Sfera-perm.ru

Сфера Пермь
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Метод измерения диафрагменного счетчика

Метрологическая стабильность мембранных счетчиков газа

Рис. 1. Изменение во времени погрешности счетчиков G1,6

Рис. 1. Изменение во времени погрешности счетчиков Schlumberger

Табл. 1. Испытуемые счетчики

Табл. 2. Средние количества газа, учитываемые мембранными счетчиками (за 20 лет)

Для учета газа в быту широко применяются небольшие мембранные счетчики газа. Счетчики размера G1,6 (реже G2,5) используются для учета газа, идущего на приготовление пищи. Счетчики G2,5 чаще используются, если газ дополнительно расходуется на подогрев воды. Счетчики G4–G6 используются для учета газа, идущего на отопление индивидуальных домов.

В Литве установлено свыше полумиллиона мембранных счетчиков, в основном производства фирм Premagas (Словакия) и Schlumbergеr (Франция). Их массовая поверка вызывает немалые технико-экономические проблемы.

Затраты на поверку могут превысить возможные издержки в связи с неучтенным из-за снижения метрологических характеристик счетчика количеством газа. В ряде стран Европы бытовые счетчики газа вообще не поверяются в течение всего срока эксплуатации. В Литве в настоящее время межповерочный период составляет 12 лет, т.е. меньше, чем во многих европейских странах.

Важно выяснить, насколько это метрологически и экономически обосновано. Такой анализ возможен на основании технико-экономических расчетов и на основании результатов ресурсных испытаний и оценки изменения метрологических характеристик счетчиков в зависимости от пропущенного количества газа или времени работы. Ниже приведены некоторые результаты таких испытаний.

Программа, метод и средства испытаний

Испытывались ранее неиспользовавшиеся, но длительное время (от 6 до 10 лет) хранившиеся на складе счетчики фирм Premagas и Schlumberger, размеры, количества и срок хранения которых приведены в табл. 1.

Программа испытаний составлена на основе полученных от Литовской национальной газовой компании «Лиетувос дуйос» данных о средних количествах газа, учитываемых мембранными счетчиками за 20 лет работы. Эти данные представлены в табл. 2. Программа испытаний включала ряд чередующихся продувок (в соответствии с [1] — при расходе Qмакс) и калибровок счетчиков вплоть до достижения указанных в табл. 2 значений пропущенных через счетчики объемов воздуха.

С целью выяснить, как сохраняются после длительного хранения и восстанавливаются после начала эксплуатации метрологические характеристики счетчиков, производились их начальная калибровка и следующая за ней после 48-часовой продувки. Далее продолжительность продувок между двумя калибровками увеличивалась до 1000 ч.

Продувка осуществлялась на специальном стенде с тремя линиями для счетчиков разных размеров. Счетчики разных размеров соединялись параллельно, одинакового — последовательно. Была обеспечена возможность раздельной регулировки расхода для счетчиков разных размеров. Во время продувки контролировались основные параметры потока.

Калибровка проводилась на эталонной колокольной установке [2], пределы измерения Qмин = 0,005 м3/ч, Qмакс = 16 м3/ч, наименьшая неопределенность измерения объема воздуха ±0,13 %, в трех точках — при расходах Qмин; 0,2&#61486Qмакс; Qмакс.

Результаты испытаний и их анализ

Результаты испытаний представлены в виде зависимостей погрешности счетчиков при каждом из трех расходов калибровки от пропущенного объема воздуха — на рис. 1 для счетчиков G1,6 и на рис. 2 — для счетчиков G2,5 и G6.

Наблюдаются 2 стадии изменения погрешности счетчиков в процессе испытаний: 1 — стабилизация погрешности; 2 — ее изменение по случайным причинам. Стабилизация связана как с восстановлением формы мембраны после деформации в процессе длительного хранения, так и с начальной притиркой движущихся частей счетчиков.

Деформация мембраны вызывает уменьшение измерительного объема счетчика и соответственно изменение погрешности в положительном направлении до 8% (см. рис. 1, e). В процессе продувки форма мембраны и измерительный объем восстанавливаются, и погрешность возвращается в направлении первоначального (до начала хранения) значения, в отрицательную сторону.

В первые 48 ч продувки скорость восстановления погрешности наибольшая и составляет (0,02–0,05)%/ч. При дальнейшей продувке изменение погрешности в отрицательном направлении продолжается, однако со все уменьшающейся скоростью — до 0,0005–0,002 %/ч.

Приблизительное время стабилизации — 300–700 ч для счетчиков Schlumberger и 1000–2000 ч для счетчиков Premagas, в зависимости от степени деформации мембраны. После завершения стабилизации погрешность счетчиков слабо и нерегулярно колеблется в силу случайных причин или практически не меняется.

Читайте так же:
Счетчик банкнот купюр dors 750

После пропуска через счетчики объемов воздуха, соответствующих 20 годам работы, погрешность счетчиков остается в установленных НТД допустимых пределах. Указанный характер изменения погрешности наблюдался для всех испытанных счетчиков, за исключением одного счетчика G6 Schlumberger (рис. 2, f). Погрешность этого счетчика во времени изменяется противоположным образом в сравнении с остальными счетчиками.

Наиболее вероятная причина этого — необратимая деформация мембраны при хранении счетчика. Аналогичные результаты испытаний небольших мембранных счетчиков газа получены в институте IGNIG (Польша) [3].

  1. В процессе длительного хранения измерительный объем счетчиков уменьшается из-за деформации мембраны, в связи с чем погрешность изменяется в положительном направлении. После продувки счетчика в течение некоторого времени при максимальном расходе погрешность возвращается в направлении первоначального значения (в отрицательную сторону).
  2. После завершения стадии стабилизации погрешность счетчиков слабо и нерегулярно колеблется в силу случайных причин или практически не меняется.
  3. После пропуска через счетчики объемов воздуха, соответствующих 20 годам работы, погрешность счетчиков остается в установленных НТД допустимых пределах.

МЕТОДИКА ИЗМЕРЕНИЯ ДЛЯ КОМПЛЕКСОВ ИЗМЕРЕНИЯ ОБЪЕМА ГАЗА С ДИАФРАГМЕННЫМИ СЧЕТЧИКАМИ. МЕТРОЛОГИЧЕСКИЕ И ПРАКТИЧЕСКИЕ ВОПРОСЫ ЕЕ ПРИМЕНЕНИЯ

Приборы для измерения давления. Виды и работа. Применение

Характеристикой давления является сила, которая равномерно воздействует на единицу площади поверхности тела. Эта сила оказывает влияние на различные технологические процессы. Давление измеряется в паскалях. Один паскаль равен давлению силы в один ньютон на площадь поверхности в 1 м2. Применяют приборы для измерения давления.

Виды давления
  • Атмосферное давление образуется атмосферой Земли.
  • Вакуумметрическое давление – это давление, не достигающее величины атмосферного давления.
  • Избыточное давление – это величина давления, превосходящая значение атмосферного давления.
  • Абсолютное давление определяется от величины абсолютного нуля (вакуума).
Виды и работа

Приборы, измеряющие давление, называются манометрами. В технике чаще всего приходится определять избыточное давление. Значительный интервал измеряемых величин давлений, особые условия измерения их во всевозможных технологических процессах обуславливает разнообразие видов манометров, которые имеют свои различия по конструктивным особенностям и по принципу работы. Рассмотрим основные из применяемых видов.

Барометры

Барометром называют прибор, измеряющий давление воздуха в атмосфере. Существует несколько видов барометров.

Ртутный барометр действует на основе перемещения ртути в трубке по определенной шкале.

Жидкостный барометр работает по принципу уравновешивания жидкости давлением атмосферы.

Барометр-анероид работает на изменении размеров металлической герметичной коробки с вакуумом внутри, под действием давления атмосферы.

Электронный барометр является более современным прибором. Он преобразовывает параметры обычного анероида в цифровой сигнал, отображающийся на жидкокристаллическом дисплее.

Жидкостные манометры

В этих моделях приборов давление определяется высотой столба жидкости, которое выравнивает это давление. Жидкостные приборы для измерения давления чаще всего выполняют в виде 2-х стеклянных сосудов, соединенных между собой, в которые залита жидкость (вода, ртуть, спирт).

Рис-1

Один конец емкости соединен с измеряемой средой, а второй открыт. Под давлением среды жидкость перетекает из одного сосуда в другой до выравнивания давления. Разность уровней жидкости определяет избыточное давление. Такими приборами замеряют разность давлений и разрежение.

На рисунке 1а изображен 2-х трубный манометр, измеряющий вакуум, избыточное и атмосферное давление. Недостатком является значительная погрешность измерения давлений, имеющих пульсацию. Для таких случаев применяют 1-трубные манометры (рисунок 1б). В них один край сосуда большего размера. Чашка соединена с измеряемой полостью, давление которой передвигает жидкость в узкую часть сосуда.

При замере берется во внимание только высота жидкости в узком колене, так как жидкость изменяет свой уровень в чашке незначительно, и этим пренебрегают. Чтобы произвести замеры малых избыточных давлений используют 1-трубные микроманометры с трубкой, наклоненной под углом (рисунок 1в). Чем больше наклон трубки, тем точнее показания прибора, вследствие увеличения длины уровня жидкости.

Читайте так же:
Счетчик населения городов россии

Особой группой считаются приборы для измерения давления, в которых движение жидкости в емкости действует на чувствительный элемент – поплавок (1) на рисунке 2а, кольцо (3) (рисунок 2в) или колокол (2) (рисунок 2б), которые связаны со стрелкой, являющейся указателем давления.

Рис-2

Преимуществами таких приборов является дистанционная передача и их регистрация значений.

Деформационные манометры

В технической области приобрели популярность деформационные приборы для измерения давления. Их принцип работы заключается в деформации чувствительного элемента. Эта деформация появляется под действием давления. Упругий компонент связан со считывающим устройством, имеющим шкалу с градуировкой единицами давления.

Деформационные манометры делятся на:
  • Пружинные.
  • Сильфонные.
  • Мембранные.

Рис-3

Пружинные манометры

В этих приборах чувствительным элементом является пружина, соединенная со стрелкой передаточным механизмом. Давление воздействует внутри трубки, сечение старается принять круглую форму, пружина (1) пытается раскручиваться, в результате стрелка передвигается по шкале (рисунок 3а).

Мембранные манометры

В этих приборах упругим компонентом является мембрана (2). Она прогибается под давлением, и воздействует на стрелку с помощью передаточного механизма. Мембрану изготавливают по типу коробки (3). Это увеличивает точность и чувствительность прибора из-за большего прогиба при равном давлении (рисунок 3б).

Сильфонные манометры

В приборах сильфонного типа (рисунок 3в) упругим элементом является сильфон (4), который выполнен в виде гофрированной тонкостенной трубки. В эту трубку воздействует давление. При этом сильфон увеличивается в длину и с помощью механизма передачи передвигает стрелку манометра.

Сильфонные и мембранные виды манометров используют для замеров незначительных избыточных давлений и вакуума, так как упругий компонент имеет небольшую жесткость. При применении таких приборов для измерения вакуума они получили название тягомеров. Прибор, измеряющий избыточное давление, является напоромером, для измерения избыточного давления и вакуума служат тягонапоромеры.

Приборы для измерения давления деформационного типа имеют преимущество в сравнении с жидкостными моделями. Они позволяют производить передачу показаний дистанционно и записывать их в автоматическом режиме.

Это происходит вследствие преобразования деформации упругого компонента в выходной сигнал электрического тока. Сигнал фиксируется приборами измерений, которые имеют градуировку по единицам давления. Такие приборы имеют название деформационно-электрических манометров. Широкое использование нашли тензометрические, дифференциально-трансформаторные и магнитомодуляционные преобразователи.

Дифференциально-трансформаторный преобразователь

Рис-4

Принципом работы такого преобразователя является изменение силы тока индукции в зависимости от величины давления.

Приборы с наличием такого преобразователя имеют трубчатую пружину (1), которая передвигает стальной сердечник (2) трансформатора, а не стрелку. В итоге изменяется сила индукционного тока, подающегося через усилитель (4) на измерительный прибор (3).

Магнитомодуляционные приборы для измерения давления

В таких приборах усилие преобразуется в сигнал электрического тока вследствие передвижения магнита, связанного с упругим компонентом. При движении магнит воздействует на магнитомодуляционный преобразователь.

Электрический сигнал усиливается в полупроводниковом усилителе и поступает на вторичные электроизмерительные устройства.

Тензометрические манометры

Преобразователи на основе тензометрического датчика работают на основе зависимости электрического сопротивления тензорезистора от величины деформации.

Тензодатчики (1) (рисунок 5) фиксируются на упругом элементе прибора. Электрический сигнал на выходе возникает вследствие изменения сопротивления тензорезистора, и фиксируется вторичными устройствами измерения.

Электроконтактные манометры

В схемах сигнализации, системах авторегулирования технологических процессов, приборах тепловой защиты популярными стали электроконтактные манометры. На рисунке изображена схема и вид прибора.

Упругим компонентом в приборе выступает трубчатая одновитковая пружина. Контакты (1) и (2) выполняются для любых отметок шкалы прибора, вращая винт в головке (3), которая находится на внешней стороне стекла.

При уменьшении давления и достижении его нижнего предела, стрелка (4) с помощью контакта (5) включит цепь лампы соответствующего цвета. При возрастании давления до верхнего предела, который задан контактом (2), стрелка замыкает цепь красной лампы контактом (5).

Классы точности
Измерительные манометры разделяют на два класса:
  1. Образцовые.
  2. Рабочие.
Читайте так же:
Срок замены счетчиков хвс

Образцовые приборы определяют погрешность показаний рабочих приборов, которые участвуют в технологии производства продукции.

Класс точности взаимосвязан с допустимой погрешностью, которая является величиной отклонения манометра от действительных величин. Точность прибора определяется процентным соотношением от максимально допустимой погрешности к номинальному значению. Чем больше процент, тем меньше точность прибора.

Образцовые манометры имеют точность намного выше рабочих моделей, так как они служат для оценки соответствия показаний рабочих моделей приборов. Образцовые манометры применяются в основном в условиях лаборатории, поэтому они изготавливаются без дополнительной защиты от внешней среды.

Пружинные манометры имеют 3 класса точности: 0,16, 0,25 и 0,4. Рабочие модели манометров имеют такие классы точности от 0,5 до 4.

Применение манометров

Приборы для измерения давления наиболее популярные приборы в различных отраслях промышленности при работе с жидким или газообразным сырьем.

Перечислим основные места использования приборы для измерения давления в:
  • Газо- и нефтедобывающей промышленности.
  • Теплотехнике для контроля давления энергоносителя в трубопроводах.
  • Авиационной отрасли промышленности, автомобилестроении, сервисном обслуживании самолетов и автомобилей.
  • Машиностроительной отрасли при применении гидромеханических и гидродинамических узлов.
  • Медицинских устройствах и приборах.
  • Железнодорожном оборудовании и транспорте.
  • Химической отрасли промышленности для определения давления веществ в технологических процессах.
  • Местах с применением пневматических механизмов и агрегатов.
Похожие темы:
  • Датчики давления. Виды и работа. Как выбрать и применение
  • Тензометрические датчики (Тензодатчики). Виды и работа. Устройство

Ваш браузер не поддерживается

Ваш браузер не поддерживается

Интернет-сервис Студворк построен на передовых, современных технологиях и не поддерживает старые браузеры. Для просмотра сайта загрузите и установите любой из следующих браузеров:

Измерение расхода с помощью приборов

Расход — понятие, которое обозначает объем или массу жидкости (что именно — зависит от специфики технологического процесса), проходящей за единицу времени по трубопроводу. Объемный расход обычно используется при измерении газов или жидкостей. Массовый — при измерении паров или жидкостей, смешанных с сыпучими веществами.

Измерение расхода в единицах:

  • объемный расход жидкостей измеряется в л/сек. или м. куб./час
  • объемный расход газов — в м. куб./час (при давлении в 760 мм рт.ст. и температуре в 20С);
  • массовый расход — в кг/час, тонна/час.

Основные методы измерения расхода жидкостей и газов:

  • скоростной;
  • объемный;
  • индукционный;
  • дроссельный;
  • расход обтекания.

Основная суть объемного метода измерения состоит в том, что в единицу времени все отмеренные прибором жидкости/газы суммируются. Скоростной метод позволяет измерить, с какой скоростью движется жидкость по трубопроводу. Зная характеристики жидкости, параметры трубопровода и полученные в результате измерения данные позволяют рассчитать показатели расхода. Дроссельный метод измерения основан на создании искусственного перепада давления внутри трубы до и после прохождения жидкостью датчиков прибора.

Методы измерения расхода и их особенности

Объёмный метод измерения расхода

Суть метода основана на измерении объема вытесненной жидкости в соответствующих камерах, устанавливаемых в водопровод. Замеры исчисляются в количестве циклов вытесненной жидкости. Метод может быть действительным при давлении в трубе до 10 МПа, температуры среды, не превышающей 150 градусов по Цельсию, и диаметре трубопровода в 1,5-30 см.

  • получение стабильных точных показателей.
  • не подходит для сред, содержащих твердые частицы (нужно устанавливать фильтры для их задержания);
  • погрешность показателей растет в процессе износа деталей расходометра.

Погрешность — не более 0,5-1%.

Метод переменного перепада давления

Данная методика основана на сужении (дросселировании) жидкостного или парового потока внутри трубопровода, которое позволяет увеличить его скорость и одновременно снизить потенциальную его энергию. Это приводит к возникновнию перепада давления в точке дросселирования. Расходометром измеряется перепад давления по отношению к скорости потока и, в конечном итоге, расход.

  • простота установки измеряющего устройства;
  • возможность измерять расход в широком диапазоне значений;
  • доступность применения метода на трубопроводах различного диаметра;
  • проведение замеров при больших показателях температуры;
  • можно пользоваться методом при измерении расхода агрессивных жидкостей и газов.
  • между перепадом давлений и расходом существует квадратичная зависимость, что ограничивает диапазон измерений;
  • на гидравлическом сопротивлении, возникающем при перепаде давления в трубопроводе, требуются большие затраты энергии.
Читайте так же:
Оплата жкх по нормативам при наличии счетчика

Погрешность — в пределах 1,5-2,5%.

Метод постоянного перепада давления

Данный метод измерений основан на том, как воспринимается напор в трубопроводе в зависимости от расхода среды в нем. Измерения проводятся посредством помещения в трубопровод чувствительного элемента, который будет перемещаться вместе со средой. Так, к примеру, работают ротаметры.

  • можно осуществлять измерения расходов среды в широком диапазоне показателей давления в трубопроводе;
  • потери давления минимальны.
  • подходит только для видимого отсчета расхода;
  • не может использоваться в трубопроводах при больших показателях вибрации.

Погрешность — от 0,5% до 2,5%.

Электромагнитный метод измерения расхода

В основе данного измерительного метода лежит закон электромагнитной индукции. Измерение зависит от взаимодействия электропроводной жидкости в трубопроводе с магнитным полем.

  • позволяет проводить измерения очень оперативно;
  • можно осуществлять измерение расхода в радиоактивных жидкостях, агрессивных средах, сиропах, пульпах и пр.;
  • большой диапазон измерений;
  • отсутствуют гидравлические потери на приборе;
  • стабильность получаемых показаний.
  • для измерений можно использовать электроды только из определенных материалов (либо защищенные талановыми или платиновыми покрытиями), чтобы избежать поляризации;
  • обязательное применение компенсирующей цепи или использование источника постоянного тока для точности измерений;
  • необходимость экранировки измерительных приборов.

Погрешность — от 0,5% до 1,0%

Оборудование компании «ИННОТЕХ»

Компания «ИННОТЕХ» в ассортименте оборудования, предназначенного для измерения расхода в трубопроводах предлагает потребителям:

  • Ультразвуковые расходомеры
  • Оптические расходомеры
  • Многопараметрические вихревые расходомеры
  • Термомассовые расходомеры
  • Электромагнитные расходомеры

Все представленные бренды расходометров — проверенные временем производители, качество, надежность и точность оборудования которых подтверждают как многочисленные пользователи, так и
соответствующие сертификаты соответствия и качества.

Измерение расхода по перепаду давлений на сужающем устройстве

Расходомеры переменного перепада давления

Для получения сравнимых результатов измерений объемный расход газа или пара приводят к стандартным условиям.

Приборы, измеряющие расход вещества, называют расходомерами. Приборы, измеряющие количество вещества, протекающее через данное сечение трубопровода за некоторый промежуток времени, называют счетчиками количества. При этом количество вещества определяется как разность двух последовательных показаний счетчика в начале и конце этого промежутка времени. Показания счетчика выражаются в единицах объема, реже — в единицах массы. Прибор, одновременно измеряющий расход и количество вещества, называют расходомером со счетчиком. Расходомер измеряет текущее значение расхода, а счетчик выполняет интегрирование текущих значений расхода.

В последнее время граница между счетчиками и расходомерами практически исчезает. Расходомеры оснащают средствами для определения количества жидкости или газа, а счетчики — средствами для определения расхода, что позволяет объединить счетчики и расходомеры в одну группу приборов — расходомеры.

Устройство (диафрагма, сопло, напорная трубка), непосредственно воспринимающее измеряемый расход и преобразующее его в другую величину, удобную для измерения (например, в перепад давления), называют преобразователем расхода.

Принцип действия расходомеров этой группы основан на зависимости перепада давления, создаваемого неподвижным устройством, устанавливаемым в трубопроводе, от расхода вещества.

При измерении расхода методом переменного перепада давления в трубопроводе, по которому протекает среда, устанавливают сужающее устройство (СУ), создающее местное сужение потока. Из-за перехода части потенциальной энергии потока в кинетическую средняя скорость потока в суженном сечении повышается. В результате статическое давление в этом сечении становится меньше статического давления перед СУ. Разность этих давлений тем больше, чем больше расход протекающей среды, и, следовательно, она может служить мерой расхода. Перепад давления на СУ (рис. 78, а) равен

где — давление на входе в сужающее устройство; — давление на выходе из него.

Измерение расхода вещества методом переменного перепада давления возможно при соблюдении условий:

1) поток вещества заполняет все поперечное сечение трубопровода;

2) поток вещества в трубопроводе является практически установившимся;

3) фазовое состояние вещества, протекающего через СУ, не изменяется (жидкость не испаряется; газы, растворенные в жидкости, не десорбируются; пар не конденсируется).

Читайте так же:
Выгодна водные счетчики или нет

Рис.5.78. Расходомеры переменного перепада давления:

а — структура потока проходящего через диафрагму; б — распределение статического давления р вблизи диафрагмы по длине трубопровода; / — сужающее устройство (диафрагма); 2 — импульсные трубки; 3 — -образный дифманометр; — сечение потока вещества, в котором не сказывается возмущающее воздействие диафрагмы; — сечение потока вещества в месте его наибольшего сжатия; в — сопло; г — сопло Вентури

В качестве сужающих устройств для измерения расхода жидкостей, газов, пара широко применяются стандартные сужающие устройства. К ним относят стандартную диафрагму, сопло ИСА 1932, трубу Вентури и сопло Вентури.

Стандартная диафрагма (далее — диафрагма) — диск с круглым отверстием, имеющий острую прямоугольную входную кромку.

Сопло ИСА 1932 (далее — сопло) — СУ с круглым отверстием, имеющее на входе плавно сужающийся участок с профилем, образованным двумя сопрягающимися дугами, переходящий в цилиндрический участок на выходе, называемый горловиной (рис. 78, в).

Расходомерная труба Вентури (далее — труба Вентури) — СУ с круглым отверстием, имеющее на входе конический сужающийся участок, переходящий в цилиндрический участок, соединенный на выходе с расширяющейся конической частью, называемой диффузором.

Вентури — труба Вентури с сужающимся входным участком в виде сопла ИСА 1932 (рис. 78, г).

Эти наиболее изученные средства измерения расхода и количества жидкостей, газа и пара могут применяться при любых давлениях и температурах измеряемой среды.

Установим диафрагму в трубопроводе так, чтобы центр ее отверстия находился на оси трубопровода (рис. 78, а). Сужение потока вещества начинается до диафрагмы, на некотором расстоянии за диафрагмой поток достигает своего минимального сечения. Затем поток постепенно расширяется до полного сечения. На рис. 78, б изображено распределение давлений вдоль стенки трубопровода (сплошная линия), а также распределение давлений по оси трубопровода (штрихпунктирная линия). Давление потока около стенок трубопровода после СУ не достигает своего прежнего значения на величину — безвозвратной потери, обусловленной завихрениями, ударом и трением (затрачивается значительная часть энергии).

Отбор статических давлений и возможен с помощью соединительных импульсных трубок 2, вставленных в отверстия, расположенные до и после диафрагмы / (рис. 78, а), а измерение перепада давления возможно с помощью какого-нибудь измерителя перепада давления (в данном случае -образного дифманометра 3).

Сопло (рис. 78, в) конструктивно изготовляется в виде насадки с круглым концентрическим отверстием, имеющим плавно сужающуюся часть на входе и развитую часть на выходе. Профиль сопла обеспечивает практически полное сжатие потока вещества и поэтому площадь цилиндрического отверстия сопла может быть принята равной минимальному сечению потока, т. е. . Характер распределения статического давления в сопле по длине трубопровода такой же, как и у диафрагмы. Такой же и отбор давлений и до и после сопла, как и у диафрагмы.

Сопло Вентури (рис. 78, г) конструктивно состоит из цилиндрического входного участка; плавно сужающейся части, переходящей в короткий цилиндрический участок; из расширяющейся конической части — диффузора. Сопло Вентури благодаря диффузору обладает меньшей потерей давления, чем диафрагма и сопло. Характер распределения статического давления в сопле Вентури по длине трубопровода такой же, как и у диафрагмы и сопла. Отбор давлений и осуществляется с помощью двух кольцевых камер, каждая из которых соединяется с внутренней полостью сопла Вентури группой равномерно расположенных по окружности отверстий.

Теперь уравнение объемного расхода для несжимаемой жидкости принимает вид:

С учетом введения поправочного коэффициента е, учитывающего расширение измеряемой среды, окончательно перепишем уравнение:

Для несжимаемой жидкости поправочный коэффициент е равен единице, при измерении расхода сжимаемых сред (газа, пара) поправочный коэффициент и определяется по специальным номограммам.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector