаемому выходному значению. Следующие ниже измерения среднего КПД были выполнены с использованием различных величин нагрузки и трех разных источников питания, соответственно, при 18 В, 12 В и 6,5 В.

    • Входное Uвх: 18 В при КПД схемы 26,71%;
    • Входное Uвх: 12 В при КПД схемы 40,84%;
    • Входное Uвх: 6,5 В при КПД схемы 75,37%;

    Регулирующий стабилизатор напряжения — влияние температуры

    Регулятор, рассмотренный в этом руководстве, чрезвычайно стабилен даже при колебаниях температуры. Тем более, производитель в официальной документации гарантирует стабильность 0,5%, поэтому полученные результаты даже более удовлетворительны. Теперь давайте рассмотрим простую схему устройства, эквивалентную первой из рассмотренных, со следующими статическими характеристиками:

    • входное Uвх: 6,5 В;
    • выходное Uвх: 5 В;
    • резистивное сопротивление нагрузки, подключенной на выходе: 5 Ом;
    • ток нагрузки: 1 А;
    • мощность, рассеиваемая регулятором: 1,51 Вт.

    Теперь давайте запустим моделирование, варьируя температуру в диапазоне от -10C до +100C. Изучая график на рисунке 6, мы видим, что в очень широком диапазоне температур (110C отклонения) выходной сигнал практически не изменилась. Интегральная схема ведет себя чрезвычайно стабильно, а максимальное изменение выходного напряжения при двух крайних температурах составляет всего 6,2 мкВ.

    Таким образом, регулирующий стабилизатор напряжения LT1083 работает на максимальной нагрузке, когда входное напряжение намного выше, чем выходное напряжение, и поэтому рассеивает гораздо больше энергии, которая теряется в виде неиспользованного тепла.

    Читайте так же:
    Как увеличить выходной ток стабилизатора


    Рисунок 6: График показывает изменение выходного напряжения при различных рабочих температурах.

    Защитный диод

    Стабилизатор LT1083 не требует каких-либо защитных диодов, как показано на схеме, рисунок 7. Новая конструкция компонентов, по сути, позволяет ограничивать обратные токи за счет использования внутренних резисторов. Кроме того, внутренний диод, который находится между входом и выходом интегральной схемы, может управлять пиками тока длительностью в микросекунды от 50 до 100 A.

    Следовательно, даже конденсатор на регулирующем выводе не является строго необходимым. Стабилизатор может выйти из строя, только в том случае, если к выходу подключить конденсатор емкостью более 5000 мкФ и одновременно замкнуть входной контакт на массу. Но и это маловероятное событие.


    Рисунок 7: Защитный диод между выходом и входом больше не нужен

    Как получить разное напряжение

    Между выходным выводом и регулировочным есть опорное напряжение, равное +1.25v. Если установить резистор между этими двумя точками, то постоянный ток будет проходить через это сопротивление. Второй резистор, подключенный к земле, предназначен для установки общего выходного напряжения. Для точного регулирования достаточно тока 10 мА.

    Используя подстроечный резистор или потенциометр, можно получить источник питания переменного напряжения. Ток, протекающий по регулировочному выводу, очень низкий, порядка микроампер, и им можно пренебречь. Вот шаги для расчета двух сопротивлений источника питания 14 В, они показаны на схеме делителя, рисунок 8 и формулах, показанных на рисунке 9:

    1. входное напряжение Vin всегда должно быть как минимум на 1 В больше, чем желаемое выходное напряжение, поэтому Vin 15;
    2. между выходным контактом и опорным контактом всегда есть напряжение 1,25 В;
    3. сопротивление R1 между выходным и опорным контактами должно пересекаться током 10 мА;
    4. значение R1 равно отношению разности потенциалов на сопротивлении к току, который должен пройти через него;
    5. напряжение опорного вывода равно выходному напряжению минус фиксированное напряжение 1,25 В;
    6. через сопротивление R2 также должен проходить ток 10 мА, поэтому его легко вычислить по закону Ома.

    При значениях R1=125 Ом и R2=1275 выходное напряжение составляет ровно 14 В. Источник переменного тока с напряжением от 1 В до Vin может быть получен с помощью потенциометра 3,3 кОм вместо резистора R2.


    Рисунок 8: Расчет сопротивлений делителя для получения любого значения напряжения


    Рисунок 9: Уравнения для расчета двух сопротивлений

    Заключение

    Трехконтактный регулирующий стабилизатор напряжения LT1083 легко настраивается и очень прост в использовании. Он оснащен различными схемами защит, которые обычно предусмотрены в высокопроизводительных регуляторах. Эти схемы предусматривают защиту от короткого замыкания и тепловым отключениям при температуре выше 165C.

    Исключительная стабильность позволяет создавать системы электроснабжения высшего качества. Для полной стабильности требуется электролитический конденсатор емкостью 150 мкФ или танталовый выходной конденсатор емкостью 22 мкФ.

    Модуль стабилизатор напряжения с ограничением по току

    • Статьи
    • Усилители мощности
    • Светодиоды
    • Блоки питания
    • Начинающим
    • Радиопередатчики
    • Разное
    • Ремонт
    • Шокеры
    • Компьютер
    • Микроконтроллеры
    • Разработки
    • Обзоры и тесты
    • Обратная связь
  • Форум
    • Усилители мощности
    • Шокеры
    • Качеры, катушки Тэсла
    • Блоки питания
    • Светодиоды
    • Начинающим
    • Жучки
    • Микроконтроллеры
    • Устройства на ARDUINO
    • Программирование
    • Радиоприемники
    • Датчики и ИМ
    • Вопросы и ответы
  • Online расчёты
  • Умный дом
  • Видео
  • RSS
  • Приём статей
    • Статьи
    • Усилители мощности
    • Светодиоды
    • Блоки питания
    • Начинающим
    • Радиопередатчики
    • Разное
    • Ремонт
    • Шокеры
    • Компьютер
    • Микроконтроллеры
    • Разработки
    • Обзоры и тесты
    • Обратная связь
  • Форум
    • Усилители мощности
    • Шокеры
    • Качеры, катушки Тэсла
    • Блоки питания
    • Светодиоды
    • Начинающим
    • Жучки
    • Микроконтроллеры
    • Устройства на ARDUINO
    • Программирование
    • Радиоприемники
    • Датчики и ИМ
    • Вопросы и ответы
  • Online расчёты
  • Умный дом
  • Видео
  • RSS
  • Приём статей
  • Стабилизатор тока и напряжения из Китая

    В этом обзоре рассмотрим китайский модуль стабилизатора тока и напряжения с индикаторами.

    Модуль состоит из двух плат. На верхней расположены 7-сегментные индикаторы для показаний напряжения и тока. На нижней плате собран преобразователь на микросхеме импульсного стабилизатора XL4005E1. Цена модуля около 6$. Кстати, в продаже имеются также и отдельно нижние платы (цена около 3$).

    модуль с вольт-амперметером можно купить тут

    а модуль без вольт-амперметром тут

    • Пульсация выходного сигнала: 50мВ (макс.)
    • Частота переключения: 300 кГц
    • КПД: 95% (наивысший)
    • Выходной ток: регулируемый, макс. 5А (с радиатором)
    • Выходное напряжение: 0.8 В-30 В
    • Входное напряжение: 5 В-32 В
    • Точность измерения 0.1%
    • Скорость обновления: 200мсек

    На плате стабилизатора расположены 2 прецизионных потенциометра. Одним выставляется требуемое выходное напряжение, другим – максимально допустимый ток.

    Есть 3 светодиода: отдельно стоящий светодиод (красный) указывает на работу в режиме ограничения тока, синий светодиод показывает режим заряда аккумулятора, красный, рядом с ним, загорается при окончании заряда.

    Модуль изначально предназначен для использования в качестве зарядного устройства. Можно заряжать практически любые типы аккумуляторов: литий – ионные/полимерные, кислотные. Однако следует учесть, что при токах выше 3А необходимо обеспечить достаточный теплоотвод. Например можно добавить радиатор с обратной стороны платы под микросхемой, посадив ее на термопасту.

    На базе этого модуля легко построить лабораторный блок питания. Для этого достаточно подать на вход постоянное напряжение, а выход регулировать вынесенными на переднюю панель потенциометрами. Правда если просто заменить прецизионные потенциометры обычными, то пострадает плавность регулировки. Поэтому можно каждый прецизионный потенциометр заменить на 2, сделав грубую и точную подстройку.

    В модуле предусмотрена защита от короткого замыкания и перегрузки. Если потенциометром выставить максимальный ток 5.5А, то при КЗ напряжение просаживается до 0.5В. Выставлено на выходе 2В и подключена лампа 400 Вт, модуль уходит в защиту.

    Выходное напряжение немного зависит от нагрузки — например, при 1.5В и токе 2.,5А выходное напряжение снижается на 0.1В, при 1.5В и токе 4А снижается на 0.2В.


    модуль с вольт-амперметером можно купить тут

    а модуль без вольт-амперметратут

    голоса
    Рейтинг статьи
    Ссылка на основную публикацию
    Adblock
    detector