Sfera-perm.ru

Сфера Пермь
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Лм317 стабилизатор тока калькулятор

Простой и мощный источник питания на 1,3-12В до 20А (LM317, КТ819)

Схема простого и мощного самодельного блока питания с выходным напряжением от 1,3В до 12В, построен на основе LM317, КТ819. В различных цехах, лабораториях мастерских и даже некоторых офисах дляпитания осветительных приборов используется внутренняя 12-вольтовая сеть.

Переменное напряжение 12V сейчас обычно получают от так называемых «электронных трансформаторов», либо с помощью обычного силового «железного» трансформатора. В любом случае, сеть рассчитана на достаточно большой ток потребления и может питать не только осветительные приборы, но и паяльники, рассчитанные на напряжение 12V.

Я предлагаю использовать такую 12-вольтовую местную сеть и для получения регулируемого постоянного напряжения, которое может понадобиться, например, при ремонте автомобильной или батарейной аппаратуры. Для этого необходим достаточно мощный выпрямитель и такой же мощный стабилизатор. Наиболее простое и дешевое решение показано на рисунке выше.

Принципиальная схема

Рис. 1. Принципиальная схема умощнения микросхемы LM317 при помощи транзисторов.

Переменное напряжение поступает на выпрямительный мост VD1. Далее, как обычно, сглаживающий пульсации конденсатор С1. Стабилизатор выполнен на ИМС LM317 с умощнением выхода составным эмиттерным повторителем на транзисторах VT1-VT3.

Детали

Транзисторы и микросхема нуждаются в радиаторе. Резисторы R3, R4, R5 — мощностью не менее 5Ватт, можно установить проволочные или цементные. Выходной ток блока питания — до 20А.

Пересмехов А. И. РК-2015-08.

Даташит на микросхему LM317 — Скачать (1MB).

  • PCBWay — всего $5 за 10 печатных плат, первый заказ для новых клиентов БЕСПЛАТЕН.
  • Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет.
  • Проекты с открытым исходным кодом — доступ к тысячам открытых проектов в сообществе PCBWay!

  • Преобразователь напряжения +12В в +22В, ток нагрузки до 2А (555, КТ819)
  • Маломощный регулируемый двуполярный источник питания (LM317, LM337)
  • Стабилизатор напряжения для устройств с питанием от сети до 200Вт
  • Импульсный понижающий стабилизатор на ИМС LT1074

В схему были внесены дополнения:

  • В цепь эмиттеров транзисторов добавлены резисторы для выравнивания токов;
  • Добавлены конденсаторы С3 и С4 (0,1мкФ керамика).

Емкость С1 лучше составить из нескольких электролитических конденсаторов, если нужен большой ток то рекомендуется 2 шт по 4700мкФ и более.

Транзисторы КТ819 можно заменить зарубежными MJ3001 или другими.

Оригинальная схема от автора без указанных изменений (для истории):

R2-какого типа,сп. или.Схема не плохая!СПАСИБО.

Резистор R2 — переменного сопротивления, любого типа, мощностью 0,5Вт и более. Если нет подходящего с сопротивлением 3,3К то можно установить 6,8К или другой (до 10кОм).

Спасибо за уроки очень полезные.

Как насчет защиты от перегрузки/КЗ ?

В приведенной схеме нет защиты от КЗ и перегрузки по току. Без совершенствования схемы на ее выходе не помешает установить плавкий предохранитель.

собрал схему но что-то падает ток на выходе.транс 300щ 40а подаю 31 вольт а на выходе при нагрузке 6 вольтной 3волта. может что-то не так собрал.транзисторы менял лм тоже — не помогает.

Внимательно проверьте весь монтаж, в особенности правильность подключения микросхемы и транзисторов.
Цоколевка микросхемы LM317:

По транзисторам в пластиковом и металлическом корпусах — КТ819 — характеристики и цоколевка.

все проверено много раз. микросхема правильно подключена транзистор тоже. еще и менял микросхему, транзисторы. ничего не помогает даже не знаю что еще можно сделать.

Благодарю #root за смешанную внутреннюю схему микросхемы: везде искал, но безуспешно. У 12-й КРЕНки она будет аналогичной.

Насчет внутренней схемы LM317: как заменить источник тока: наверняка двумя (или более) кремниевыми диодами? Можно ли заменить транзисторы на внутренней схеме на один составной марки, скажем, КТ827ВМ? Чем заменить операционный усилитель? Как построить защиту по току? — И пока писал вопросы, сразу нашёлся ответ: использовать полевой транзистор.

Александр, ниже приведена принципиальная схема кристалла микросхемы LM117, LM317-N из даташита (сайт ti.com — Texas Instruments):

Спасибо: очень напоминает схему КР142ЕН из [1, Терещук Р.М. и др. Полупроводниковые приемно-усилительные устройства: Справ. радиолюбителя/Р.М. Терещук, К.М. Терещук, С.А. Седов. — 4-е изд., стер.-Киев: Наук.думка,1989.-800 с.-С.342,рисунок V.12,описание С.: 331-340,таблица V.5]. Но там нет номиналов.

Можно ли в схеме применить транзисторы кт827а?

Пользователю #Игорь: Наверняка это возможно, правда, после операционника (см. пост #8) в цепь базы перед схемой защиты нужно, вероятно, включить гасящий резистор, номинал которого зависит от питающего напряжения: главное, чтобы на базе относительно эмиттера было не более пяти вольт. Узел токовой защиты Current Protection, вероятно, можно заменить на стабилитрон КС147А.

Здравствуйте,первый раз собираю блок питания-нашёл в гараже старый трансформатор.Пробую сделать по этой схеме.Подскажите пожалуйста какая ножка переменного резистора куда идет.

Читайте так же:
Что такое пусковые токи стабилизатора

1. Мне нужно на выходе получить не 12 а 15 в. Могу ли я получить его (не меняя номиналов резисторов) подав на вход 16-18 вольт. 2. Можно ли транзисторы КТ819Б заменить на транзисторы J13009 (не меняя номиналов резисторов) по параметрам они похожи на КТ819 (Iк — 12а, Uэб — 9 в., Uкэ-400в.) Пожалуйста кто может ответ те. Замену хочу сделать исходя из наличия деталей.

Здравствуйте, Владимир. 1 — да, сопротивление переменного резистора R2 желательно немного увеличить, например 6,8К. 2 — соберите схему навесным монтажом с одним J13009, убедитесь что она работает, а тогда приступайте к сборке конструкции целиком с нужным количеством транзисторов на выходе.

root — огромное спасибо за подробный и оперативный ответ.

Уважаемый root подскажи пожалуйста ещё.- 1. Если пульсация на выходе мне не критична ( схема используется для зарядки мощного AGM аккумулятора) могу ли я исключить из схемы электролиты (после моста и на выходе) не повлияет ли это на работу LM317. 2. Как я понимаю если их можно исключить. то напряжение на входе надо увеличить примерно на 30-40% -верно ли это?

Желательно не исключать эти конденсаторы. На выходе можно оставить емкость 10-100мкФ, а после диодного моста не меньше 1000мкФ.

Здравствуйте. Собрал блок питания по подобной схеме на LM317 и одном КТ819Г. Схема заявляется как имеющая встроенную защиту от короткого замыкания. Схема работает,но при проверке на короткое замыкание силовой транзистор КТ819Г моментально сгорел. Подскажите пожалуйста, в чем может быть проблема?Бракованная LM? Заранее благодарен.

Андрей читайте внимательно выше пост #6 root писал: в этой схеме нет защиты от КЗ и советовал ставить на выходе предохранитель. Как я понимаю защита есть в микросхеме LM которая я думаю осталась цела.

Подскажите еще такой момент. В другой, но очень похожей схеме, вот она:

обратно параллельно цепи коллектор-эмиттер силового КТ819Г добавлен диод 1N5400. Каково его назначение, и насколько он необходим? Заранее благодарен за ответ.

В схемах интегральных стабилизаторов между выводами Вход и Выход ставят дополнительный диод, он нужен для защиты микросхемы от повреждения, в случае если напряжение на выходе схемы стабилизатора превысит напряжение на ее входе.

Такая разница напряжений может возникнуть в случаях:

  1. если стабилизатор используется для заряда батареи и случился ее перезаряд;
  2. если на выходе стабилизатора установлен конденсатор на большую емкость и после выключения питания он будет разряжаться дольше чем тот что установлен на входе после выпрямителя.

На сайте есть небольшая статья на эту тему: Защитный диод в схеме стабилизатора

В приведенной вами схеме и схеме на рис.1 такой диод не нужен, выход микросхемы не подключен напрямую к выходу стабилизатора.

. В любом случае, сеть рассчитана на достаточно большой ток потребления и может питать не только осветительные приборы, но и паяльники, рассчитанные на напряжение 12V. — Это мне напомнило про мой низковольтный паяльник ЭПСН-40-40. В данном случае что надо делать? — Перематывать ?

Подскажите пожалуйста как в этом стабилизатор подключить транзисторы р-н-р например кт818, зараннее благодарен.

Здравствуйте.
Если вам достаточно тока 3-5А то можете собрать схему из публикации: Мощный блок питания на микросхеме LM317 и транзисторе КТ818 (2-30V)
В ней для умощнения LM317 применяется транзистор P-N-P структуры.

Т.e. если данную схему использовать для зарядки АКБ диод между К и Э все же нужен ( хочу умощнить двумя КТ 819 — значит по диоду на транзистор ?
Какой не сложной схемой защиты можно обезопасить транзисторы КТ 819 ( ток до 10А) ?
Спасибо!

Привет. Схема рабочая. Только транзисторы сильно греются. Уже при токе 1,75А температура поднимается выше 80 грС, это при том, что они установлены на радиаторе площадью около 80 см2, по справочнику рабочий ток КТ819Г составлает 10А. А вот ЛМ — ка почти не греется. Где я не дорабатываю? Может еще парочку транзюков воткнуть?

Здравствуйте.
Тут приведена схема линейного стабилизатора напряжения. Чем больше ток на его выходе, а также разница между входным и выходным напряжениями — тем больше тепловой мощности будет рассеяно на выходных транзисторах.
Например: после выпрямителя имеем 20В, а на выходе стабилизатора 12В куда подключена нагрузка с током потребления 2А. На транзисторах будет падать напряжение 8В (20В-12В), а при токе 2А рассеиваемая мощность = 16Вт (8В*2А).
В вашем случае, попробуйте установить вентилятор.

Простой регулируемый блок питания 0,8-34 В, до 10 А на LM317 с транзистором, схема, пояснение работы.

В этой статье предлагаю разобрать весьма неплохой регулируемый трансформаторный блок питания, линейный стабилизатор которого собран на базе микросхемы LM317. Данный блок питания, при использовании именно таких электронных компонентов, что нарисованы на схеме, способен обеспечить максимальное выходное напряжение до 34.5 вольт. Это напряжение ограничено самой микросхемой линейного стабилизатора напряжения, а именно максимальное выходное напряжение на LM137 это 36 вольт, ну и минус около 0,6-1.5 вольта, которые осядут на база-эмиттерном переходе транзистора. Максимальный ток у блока питания может быть до 10 ампер, но при определенных условиях, о которых будет сказано ниже в этой статье. Коэффициент пульсаций у этого БП равен где-то 0,1%.

Читайте так же:
Защита стабилизаторов питания по току

Перечень электронных компонентов, что используются в этой схеме:

Tr1 — трансформатор на 26 вольт и выходной ток до 10 ампер (280 Вт и более)
VD1 — диоды или мост на ток более 10 А и обратное напряжение более 40 В
D1 — микросхема линейного стабилизатора типа LM317, LM338, LM350
VT1 — биполярный транзистор типа КТ819, КТ829 и аналогичные
R1 — 5 кОм
R2, R3 — 240 Ом
R4 — 3-10 кОм
R * — от 1 кОм до 5 кОм подбирается под нужное выходное напряжение
C1 — 5000-10000 мкф и напряжение больше рабочего напряжения
C2 — 10 мкф
C3 — 470 мкф

Сразу стоит заметить для новичков, что это блок питания с линейным стабилизатором напряжения. То есть, при регулировке выходного напряжения все лишнее напряжение просто преобразуется в тепло. Оно оседает на регулируемых силовых компонентах, а именно на микросхеме стабилизатора D1 и силовом биполярном транзисторе VT1. И именно транзистор берет на себя всю лишнюю электрическую энергию и преобразует его просто в тепло, через собственный нагрев корпуса. А это значит, что чем больше тока будет потреблять нагрузка и чем меньше напряжения мы установим на выходе данного блока питания, тем меньше КПД будет этого блока питания. При минимальном напряжении на выходе и максимальном токе этот блок питания становится больше похож на электрический обогреватель. Причем в этом режиме он менее всего экономичен. К сожалению это проблема абсолютно всех линейных стабилизаторов.

Но эту проблему в значительной степени можно исправить если использовать трансформатор с несколькими выходными обмотками. То есть, мы от вторичной обмотки делаем выводы с шагом допустим 5 вольт. Находим подходящий переключатель, который нам будет подключать нужный вывод вторичной обмотки с наиболее подходящим напряжением, что мы будем использовать в конкретном случае, для конкретной нагрузки. Такой вариант переключения напряжений, что далее подается на схему стабилизатора напряжения, делает схему блока питания гораздо экономичнее, значительно повышая ее общий коэффициент полезного действия.

Теперь что касается самих рабочих компонентов этой схемы. Чтобы на выходе получить максимальное напряжение до 34.5 вольт и силу тока до 10 ампер понадобится силовой трансформатор мощностью не менее 280 Вт. Почему именно такая минимальная мощность должна быть у трансформатора. Дело в том, что максимальное входное напряжение для микросхемы D1 (LM317) 37 вольт. Но стоит учесть, что это амплитудное значение напряжения, которое будет у нас на выходе диодного моста при наличии сглаживающего конденсатора C1. Как известно, напряжение на выходе трансформатора имеет действующее значение, которое в 1,41 раза меньше амплитудного. То есть, мы 37 вольт делим на 1,41 и получаем около 26 вольт действующего напряжение, которое должна обеспечить нам вторичная обмотка имеющегося трансформатора. Следовательно, 26 вольт умножаем на 10 ампер и получаем мощность 260 Вт, ну и добавим небольшой запас по мощности с учетом различных потерь. И в итоге нам и нужен трансформатор с мощностью не менее 280 Вт. Ну, и как я ранее заметил, хорошо, чтобы он имел отводы от вторичной обмотки с шагом примерно 3-5 вольт, для повышения КПД этой схемы блока питания. Трансформатор лучше использовать тороидальный, он более эффективный, чем другие типы.

Поскольку мы будем работать с током до 10 ампер, то диодный пост также нужен с прямым током не менее 10 А, а лучше брать с запасом где-то 15-20 А. В схеме сглаживающий конденсатор C1 имеет емкость 5000 мкф, хотя лучше все же поставить микрофарад так на 10 000, сглаживание импульсов будет только лучше. Его напряжение должно быть более 35 вольт.

В схеме использована микросхема типа LM317, максимальный ток которой равен 1,5 ампер (если это оригинал, а не Китайская копия). Если у вас есть аналогичные микросхемы стабилизаторов напряжения типа LM338, LM350, рассчитанные на больший ток, то можно в схему поставить и их. Поскольку LM317 может выдержать ток всего лишь до 1,5 А, а мы планируем работать с током до 10 А, то в схему добавлен усилитель тока в виде биполярного транзистора КТ819 или КТ829 (составной). Чтобы убрать дополнительные пульсации напряжения, возникающие на выходе транзистора, в схеме предусмотрена отрицательная обратная связь в виде резистора R3. Именно этот резистор дает сигнал микросхеме, которая делает работу транзистора более стабильной. Резисторы R1 и R2 нужны для нормальной работы самой микросхемы линейного стабилизатора LM317. Напряжение на выходе задается сопротивлением R1. Резистор R4 служит небольшой нагрузкой на выходе блока питания, и также он способствует разряду выходного конденсатора после выключения схемы.

Читайте так же:
Стабилизатор напряжения с контролем тока

На схеме параллельно резистору R1 можно увидеть еще один резистор, отмеченный звездочкой. Он нужен, чтобы убрать с регулирующего напряжения резистора R1 так называемую мертвую зону. То есть, при работе с более низкими напряжениями (если вы сделаете блок питания на другое, более низкое напряжение) сопротивления резистора в 5 кОм будет много, и на нем появляется участок, при котором напряжение никак не меняется на выходе блока питания. Следовательно, поставив параллельно регулируемому резистору еще одни резистор с подходящим сопротивлением мы уменьшаем его величину и убираем эту самую мертвую зону.

В целом схема полностью рабочая и вполне способна выдавать ток до 10 ампер при условии, что вы будете использовать трансформатор, у которого будут дополнительные отводы на вторичной обмотке. Это нужно, чтобы уменьшить выделение тепла на биполярном транзисторе до минимума. Если же вы попытаетесь делать регулировку выходного напряжения только за счет транзистора, то даже его максимального рабочего тока не хватит, чтобы нормально рассеять все тепло, что на нем оседает. В этом случае он просто у вас сгорит. Чтобы облегчить нормальную работу биполярного транзистора параллельно ему можно поставить еще несколько штук таких же транзисторов, что распределит выделяемое тепло уже по нескольким элементам. Ну, и обязательно, как микросхема стабилизатора LM317, так и транзистор КТ819 должны быть установлены на радиатор с подходящими размерами. Включать схему без охлаждающего радиатора не рекомендуется, поскольку силовые элементы очень быстро выйдут из строя из-за перегрева.

Видео по этой теме:

2 Схемы

Принципиальные электросхемы, подключение устройств и распиновка разъёмов

Правильная схема и плата для стабилизаторов на микросхемах LM317, LM337, LM350

Изучая темы, касающиеся использования трехвыводных стабилизаторов напряжения серии LM, нигде не нашлось рекомендуемого проекта печатной платы. Поэтому будем восполнять пробел и приведем несколько правил, позволяющих добиться высоких параметров от стабилизатора. Представляем свой проект размещения элементов, прототип схемы собранной на макетной плате и результаты измерений. Уверены, что это пригодится не только новичкам, так как LM317, LM337, LM350 очень часто используются в разных блоках питания как отдельно, так и в составе приборов.

Схема включения стабилизатора

Итак, нужен был линейный стабилизатор симметричного напряжения +/- 5 В при токе порядка 2 А для питания аналоговой схемы. На входе стабилизатора используется дешевый импульсный блок питания 9 В, 3 А.

LM3ХХ — схема принципиальная подключения

К сожалению, выходные напряжения импульсных блоков питания содержат значительные пульсации — для нагрузки 2 А амплитуда пульсаций около 0.1 В.

На что обратить внимание

  1. Благодаря использованию керамических конденсаторов SMD можно их разместить очень близко к выводам микросхемы LM3xx (конденсаторы C2 и C4 в корпусах 0805, можно припаять даже непосредственно на полях пайки стабилизатора.
  2. Элементы R2 и D2 следует поставить именно в такой последовательности (R2 ближе к U1).
  3. Нижний вывод резистора R1 не подключен напрямую к массе, только заканчивается полем припоя. Необходимо подключить как можно ближе к массе, тогда будут компенсацией падения напряжения на проводах массы.
  4. В качестве диодов D1 и D3 возможно стоит применить диоды Шоттки.

После сборки по такой схеме, не удалось заметить на осциллографе никаких пульсаций на выходе при токе нагрузки до 2,5 А даже в диапазоне 50 мВ/см. Падения напряжения не заметно с нагрузкой и без.

Печатная плата для LM3ХХ

Вот для LM317 (LM350 — это версия LM317 с более высоким током) указан рекомендуемый вид печатной платы.

Плата печатная рисунок для LM350

Большое влияние на возможное возбуждение схемы оказывает слишком большой конденсатор на выходе. В каком-то даташите даже было написано, что на выходе может быть максимум 10 мкФ low ESR, лучше танталовый. Когда-то сами в этом убедились, когда LM317 работала как источник тока. Выходное напряжение скакало от нуля до максимума. Уменьшение емкости на выходе до 10 мкФ эффективно устранило этот дефект. Кроме того, большой конденсатор на выходе может вызвать большие броски тока в нагрузке, когда что-то пойдет не так. С другой стороны, отсутствие конденсатора вызывает инерцию при изменениях тока нагрузки.

Учтите, что для микросхемы LM350 токи довольно больше, что вызывает заметное падения напряжения на дорожках. Подробнее читайте в даташите на ЛМ350.

Задача диода D1 в разрядке выходного конденсатора в ситуации, когда напряжение на LM3xx стало выше, чем раньше (например, во время регулировки).

Читайте так же:
Стабилизатор тока для led схема

БП на микросхеме LM350

Еще один важный момент — в блоке питания диоды D1 и D3 должны быть подобраны соответствующим образом для предохранителя так, чтобы именно предохранитель сгорел, а не они. Проще всего установить их самые большие по току, какие имеются в наличии (по схеме 6А6 на 6 ампер).

Регулируемый блок питания на стабилизаторе напряжения LM317

Начинающему радиолюбителю просто не обойтись без хотя бы простейшего блока питания. При разработке или настройке того или иного устройства регулируемый блок питания является не заменимым атрибутом. Но если вы начинающий радиолюбитель, и не можете позволить себе дорогой навороченный блок питания, то эта статья поможет вам восполнить вашу нужду

Блок питания на микросхеме LM317T, схема:

В интернете встречается неисчислимое множество схем различных блоков питания. Но даже на первый взгляд легкие схемы, в процессе настройки оказываются не такими уж и легкими. Я рекомендую вам рассмотреть очень простую в настройке, дешевую и надёжную схему блока питания на микросхеме стабилизаторе LM317T, которая регулирует напряжение от 1,3 до 30 В и обеспечивает ток 1А (как правило, этого достаточно для простых радиолюбительских схем) рисунок №1.

Рисунок №1 – Электрическая принципиальная схема регулируемого блока питания.

VD1 – VD4, VD6, VD7 – Полупроводниковые диоды типа 1N5399 (1.5А 1000В) хотя, вы можете использовать любые другие подходящие по максимальному току 1.5 ампера и напряжению около 50 вольт. Можно также использовать диодный мост с теми же характеристиками. У кого что есть – тот из того и лепит:)
VD5 – Обыкновенный светодиод (его не обязательно впаивать) он сигнализирует о включении питания. Диод VD6, защищает схему от бросков тока. VD7 — защищает микросхему от паразитного разряда ёмкости конденсатора С3.

R1 – около 18 КОм (нужно подбирать под ток светодиода).
R2 — Можно не впаивать — он необходим в том случае если вам нужно получить нестандартные пределы регулировки напряжения. Вы просто подбираете его таким образом что бы сумма R2 + R3 = 5КОм.

R3 — 5,6 Ком.
R4 – 240 Ом.
C1 – 2200 мкФ (электролитический)

C2 — 0,1 мкФ
C3 — 10 мкФ (электролитический)
C4 — 1 мкФ (электролитический)
DA1 – LM317T

Основным элементом в схеме является микросхема LM317T, все её характеристики вы можете без труда посмотреть в мануале на микросхему. Единственное что следует отдельно отметить, это то что её обязательно необходимо цеплять на радиатор (рисунок №2) что бы микросхема не вышла из строя.

Рисунок №2 – Пример радиатора.

Максимальный ток у неё по документации 1.5 А – но я не рекомендую вгонять её в такие придельные режимы работы.
Трансформатор я рекомендую использовать тоже с запасом по току (ток 3А), дабы в случае резкого броска тока он не вышел из строя.
Каждый радиолюбитель делает печатные платы как ему самому угодно – но если вам лень её трассировать – можете использовать мой вариант печатной платы рисунок №3, который доступен по этой ссылке или по этой ссылке. Файлы можно открыть с помощью программы Sprint-Layout 5.

Рисунок №3 — Плата печатная и сборочный чертёж

Прежде чем начать делать мой вариант разводки платы – ещё раз его просмотрите и проанализируйте. Плату я трассировал под способ фотолитографии, так что разверните её как необходимо вам. Я старался сделать плату наиболее универсальной для этой схемы и делал её под свои нужды. Если вы не будите впаивать резистор R2 – то вместо него просто нужна перемычка.

P.S.: Я постарался наглядно показать и описать не хитрые советы. Надеюсь, что хоть что-то вам пригодятся. Но это далеко не всё что возможно выдумать, так что дерзайте, и штудируйте сайт https://bip-mip.com/

Как можно подключить вольтметр и амперметр к этой схеме

Дополнительные рекомендации по настройки схемы:

Все сопротивления в схеме лучше всего ставить полуваттные, это почти гарантия стабильной работоспособности схемы, даже в предельных условиях эксплуатации. Резистор R2 можно полностью исключить из схемы, я оставлял под него место на те случаи, когда нужно получит нестандартное напряжение. А ещё, хорошенько покопавшись в интернете, я нашел специальный калькулятор для пересчёта LM317, а именно резисторов в цепи управления регулировки напряжения.

Читайте так же:
Стабилизатор тока из китая

Окно специального калькулятора для расчёта LM317 Управляющий делитель напряжения

Резисторы R3 и R4 – это обыкновенный делитель напряжения, таким образом, мы можем его подобрать под те резисторы, что у нас есть под рукой (в заданных пределах) – это очень удобно и позволяет без особого труда отрегулировать работу LM317T под любое напряжение (верхний придел может варьироваться от 2 до 37 В). К примеру, можно так подобрать резисторы, чтобы ваш блок питания регулировался от 1,2 до 20В – всё зависит от пересчёта делителя R3 и R4. Формулу по которой работает калькулятор, вы можете узнать почитав даташит на ЛМ317Т. В остальном — если всё собрано верно , блок питания сразу же готов к работе.

  1. Ножная педаль из дверного звонкаНожная педаль – применяется там, где необходимо оперативное управление без.
  2. Электрическая отвёртка и её модернизацияЭлектрическая отвёртка – ручной электрический инструмент с различными насадками, приводимый.
  3. Термолобзик своими рукамиДля фигурного выпиливания в легкоплавких листовых материалах, удобно применять так.

Как собрать самостоятельно блоки питания использующие lm317

Сегодня, когда практически каждый год появляются новые технологии и электроприборы, очень сложно обойдись без некоторой аппаратуры в домашних условиях. Особенно большая роль в нашей жизни отводится блокам питания. Любой радиолюбитель должен уметь собирать это прибор своими руками.

В сегодняшней статье речь пойдет о том, как сделать такой важный в домашней лаборатории электроприбор, как блок питания lm317. Сфера применения такого оборудования огромна, поэтому знания о том, как его можно собрать своими руками будут актуальными и полезными в быту.

Особенности устройства

Блок питания представляет собой важный атрибут любой радиолюбительской домашней мастерской. Принцип работы блока питания заключается в том, что он может преобразовывать напряжения и ток, находящийся в сети, до нужного нам параметра для питания и подключения различных электроприборов. При этом такой прибор обеспечивает высокую защиту от короткого замыкания.
Блок питания может быть различного двух типов:

  • регулируемый;
  • импульсный.

Кроме этого схема, которая применяется для сборки данного типа блока питания, может быть различной — от самой простой, до весьма сложной.

Обратите внимание! Если вы являетесь новичком в радиоэлектронике, то для начала следует выбирать простые схемы. Такая схема будет понятной для вас и позволит быстро создать прибор для самых разнообразных нужд.

Решение собирать блок питания на микросхеме lm317 значительно упрощает процесс сборки. При этом сама схема также упрощается. Благодаря микросхеме появляется возможность сделать блок питания с регулировкой и обеспечивается стабилизация питания.
Если верить комментариям, которые оставляют радиолюбители, такая сборка в разы превосходит отечественные аналоги, обладая при этом большими ресурсами.

Принцип работы

Теперь рассмотрим принцип работы прибора, так как собирая блок питания типа lm317 для получения возможности регулировать показатель напряжения, а также силу тока в сети, необходимо обязательно четко знать и понимать данный аспект. Без этого невозможно правильно собрать прибор, даже если схема будет достаточно простой.

Для блока питания типа lm317 характерен следующий принцип работы. Микросхема lm317 занимается регулированием силы тока по выводу и способствует падению напряжения. Падение напряжения происходит на резисторе. Резистор, на котором происходит падение напряжения, обладает значением в 1,25 В.
В результате такая схема позволяет путем изменения номинала резистора производить регулировку напряжения и обеспечивать изменение показателя силы тока.

Обратите внимание! Если спайка деталей была осуществлена правильно, то такой прибор предупреждает появление короткого замыкания. Здесь немаловажную роль в сборке играет качество самых деталей. Поэтому отдавайте предпочтение более качественной продукции, покупая ее у проверенных продавцов.

Полезные материалы

  • Самодельные регулируемые транзисторные блоки питания: сборка, применение на практике
  • Как подобрать и установить датчики объема для автоматического управления светом
  • Как выбрать датчик движения для туалета
  • Обзор и установка пульта для радиоуправления светом
  • Схемы для самодельных блоков питания светодиодных лент

Один комментарий на материал: “ Как собрать самостоятельно блоки питания использующие lm317 ”

Поставил потанциометр керамический ППБ-1А 0879 4.7кОм +/- 5%
работает на оборот.Менял по всякому одно и то же.
В чём проблема?

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector