Sfera-perm.ru

Сфера Пермь
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Микросхема для импульсного понижающего стабилизатора тока

Повышающий/понижающий преобразователь напряжения своими руками

В этой самоделке AKA KASYAN сделает универсальный понижающий и повышающий преобразователь напряжения.

Недавно автор собрал литиевый аккумулятор. А сегодня раскроет секрет, для какой цели он его изготовил.

Вот новый преобразователь напряжения, режим его работы — однотактный.

Преобразователь имеет небольшие габариты и достаточно большую мощность.

Обычные преобразователи делают одно из двух. Только повышают, или только понижают подаваемое на вход напряжение.
Вариант, изготовленный автором может как повысить,

так и понизить входное напряжение до требуемого значения.

У автора имеются различные регулируемые источники питания, с помощью которых он тестирует собранные самоделки.

Заряжает аккумуляторы, да и использует их для различных других задач.

Не так давно появилась идея создания портативного источника питания.
Постановка задачи была такой: устройство должно иметь возможность заряжать всевозможные портативные гаджеты.

От обычных смартфонов и планшетов до ноутбуков и видеокамер, а также справился даже с питанием любимого паяльника автора TS-100.

Естественно можно просто воспользоваться универсальными зарядными устройствами с адаптерами питания.
Но все они питаются от 220В


В случае автора требуется нужен был именно портативный источник различных выходных напряжений.

А таковых в продаже автор не нашел.

Питающие напряжения для указанных гаджетов имеют очень широкий диапазон.
Например смартфонам нужно всего 5 В, ноутбукам 18, некоторым даже 24 В.
Аккумулятор, изготовленный автором, рассчитан на выходное напряжение в 14,8 В.
Следовательно, необходим преобразователь, способный как повышать, так и понижать начальное напряжение.

Обратите внимание, некоторые номиналы указанных на схеме компонентов, отличаются от установленных на плате.


На схеме указаны эталонные номиналы, а плату автор делал для решения своих задач.
Во-первых, интересовала компактность.

Во-вторых, авторский преобразователь питания позволяет спокойно создать выходной ток в 3 Ампера.

AKA KASYAN большего и не надо.

Связано это с тем, что емкость примененных накопительных конденсаторов небольшая, но схема способна выдать выходной ток до 5 А.

Поэтому схема является универсальной. Параметры зависят от емкости конденсаторов, параметров дросселя, диодного выпрямителя и характеристик полевого ключа.



Замолвим пару слов о схеме. Она представляет собой однотактный преобразователь на базе шим-контроллера UC3843.

Поскольку напряжение от аккумулятора немного больше штатного питания микросхемы, в схему был добавлен 12В стабилизатор 7812 для питания шим-контроллера.

В приведенной схеме данный стабилизатор указан не был.
Сборка. Про перемычки, установленные с монтажной стороны платы.

Этих перемычек четыре, и две из них являются силовыми. Их диаметр должен быть не менее миллиметра!
Трансформатор, вернее дроссель, намотан на желтом кольце из порошкового железа.


Такие колечки можно найти в выходных фильтрах компьютерных блоков питания.
Размеры примененного сердечника.
Внешний диаметр 23,29мм.

Внутренний диаметр 13,59мм.

Скорее всего, толщина намотки изоляции 0,3мм.
Дроссель состоит из двух равноценных обмоток.

Обе обмотки наматываются медной проволокой диаметром 1,2 мм.
Автор рекомендует применять проволоку диаметром немного больше, 1,5-2,0 мм.

Витков в обмотке десять, оба провода наматываются разом, в одном направлении.

Перед установкой дросселя перемычки заклеиваем капроновым скотчем.

Работоспособность схемы заключается в правильной установке дросселя.


Необходимо правильно припаять выводы обмоток.

Просто установите дроссель, как это показано на фото.




Силовой N-канальный полевой транзистор, подойдет практически любой низковольтный.

Ток транзистора не ниже 30А.

Автор использовал транзистор IRFZ44N.

Выходной выпрямитель — это сдвоенный диод YG805C в корпусе TO220.


Важно использовать диоды Шоттки, так как они дают минимальную просадку напряжения (0,3В против 0,7) на переходе, это влияет на потери и нагрев. Их также легко найти в пресловутых компьютерных блоках питания.

В блоках они стоят в выходном выпрямителе.

В одном корпусе — два диода, которые в схеме у автора запараллелены для увеличения проходящего тока.
Преобразователь стабилизирован, имеется обратная связь.

Выходное напряжение задает резистор R3

Его можно заменить на выносной переменный резистор для удобства работы.

Преобразователь также снабжен защитой от короткого замыкания. В качестве датчика тока применен резистор R10.

Это низкоомный шунт, и чем выше его сопротивление тем меньше ток срабатывания защиты. Установлен SMD вариант, на стороне дорожек.

Если защита от КЗ не нужна, то этот узел просто исключаем.

Еще защита. На входе схемы стоит предохранитель на 10А.

Кстати, в плате контроля аккумулятора уже установлена защита от КЗ.

Конденсаторы, применяемые в схеме крайне желательно брать с низким внутренним сопротивлением.


Стабилизатор, полевой транзистор и диодный выпрямитель крепятся к алюминиевому радиатору в виде согнутой пластины.


Обязательно изолируем подложки транзистора и стабилизатора от радиатора при помощи пластиковых втулок и теплопроводящих изолирующих прокладок. Не забываем и про термопасту. А установленный в схеме диод уже имеет изолированный корпус.


Благодаря ШИМ-управлению, КПД у преобразователя весьма высокий кпд.
Например, ток холостого хода, в зависимости от питающего напряжения, находится в пределах 20мА — 40мА.

Читайте так же:
Стабилизатор с ограничителем тока


Приступим к испытаниям.
Для начала проверим диапазоны выходных напряжений.
Подадим на вход 12 В. Выходное напряжение достигает двадцати пяти. Выше поднимать нельзя, выходные конденсаторы на 25 В.

Минимальное выходное напряжение составляет 4,85 В. Следовательно, можно заряжать все USB гаджеты.

Стабилизация работает отлично! Увеличив входное напряжение до 22,2 В, выходное находится точно в установленных пределах.



При компактных размерах стабилизатор дает выходной ток 2,5 — 3 А практически без просадки выходного напряжения.

Важно усилить припоем широкие силовые дорожки печатной платы. Ибо там протекают большие токи.



Большое спасибо AKA KASYAN за проделанный труд!

Понравилась статья? Подпишитесь на канал, чтобы быть в курсе самых интересных материалов

Микросхема для импульсного понижающего стабилизатора тока

Мероприятия:

  • Импульсные стабилизаторы индуктивного типа
  • Понижающие импульсные стабилизаторы с повышенным входным напряжением и высокой нагрузочной способностью
  • Стабилизаторы для TFT ЖКИ
  • Источники опорного напряжения для гамма-коррекции TFT -дисплеев

Импульсные стабилизаторы

НаименованиеНапряжение питания, ВФункцияОтличительные особенностиКорпус
BA6161N/F4.5…16ППН для электронной регулировкиВстроенная схема термостабилизации
Хорошая стабильность выходного напряжения
SIP5
SOP8
BA9707KV3.5…124-х канальный контроллер импульсного стабилизатораВозможность работы на частоте 1 МГц
Прецизионный ИОН (±1%)
Возможность синхронной работы
VQFP48
BA9708K3.5…123-х. канальный контроллер импульсного стабилизатораВозможность работы на частоте 1 МГц
Прецизионный ИОН (±1%)
Возможность синхронной работы
QFP32
BA9710KV3.5…124-х канальный контроллер импульсного стабилизатораВерсия BA9707KV для управления двумя двигателямиVQFP48
BA9743AFV3.6…352-х канальный контроллер импульсного стабилизатораРазнообразие схем включения (повышение, понижение, инверсия напряжения)
Широкий диапазон напряжения питания
Нагрузочная способность выхода: 100мА
Прецизионный ИОН (±1%)
SSOP-B16
BA9741F/FS3.6…352-х канальный контроллер импульсного стабилизатораШирокий диапазон напряжения питания
Нагрузочная способность выхода: 100мА
Прецизионный ИОН (±4%)
SOP16
SSOP-A16
BA9744FV2.5…352-х канальный контроллер импульсного стабилизатораШирокий диапазон напряжения питания
Нагрузочная способность выхода: 30мА
Прецизионный ИОН (±1%)
SSOP-B16
BA9736KV2.8…136-ти канальный контроллер импульсного стабилизатораПрецизионный ИОН (±1%)
Встроенные МОП-драйверы для синхронного выпрямления (2 выхода)
5 и 6 каналы можно использовать в качестве контроллеров управления двигателем
VQFP64
BA9737KV2.5…134-х канальный контроллер импульсного стабилизатораПрецизионный ИОН (±1%)
Вкл./выкл. каждого канала
Макс. ток в режиме выключения: 10 мкА
VQFP48
BD9713KV5.0…137-ми канальный контроллер импульсного стабилизатораВыход может непосредственно управлять полевым транзистором,
Прецизионный ИОН (±1%)
VQFP48
BD9300/F/FV3.6…351 канальный контроллер импульсного стабилизатораВозможные конфигурации: повышение, понижение, инвертирование напряжения и др.;
Встроенная защита от токовой перегрузки;
Схема защиты от работы при недопустимо низком входном напряжении.
Прецизионный ИОН (±1%)
Вход управления экономичным режимом
DIP14
SOP14
SSOP-B14
BD9775FV6.0…302-х канальный контроллер импульсного стабилизатора1 канал синхронного выпрямителя, выход может непосредственно управлять полевым транзистором,
защита от токовой перегрузки,
Возможность синхронизации от внешнего источника
Широкий диапазон напряжения питания
Прецизионный ИОН (±1%)
BD9714F3.5…242-х канальный контроллер импульсного стабилизатораШирокий диапазон напряжения питания
Нагрузочная способность выхода: 30мА.
Защита от токовой перегрузки
SOP22
BD9730KV2.5…115-ти канальный контроллер импульсного стабилизатораРабота от одной литиевой батареи
Малый потребляемый ток,
Выход непосредственно управляет как БПТ, так и полевым транзистором.
4 канала понижающего преобразования, 1 канал повышающего преобразования
Прецизионный ИОН (±1,2%)
VQFP48
BD9731KV2.8…115-ти канальный контроллер импульсного стабилизатораМалый потребляемый ток,
Выход непосредственно управляет как БПТ, так и полевым транзистором.
4 канала понижающего преобразования, 1 канал повышающего преобразования
Прецизионный ИОН (±1%)
VQFP48
BD9733KN1.5…115-ти канальный контроллер импульсного стабилизатораМинимальное входное напряжение: 1,5В
Выход индикации нахождения напряжения в допустимых пределах
1 канал опционального повышающего или понижающего преобразования, 1 понижающий канал, 3 повышающих канала
Прецизионный ИОН (±1%)
VQFN48
BD9739KN1.5…107-ми канальный контроллер импульсного стабилизатора3 повышающих канала, 2 понижающий канал, 1 канал с опциональным повышением или понижением напряжения.
2-кан. синхронный выпрямитель (2 канала встроенных МОП-драйверов)
Безтрансформаторная схема за счет встроенного инвертирующего канала
UQFN64
BD9740KN1.5…107-ми канальный контроллер импульсного стабилизатора2 повышающих канала, 1 понижающий канал, 3 канала с опциональным повышением или понижением напряжения.
2-кан. синхронный выпрямитель (1 канал встроенных МОП-драйверов)
Безтрансформаторная схема за счет встроенного инвертирующего канала
UQFN48
BD9701FP/T/T-V58…351 импульсный стабилизатор с мощным МОП-транзисторомНагрузочная способность выхода 1.5A.
Регулируемое выходное напряжение.
Встроенная защита от токовой перегрузки
Частота преобразования 100 кГц.
TO252-5
TO220FP-5
BD9702CPV-V58…351 импульсный стабилизатор с мощным МОП-транзисторомНагрузочная способность выхода 3.0A.
Регулируемое выходное напряжение.
Встроенная защита от токовой перегрузки
Частота преобразования 100 кГц.
TO220FP-5
BD9703FP/T/T-V58…351 импульсный стабилизатор с мощным МОП-транзисторомНагрузочная способность выхода 1.5A.
Регулируемое выходное напряжение.
Встроенная защита от токовой перегрузки
Частота преобразования 300 кГц.
TO252-5
TO220FP-5
BD9850FVM4…91 контроллер импульсного стабилизатораВозможность понижения напряжения на частоте 2МГцMSOP8
BD9302FP6…182 понижающих импульсных стабилизатора, 2А выход на основе мощного МОП-транзистораЧастота преобразования 200 кГц…. 2.5МГц
Идеально подходит для смещения ЦСП (цифровой сигнальный процессор) с простой схемой включения
HSOP-25
BD9851EFV4…182 контроллера импульсного стабилизатораВозможные конфигурации: понижающий/понижающий, повышающий/инвертирующий/ повышающий/понижающий и др. стабилизаторы.
Возможность работы на частоте 3 МГц позволяет использовать индуктивности и емкости меньших номиналов.
HTSSOP-B20
Читайте так же:
Стабилизатор тока для электролизера

Понижающие импульсные стабилизаторы с повышенным входным напряжением и высокой нагрузочной способностью

Стабилизаторы для TFT ЖКИ

Источники опорного напряжения для гамма-коррекции TFT -дисплеев

Импульсные стабилизаторы

Актуальные ресурсы по теме

Flexible, Dual Output, 6-Phase Buck Controller Drives 12 V to 1.0 V/200 A Core Supply with 90.0% Efficiency

Three Options to Optimize the Control Loop of Power Converters

Design Note 303: Photoflash Capacitor Charger Has Fast Efficient Charging and Low Battery Drain

Все ресурсы

Заметки разработчика
  • 2 C_Bus__without_VID_Lines_8dd0a44b-765d-452b-88e5-a6ec2cf70689 > Новая Design Note 279: Microprocessor Core Supply Voltage Set by I 2 C Bus without VID Lines
  • Многоканальная платформа разработки, преобразующая ВЧ-сигналы в цифровую форму, ускоряет процесс прототипирования при разработке фазированных антенных решеток
  • Multiply the Power of a Boost Converter with a Versatile Phase Expander
  • SEPIC, Boost, Inverting, and Flyback Controller Solves the Voltage Drop Problem of High Impedance, Long Length Industrial Power Lines
  • 42V Monolithic Synchronous Step-Down Regulators with 2.5µA Quiescent Current and Ultralow EMI

Далее..

Технические статьи
  • A Unified LTspice AC Model for Current-Mode DC-to-DC Converters
  • 4-Switch Buck-Boost Controller Layout for Low Emissions—Single Hot Loop vs. Dual Hot Loop
Вебкасты
  • Multi-Channel System Improvements Using Hardened DSP in Digitizer ICs
  • Understanding Power System Management
Статьи по применению
  • AN170 — Honing the Adjustable Compensation Feature of Power System Management Controllers PDF
  • AN168 — Implementing Fast Telemetry with Power System Management Controllers PDF
  • AN-166: In Flight Update with Linduino PDF
  • AN-155: Fault Log Decoding with Linduino PSM PDF
  • AN-1329: Noise Reduction Network for Adjustable Low Dropout Regulators (Rev. 0) PDF

Далее..

Брошюры и бюллетени
  • High Performance DC/DC Controllers PDF
  • Ultralow Power Voltage Regulator, Supervisory, and PMIC PDF
  • Integrated Power Solutions for Altera FPGAs PDF
Видео
  • Analog Devices 3D Time of Flight Development Platform
  • Analog Devices Condition Based Monitoring for Industry 4.0
Руководства по проектированию
  • Linear Circuit Design Handbook, 2008
Описание схемы
  • CN0343: Ultrasonic Distance Measurement PDF
  • CN0228: Single Supply Powers a 28 V, High Voltage Phase-Locked Loop (PLL) Synthesizer PDF
  • CN0280: Устойчивая, полностью изолированная схема измерения тока с гальванической развязкой питания для преобразователей напряжения фотоэлектрических солнечных панелей PDF
  • CN0201: Полнофункциональная 8-канальная система сбора данных с однополярным питанием 5В и программируемым инструментальным усилителем для сигналов промышленных уровней PDF
Редко задаваемые вопросы
  • Point-of-Load DC-to-DC Converters Solve Voltage Accuracy, Efficiency, and Latency Issues
  • Adding a Flexible Current Limit
  • Keeping EMI from LED Drivers Under Control
  • Generating Very Low Voltages with Standard Regulators
  • Ultralow Noise, 48 V, Phantom Microphone Power Supply Using a Tiny DC-to-DC Boost Converter

Далее..

  • Region
  • India
  • Korea
  • Singapore
  • Taiwan
  • Languages
  • English
  • 简体中文
  • 日本語
  • Руccкий
Analog Devices использует файлы cookie для повышения качества работы сайта

Некоторые файлы cookie необходимы для безопасного входа в систему, в то время как другие являются дополнительными и нужны лишь для функциональных действий. Мы собираем данные для улучшения наших продуктов и услуг. Мы рекомендуем вам принять наши файлы cookie, чтобы обеспечить максимальную функциональность, которую может предоставить наш сайт. Для получения дополнительной информации вы можете просмотреть подробные сведения о файлах cookie. Узнайте больше о политике конфиденциальности.

Используемые нами файлы cookie можно классифицировать следующим образом:

Понижающий DC-DC преобразователь на LM2596

Понижающие DC-DC преобразователи все чаще и чаще находят свое применение в быту, хозяйстве, автомобильной технике, а также в качестве регулируемых блоков питания в домашней лаборатории.

К примеру, на большегрузном автомобиле напряжение бортовой кабельной сети может составлять +24В, а вам необходимо подключить автомагнитолу или другое устройство с входным напряжение +12В, тогда такой понижающий преобразователь вам очень пригодится.

Множество людей заказывают с различных китайских сайтов понижающие DC-DC преобразователи, но их мощность довольно таки ограничена, ввиду экономии китайцами на сечении обмоточного провода, полупроводниковых приборах и сердечниках дросселей, ведь чем мощнее преобразователь, тем он дороже. Поэтому, предлагаю вам собрать понижающий DC-DC самостоятельно, который превзойдет по мощности китайские аналоги, а также будет экономически выгоднее. По моему фотоотчету и представленной схеме видно, что сборка не займет много времени.

Микросхема LM2596 есть ни что иное, как импульсный понижающий регулятор напряжения. Она выпускается как на фиксированное напряжение (3.3В, 5В, 12В) так и на регулируемое напряжение (ADJ). На базе регулируемой микросхемы и будет построен наш понижающий DC-DC преобразователь.

Читайте так же:
Стабилизатор в цепи переменного тока

Рекомендую к прочтению статью «Регулируемый стабилизатор напряжения на LM2576«, микросхемы LM2576 и LM2596 практически идентичны, расположение выводов и обвязка одинаковые, разница в частоте генератора и некоторых параметров.

Схема преобразователя

Основные параметры регулятора LM2596

Входное напряжение………. до +40В

Максимальное входное напряжение ………. +45В

Выходное напряжение………. от 1.23В до 37В ±4%

Частота генератора………. 150кГц

Выходной ток………. до 3А

Ток потребления в режиме Standby………. 80мкА

Рабочая температура от -45°С до +150°С

Тип корпуса TO-220 (5 выводов) или TO-263 (5 выводов)

КПД (при Vin= 12В, Vout= 3В Iout= 3А)………. 73%

Хотя КПД может и достигать 94%, он зависит от входного и выходного напряжения, а также от качества намотки и правильности подбора индуктивности дросселя.

Согласно графика, взятого из даташита, при входном напряжении +30В, выходном +20В и токе нагрузки 3А, КПД должен составить 94%.

Также у микросхемы LM2596 есть защита по току и от перегрева. Замечу, что на неоригинальных микросхемах данные функции могут работать некорректно, либо вовсе отсутствуют. Короткое замыкание на выходе преобразователя приводит к выходу из строя микросхемы (проверил на двух LM-ках), хотя тут удивляться и нечему, производитель не пишет в даташите о присутствии защиты от КЗ.

Элементы схемы

Все номиналы элементов указаны на схеме электрической принципиальной. Напряжение конденсаторов С1 и С2 выбирается в зависимости от входного и выходного напряжения (напряжение входа (выхода) + запас 25%), я установил конденсаторы с запасом, на напряжение 50В.

Конденсатор C3 — керамический. Номинал его выбирается согласно таблицы из даташита. Согласно этой таблицы емкость C3 подбирается для каждого отдельного выходного напряжения, но так как преобразователь в моем случае регулируемый, то я применил конденсатор средней емкости 1нФ.

Диод VD1 должен быть диодом Шоттки, или другим сверхбыстрым диодом (FR, UF, SF и др.). Он должен быть рассчитан на ток 5А и напряжение не меньше 40В. Я установил импульсный диод FR601 (6А 50В).

Дроссель L1 должен быть рассчитан на ток 5А и иметь индуктивность 68мкГн. Для этого берем сердечник из порошкового железа (желто-белого цвета), наружный диаметр 27мм, внутренний 14мм, ширина 11мм, ваши размеры могут отличаться, но чем больше они будут, тем лучше. Далее мотаем двумя жилами (диаметр каждой жилы 1мм) 28 витков. Я мотал одиночной жилой диаметром 1,4мм, но при большой выходной мощности (40Вт) дроссель грелся сильно, в том числе и из-за недостаточного сечения жилы. Если мотать двумя жилами, то в один слой обмотку положить не удастся, поэтому нужно мотать в два слоя, без изоляции между слоями (если эмаль на проводе не повреждена).

Через резистор R1 протекает малый ток, поэтому его мощность 0,25Вт.

Резистор R2 подстроечный, но может быть заменен на постоянный, для этого его сопротивление рассчитывается на каждое выходное напряжение по формуле:

Где R1 = 1кОм (по даташиту), Vref = 1,23В. Тогда, посчитаем сопротивление резистора R2 для выходного напряжения Vout = 30В.

R2 = 1кОм * (30В/1,23В — 1) = 23,39кОм (приведя к стандартному номиналу, получим сопротивление R2 = 22кОм).

Таким образом, можно рассчитать сопротивление резистора R2 для любого выходного напряжения (в рамках возможного диапазона).

Также, зная сопротивление резистора R2, можно рассчитать выходное напряжение.

Испытания понижающего DC-DC преобразователя на LM2596

При испытаниях на микросхему был установлен радиатор площадью ? 90 см? .

Испытания я проводил на нагрузке сопротивлением 6,8 Ом (постоянный резистор, опущенный в воду). Изначально на вход преобразователя я подал напряжение +27В, входной ток составил 1,85А (входная мощность 49,95Вт). Выходное напряжение я выставил 15,5В, ток нагрузки составил 2,5А (выходная мощность 38,75Вт). КПД при этом составил 78%, это очень даже неплохо.

После 20 мин. работы понижающего преобразователя диод VD1 нагрелся до температуры 50°С, дроссель L1 нагрелся до температуры 70°С, сама микросхема нагрелась до 80°С. То есть, во всех элементах есть резерв по температуре, кроме дросселя, 70 градусов для него многовато.

Поэтому для эксплуатации данного преобразователя на выходной мощности 30-40Вт и более, необходимо мотать дроссель двумя (тремя) жилами и выбирать больший по размерам сердечник. Диод и микросхема могут долговременно держать температуру 100-120°С без каких-либо опасений (кроме нагрева всего что рядом находится, в том числе и корпуса). При желании можно установить на микросхему больший по размеру радиатор, а у диода VD1 можно оставить длинные выводы, тогда будет тепло отводиться лучше, либо прикрепить (припаять к одному из выводов) небольшую пластинку (радиатор). Также нужно как можно лучше залудить дорожки печатной платы, либо пропаять по ним медную жилу, это обеспечит меньший нагрев дорожек при долгой работе на большую выходную мощность.

Испытания продолжаются…

Подав на вход преобразователя напряжение +12В, входной ток составил 1,75А (потребляемая мощность 21Вт). Выходное напряжение я выставил 5,3 Вольт, выходной ток составил 2,5А (выходная мощность 13,25Вт), КПД при этом составил уже 63%.

Читайте так же:
Стабилизатор тока для зарядного устройства автомобильных аккумуляторов

После 20 мин. работы преобразователя дроссель L1 нагрелся до температуры 45°С, микросхема LM2596 нагрелась до температуры 70°С, температуру диода VD1 я не стал измерять, так как он был чуть горячим.

Пару слов о печатной плате…

В даташите представлен эскиз исполнения LM2596 в корпусе TO-220 с загнутыми выводами.

Я же покупал микросхему с прямыми выводами и сам их подгибал.

Так вот, перегнул я их не как в даташите, а наоборот. Соответственно печатную плату развел под неправильный изгиб выводов, но эта печатная плата оказалась удобнее. Даташитовский вариант мне не нравится вовсе, так как невозможно LM-ку установить на стенку корпуса блока питания или другого устройства. Поэтому я развел плату и под стандартный изгиб выводов, с возможностью установки большого радиатора или крепления к стенке корпуса. Поэтому, для вас в архиве лежат две рабочие печатные платы. Перемычки устанавливать как можно толще (диаметром не менее 1мм).

Печатная плата понижающего DC-DC преобразователя на LM2596 СКАЧАТЬ

Подборка схем импульсных преобразователей напряжения DC-DC

Преобразователь DC-DC это устройство, призванное из напряжения одного уровня получить одно или несколько напряжений другого уровня. Иногда это бывает совершенно необходимо в нашей практике, например если мы конструируем устройство с низковольтным питанием от Li-Ion аккумулятора а в схеме этого устройства есть операционные усилители, требующие питания от двухполярного источника ∓15В. Или другой пример. Предположим нам нужно питать устройство на микроконтроллере с номинальным напряжением 5 вольт от литий ионного аккумулятора. В этом и подобных случаях на разработчику приходится использовать преобразователи постоянного напряжения.

В этой статье речь пойдет об импульсных преобразователях, имеющих очевидные преимущества, главное из которых — высокий КПД. Импульсные преобразователи нпаряжения — это очень широкий класс устройств. Они могут быть стабилизированные или нестабилизированные, с гальванической развязкой входа от выхода или без таковой. также преобразователи можно разделить на повышающие, понижающие и инвертирующие (например преобразователь, который, питаясь от напряжения +5В дает на выходе напряжение -5В)

Сейчас производители электронных компонентов выпускают большой ряд специальных микросхем для использования в приложениях DC-DC. Преобразователи, собранные на таких чипах имеют стабильные характеристики и высокую надежность. тем не менее импульсный преобразователь можно собрать и на обычных дискретных транзисторах. В этой статье приводятся несколько очень простых схем, которые можно использовать для решения несложных конструкторских задач.

Очень распространенная микросхема MAX232 служит для преобразования интерфейса UART в сигналы стандарта интерфейса RS232. В составе этой микросхемы уже есть встроенные преобразователи напряжения, которые мы можем использовать в своих корыстных целях.

Схема 1. Необычное использование микросхемы MAX232

схема двухполярного преобразователя DC-DC на микросхеме MAX232

такой преобразователь может обеспечить напряжение ∓9В при небольшом токе 5..8 мА. Такой преобразователь можно использовать для питания одного — двух операционных усилителей. основное преимущество — это простота. Целесообразно применять эту схему если что-то нужно сделать быстро, а под рукой нет ничего кроме микросхемы MAX232

Схема 2. Простой нестабилизированный преобразователь на двух транзисторах

Трансформатор T1 — самодельный. Его можно намотать на ферритовом кольце из материала 2000НМ размером 10х6х4. первичная обмотка состоит из 20 витков с отводом от середины. Вторичная — 140 витков также с отводом от середины. Диаметр провода — не менее 0.2 мм. Транзисторы можно заменить на BC546 или другие. если к преобразователю не подключена нагрузка, он практически не потребляет ток от источника питания. В этом одно из его преимуществ (кроме простоты).

Схема 3. Простой нестабилизированный преобразователь — мультивибратор

Следующая практическая схема — это двухтактный преобразователь на четырех транзисторах. сердцем схемы является обычный мультивибратор на двух транзисторах VT1 и VT2

Драйверами для обмоток импульсного трансформатора служат транзисторы VT3 и VT4. Ко вторичной обмотке импульсного трансформатора подключен однополупериодный выпрямитель на диоде VD3. Пульсации выходного напряжения сглаживаются конденсатором C3. Выходное напряжение этого преобразователя можно менять в широких пределах изменением числа витков вторичной обмотки трансформатора.

Схема 4. Стабилизированный преобразователь на двух транзисторах

Интересная схема, позволяющая питать от низковольтного источника (например от одного щелочного элемента 1.5 В.) например, небольшое устройство на микроконтроллере, требующем питания 5 В. Схема пытается поддерживать на выходе постоянное напряжение около 4.7 В. Сигнал обратной связи снимается с резистора R2 и подается на базу первого транзистора VT1. трансформатор Т1 можно намотать на ферритовом кольце диаметром 7 мм. Обе обмотки одинаковые, по 20 витков провода диаметром 0.3 мм. Можно намотать обмотки в два провода. При подключении необходимо учитывать начало и конец обмоток. Если ошибиться, то преобразователь не заработает. В этом случае поменяйте местам провода одной из обмоток. Катушка L1 — любой дроссель с индуктивностью в районе 10 мкГн. Дроссель можно использовать промышленный или намотать самому. Измерить индуктивность можно с помощью вот этого недорогого прибора. Дроссель совместно с конденсатором C3 сглаживает пульсации выходного напряжения.

Читайте так же:
Схема стабилизатор тока схемы

Схема 4. Стабилизированный 3 В. → 12 В. DC-DC преобразователь на MAX734

Этот довольно качественный и удобный преобразователь построен на основе специализированной микросхемы от компании MAXIM. Можно применить для получения напряжения +12 вольт в устройстве, работающем от единственного источника питания с напряжением от 3 до 5 вольт. Дроссель L1 можно намотать на небольшом ферритовом кольце или на маленьком ферритовом стержне. Индуктивность катушек удобно измерять вот этим приборчиком. Схема обеспечивает на выходе ток 120 мА. Микросхему MAX734 можно заказать здесь

Схема 5. Очень простой преобразователь на специализированном чипе

Еще один DC-DC преобразователь с использованием микросхемы от MAXIM. Главное преимущество — исключительная простота и неприхотливость этой схемы. В устройстве всего 4 детали, включая микросхему МАХ631. Главное и очевидное предназначение такого преобразователя — питание схемы, рассчитанной на 5 В. от источника с более низким напряжением 3.2 вольта. Например от одного Li-Ion аккумулятора.

Схема 6. Стабилизированный DC-DC преобразователь с двухполярным выходом ∓12 В

Эта очень полезная схема может пригодиться если в вашей конструкции есть только один источник питания 4..5 вольт, но вам необходимо использовать компоненты, требующие двухполярного питания. например операционные усилители (ОУ). Сердцем преобразователя является микросхема LM2587-12. Импульсный трансформатор можно реализовать на ферритовом кольце или на броневом сердечнике. Индуктивность первичной обмотки должна быть около 22 мкГ (измерить можно этим прибором), а отношение чисел витков первичной обмотки к вторичным = 1:2.5. То есть, например, индуктивность 22 мкГ на сердечнике который есть у вас в наличии получается при числе витков 50. Тогда число витков каждой из вторичных обмоток буде 2.5 * 50 = 125

Схема 7. Стабилизированный DC-DC преобразователь на два разных напряжения

Если в вашей конструкции есть цифровые микросхемы с напряжением питания как 5 так и 3.3 В то может пригодиться этот преобразователь. Схема работает от напряжения в районе 3 В и позволяет получить на выходе напряжения 3.3 и 5 В. Ток нагрузки по каждому выходу может достигать 150 мА. Как видим из схемы, в устройстве применяются 2 микросхемы MCP1252 от компании MICROCHIP

Схема 8. DC-DC преобразователь на два разных напряжения на микросхемах компании YCL Elektronics

DC-DC преобразователи на разные напряжения можно собрать на чипах, которые выпускает компания YCL Elektronics. В данном случает это микросхемы DC-102R в канале минус 5 В и DC-203R в канале +12 В. По выходу -5 В ток нагрузки может достигать 360 мА. По выходу +12 В ток меньше — 150 мА.

Схема 9. DC-DC повышающий преобразователь на MAX1724EZK33

Этот DC-DC преобразователь на микросхеме MAX1724EZK33 от фирмы MAXIM может работать от очень низкого входного напряжения 1.2 В. Например от одного никель — кадмиевого аккумулятора. На выходе получаем стабилизированное напряжение +3.3 В при токе до 150 мА. Работоспособность сохраняется при снижении входного напряжения примерно до 0.9 В. Если вы ходите получить на выходе напряжение +5В то используйте аналогичную микросхему MAX1724EZK50

Схема 10. Импульсный регулируемый стабилизатор на напряжение +2.8 — +5 В

Это понижающий импульсный стабилизатор. работает он от входного напряжения 12.6 В (стандартное напряжение автомобильного аккумулятора). на выходе получаем стабилизированное напряжение от 2.8 до 5 вольт при токе до 500 мА. Стабилизатор собран на микросхеме TL497. Эту недорогую но полезную микросхему можно заказать в Китае. Очевидно, что главное назначение такого стабилизатора — обеспечение питания и зарядки пятивольтовых гаджетов от бортовой сети автомобиля напряжением 12.6 в. Подстроечным резистором R3 можно регулировать выходное напряжение а от номинала резистора R1 зависит порог срабатывания внутренней сземы ограничения тока короткого замыкания. Ток КЗ задается формулой:
Iкз(А)= 0,5/R1(Ом)

Схема 11. Импульсный инвертор постоянного напряжения

Простейшая схема, которую вы можете использовать если в вашей конструкции кроме напряжения питания +5 В нужно еще отрицательное напряжение -5 В. Собрано устройство на микросхеме ICL7660. Ток по цепи -5 В может достигать 20 мА

Схема 12. Нестабилизированный двухступенчатый DC-DC преобразователь напряжения

Схема 13. Импульсный стабилизированный повышающий DC-DC преобразователь напряжения

Это стандартная схема включения MAX1674, взятая из даташита микросхемы. Преобразователь может работать от низкого напряжения питания — вплоть до 1 вольта. На выходе имеем стабильное напряжение +5В при токе до 200 мА. КПД преобразователя составляет 94%. Купить микросхему можно недорого в Китае

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector