Количество теплоты выделенное проводником с током тем больше
Количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени
К этому же выводу, но на основании опытов впервые пришли независимо друг от друга английский ученый Джоуль и русский ученый Ленц. Поэтому сформулированный выше вывод называется законом Джоуля — Ленца.
Рассмотрим устройство лампы накаливания. Нагреваемым элементом в ней является свернутая в спираль тонкая вольфрамовая нить 1. Вольфрам для изготовления нити выбран потому, что он тугоплавок и имеет достаточно большое удельное сопротивление. Спираль с помощью специальных держателей 2 укрепляется внутри стеклянного баллона, наполненного инертным газом, в присутствии которого вольфрам не окисляется. Баллон крепится к цоколю 3, к которому припаян один конец токоведущего провода в точке 4. Второй конец провода через изолирующую прокладку 5 припаян к нижнему контакту. Лампа ввертывается в патрон. Он представляет собой пластмассовый корпус А, в котором имеется металлическая гильза Б с резьбой; к ней присоединен один из проводов сети. Патрон контактирует с цоколем 3. Второй провод от сети присоединен к контакту В, который касается нижнего контакта лампы. Лампы накаливания удобны, просты и надежны, но экономически они невыгодны. Так, например, в лампе мощностью 100 Вт лишь небольшая часть электроэнергии (4 Вт) преобразуется в энергию видимого света, а остальная энергия преобразуется в невидимое инфракрасное излучение и в форме тепла передается окружающей среде.
Для оценки эффективности того или иного устройства в технике введена специальная величина — коэффициент полезного действия (КПД). Коэффициентом полезного действия называют отношение энергии, полезно преобразованной (работы или мощности), ко всей потребленной энергии, или затраченной (работе или мощности):
Часто КПД выражают в процентах (%). Вычислим КПД электрической лампы накаливания по данным, приведенным выше: к.п.д.=4/100=0.04=4%;
Для сравнения укажем, что КПД лампы дневного света примерно 15%, а у натриевых ламп наружного освещения около 25%.
Существует большое число электрических нагревательных приборов, например электрические плиты, утюги, самовары, кипятильники, обогреватели, электрические одеяла, фены для сушки волос, в которых используется тепловое действие тока. Основным нагревательным элементом является спираль из материала с большим удельным сопротивлением. Она помещается в керамические изоляторы с хорошей теплопроводностью, которые изготовлены в виде своеобразных бус.
В приборах, предназначенных для нагревания жидкостей, изолированная спираль помещается в трубки из нержавеющей стали. Ее выводы тоже тщательно изолируются от металлических частей приборов. Температура спирали при работе нагревательного прибора остается постоянной. Объясняется это тем, что очень быстро устанавливается баланс между потребляемой из сети электроэнергией и количеством теплоты, отдаваемым путём теплообмена окружающей среде.
Очень эффективным преобразователем электрической энергии, дающим много тепла и света, является электрическая дуга. Ее широко используют для электрической сварки металлов, а также в качестве мощного источника света. Для наблюдения электрической дуги надо два угольных стержня с присоединенными к ним проводами закрепить в хорошо изолирующих держателях, а затем подключить стержни к источнику тока, дающему невысокое напряжение (от 20 до 36 В) и рассчитанному на большие силы тока (до 20 А). Последовательно стержням обязательно надо включить реостат. Ни в коем случае нельзя подключать угли в городскую сеть (220 или 127 В), так как это приведет к сгоранию проводов и к пожару.
Коснувшись углями друг друга, можно заметить, что в месте соприкосновения они сильно раскалились. Если в этот момент угли раздвинуть, между ними возникает яркое слепящее пламя, имеющее форму дуги. Это пламя вредно для зрения. Пламя электрической дуги имеет высокую температуру, при которой плавятся самые тугоплавкие материалы, поэтому электрическая дуга используется в дуговых электрических печах для плавки металлов. Пламя дуги является очень ярким источником света, поэтому его часто используют в прожекторах, стационарных кинопроекторах и т. д.
Электрические цепи всегда рассчитаны на определенную силу тока. Если по той или иной причине сила тока в цепи становится больше допустимой, то провода могут значительно нагреться, а покрывающая их изоляция — воспламениться. Причиной значительного увеличения силы тока в сети может быть или одновременное включение мощных потребителей тока, например электрических плиток, или короткое замыкание.
Коротким замыканием называют соединение концов участка цепи проводником, сопротивление которого очень мало по сравнению с сопротивлением участка цепи. Короткое замыкание может возникнуть, например, при ремонте проводки под током (рис. 86) или при случайном соприкосновении оголенных проводов.
Сопротивление цепи при коротком замыкании незначительно, поэтому в цепи возникает большая сила тока, провода при этом могут сильно накалиться и стать причиной пожара. Чтобы избежать этого, в сеть включают предохранители. Назначение предохранителей — сразу отключить линию, если сила тока вдруг окажется больше допустимой нормы.
Рассмотрим устройство предохранителей, применяемых в квартирной проводке. Главная часть предохранителя, изображенного на рисунке проволока С из легкоплавкого металла (например, из свинца), проходящая внутри фарфоровой пробки П. Пробка имеет винтовую нарезку Р и центральный контакт К. Нарезка соединена с центральным контактом свинцовой проволокой. Пробку ввинчивают в патрон, находящийся внутри фарфоровой коробки Свинцовая проволока представляет, таким образом часть общей цепи. Толщина свинцовых проволок рассчитана так, что они выдерживают определенную силу тока, например 5, 10 А и т.д.
Если сила тока превысит допустимое значение, то свинцовая проволока расплавится и цепь окажется разомкнутой. Предохранители с плавящимся проводником называют плавкими предохранителями.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Нагревание проводников электрическим током. Закон Джоуля — Ленца — ЭЛЕКТРИЧЕСКИЕ ЯВЛЕНИЯ
Тип урока: урок общеметодологической направленности.
Используемые технологии: здоровьесбережения, информационно-коммуникационные, развития критического мышления, развития исследовательских навыков.
Цели: познакомить учащихся с законом Джоуля — Ленца; дать представление о нагревании проводников при прохождении электрического тока с точки зрения закона сохранения и превращения энергии.
Формируемые УУД: предметные: научиться объяснять явление нагревания проводников при прохождении электрического тока, применяя закон сохранения и превращения энергии; формулировать закон Джоуля — Ленца; рассчитывать количество теплоты, выделяющееся при прохождении тока по проводнику; метапредметные: планировать учебное сотрудничество с учащимися и учителем, работать индивидуально и в группе, находить общее решение и разрешать конфликты на основе согласования позиций и отстаивания интересов, определять способы действий в рамках предложенных условий и требований; ставить учебную задачу, составлять план и последовательность действий, осуществлять контроль в форме сравнения результата и способа действий с эталоном с целью обнаружения отличий и отклонений от него; самостоятельно выделять познавательную цель, устанавливать причинно-следственные связи; формирование умения видеть физические явления и законы в технических решениях.
Приборы и материалы: источники тока, лампа накаливания, ключ, реостат, амперметр, вольтметр, медный, стальной, никелиновые провода, соединительные провода, электронное приложение к учебнику.
I. Организационный этап
(Учитель и ученики приветствуют друг друга, выявляются отсутствующие.)
II. Актуализация знаний. Проверка домашнего задания
(Учитель проводит фронтальный опрос по вопросам и заданиям учебника. Два ученика записывают на доске решение дополнительной задачи.)
III. Изучение нового материала
Демонстрация 1. Соберем электрическую цепь, в которую последовательно включим лампу накаливания и реостат. Для измерения силы тока и напряжения на лампе применяем демонстрационные амперметр и вольтметр.
В проводнике при протекании тока происходит превращение электрической энергии во внутреннюю, и проводник нагревается. Почему при прохождении электрического тока проводник нагревается? Вы неоднократно наблюдали тепловое действие тока в бытовых приборах. На опыте с лампой накаливания вы убедились, что накал лампы возрастал при увеличении тока. Но нагревание проводников зависит не только от силы тока, но и от сопротивления проводников.
Демонстрация 2. Опыт, показывающий тепловое действие тока в цепочке, состоящей из трех последовательно соединенных проводников разного сопротивления: медного, стального и никелинового. Ток во всех последовательно соединенных проводниках одинаков. Количество же выделяющейся теплоты в проводниках разное.
Вывод. Нагревание проводников зависит от их сопротивления. Чем больше сопротивление проводника, тем больше он нагревается.
(Ученики отвечают на вопросы.)
— Из какого материала необходимо изготовлять спирали для лампочек накаливания?
— Какими свойствами должен обладать металл, из которого изготовляют спирали нагревательных элементов?
Работу силы тока рассчитывают по формуле
Кроме того, вам известно, что в неподвижных проводниках вся работа тока идет лишь на нагревание проводников, т. е. на то, чтобы увеличить их внутреннюю энергию.
Следовательно, количество теплоты равно
Из закона Ома для участка цепи
Сформулируем закон Джоуля — Ленца: количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени.
Необходимо заметить, что формулы
вообще говоря, не идентичны. Дело в том, что первая формула всегда определяет превращение электрической энергии во внутреннюю, т. е. количество теплоты. По другим формулам в общем случае определяют расход электрической энергии, идущей как на нагревание, так и на совершение механической работы. Для неподвижных проводников эти формулы совпадают.
(Учитель демонстрирует учащимся анимационный ролик 112 “Закон Джоуля — Ленца” из электронного приложения к учебнику.)
IV. Закрепление изученного материала
(Ученики коллективно разбирают решение задач.)
1. Две проволоки одинаковой длины и сечения — железная и медная — соединены параллельно. В какой из них выделится большее количество теплоты?
Решение. Медная проволока обладает меньшим удельным сопротивлением по сравнению с железной, следовательно, и ее сопротивление будет меньше при одинаковых размерах проволоки. При параллельном включении напряжение на проволоках будет одинаковым, следовательно, учитывая выражение большее количество теплоты выделится на проволоке, обладающей меньшим сопротивлением, т. е. на медной.
2. Спираль электрической плитки укоротили. Как изменится количество выделяемой в ней теплоты, если плитку включить в то же напряжение?
Решение. Уменьшение длины спирали приведет к уменьшению ее сопротивления, а значит, к возрастанию выделяемого количества теплоты при включении в такое же напряжение.
3. Какое количество теплоты выделится в течение часа в проводнике сопротивлением 10 Ом при силе тока 2 А?
4. Определите количество теплоты, которое дает электроприбор мощностью 2 кВт за 10 мин работы.
(Ученики оценивают свою работу на уроке и качество усвоения материала, заполнив анкету.)
1. Вспомни и запиши тему урока.
2. Какие термины, факты, закономерности ты усвоил(а) на уроке?
3. Считаешь ли ты полезными, интересными полученные знания?
4. Какую оценку за урок ты бы себе поставил(а)?
1. § 53 учебника, вопросы к параграфу.
2. Выполнить упр. 37 нас. 151 учебника.
3. Подготовить доклад (по желанию). Примерные темы докладов: “Первое электрическое освещение свечами П.Н. Яблочкова”, “Лампы накаливания и история их изобретения”, “Использование теплового действия тока в промышленности и сельском хозяйстве”, “Электрические нагревательные приборы”.
Джеймс Прескотт Джоуль (1818—1889)
Родился Джоуль в Манчестере 24 декабря 1818 г., по профессии был пивоваром. Первые работы Джоуля в физике связаны с изобретением электромагнитных аппаратов, которые были ярким примером превращаемости физических сил.
Джоуль был прекрасным экспериментатором. Исследуя законы выделения теплоты электрическим током, он понял, что опыты с гальваническими источниками не дают возможности ответить на вопрос, какой вклад в нагрев проводника вносит переносимая теплота химических реакций, а какой — сам ток. В результате многочисленных опытов Джоуль пришел к выводу, что теплоту можно получать с помощью механических сил.
В 1843 г. Джоуль нашел механический эквивалент теплоты. Эту величину впоследствии он определял различными способами. Опыты Джоуля просты по идее, но в каждом из них можно найти какую-нибудь экспериментальную тонкость. Например, для предотвращения движения всей массы воды к боковым стенкам калориметра в радиальном направлении были прикреплены четыре ряда пластинок; в целях теплоизоляции металлическая ось разделена на две части деревянным цилиндром.
Джоуль внес большой вклад в кинетическую теорию газов, открыв вместе с Томсоном эффект изменения температуры газа при его расширении (Эффект Джоуля — Томсона). Из работ Джоуля непосредственно следовало, что теплота не является веществом, что она состоит в движении частиц. Все это, несомненно, способствовало утверждению и признанию закона сохранения и превращения энергии, открытие которого явилось величайшим завоеванием науки XIX в.
Значение этого закона для науки трудно переоценить. На основе законов сохранения, и в частности закона сохранения и превращения энергии, в науке и технике производятся различные расчеты, предсказываются новые эффекты и явления, с материалистических позиций оцениваются открытия. Если, скажем, новая теория или проект новой установки не противоречат закону сохранения и превращения энергии, то это служит убедительным аргументом в их пользу.
Библиотека образовательных материалов для студентов, учителей, учеников и их родителей.
Наш сайт не претендует на авторство размещенных материалов. Мы только конвертируем в удобный формат материалы из сети Интернет, которые находятся в открытом доступе и присланные нашими посетителями.
Если вы являетесь обладателем авторского права на любой размещенный у нас материал и намерены удалить его или получить ссылки на место коммерческого размещения материалов, обратитесь для согласования к администратору сайта.
Разрешается копировать материалы с обязательной гипертекстовой ссылкой на сайт, будьте благодарными мы затратили много усилий чтобы привести информацию в удобный вид.
© 2014-2021 Все права на дизайн сайта принадлежат С.Є.А.
Задание №12 ОГЭ по физике
Цепи постоянного тока
В задании № 12 ОГЭ по физике необходимо понимание явления постоянного тока, процессов, протекающих в цепях постоянного эл.тока, и знание формул, описывающих такие процессы количественно. Полезные сведения, которые могут потребоваться для решения задания, приведены в разделе теории.
Теория к заданию №12 ОГЭ по физике
Сопротивление цилиндрического проводника
Цилиндрическим считается проводник, имеющий круг в поперечном сечении. Сопротивление такого проводника может быть найдено из уравнения:
где ρ – удельное эл.сопротивление, индивидуально характерное для различных материалов; l – длина проводника; S – площадь его поперечного сечения.
Последовательное и параллельное соединение проводников
Последовательное соединение:
При последовательном соединении сопротивления и напряжения на каждом из резисторов суммируются. Сила тока при этом является неизменной на всех участках разветвления.
Математически это выражается формулами:
Параллельное соединение:
При параллельном соединении суммируются, наоборот, силы тока на каждом из участков. Неизменным при этом остается напряжение. А общее сопротивление определяется по особой формуле.
Математически это выглядит так:
Заряд в проводнике
В проводнике движутся электроны. Эл.ток возникает при их упорядоченном (т.е. направленном) перемещении с какой-то скоростью. Интерес в данном случае представляет величина заряда, который проходит через поперечное сечение данного проводника за определенное время ∆t. Вычислить эту величину можно по формуле:
Мощность электрической цепи
где I – сила тока на исследуемом участке эл.цепи; U – напряжение на этом участке; R – сопротивление.
То или иное уравнение для вычислений следует выбирать в зависимости от известных в условии задачи данных.
Закон Джоуля–Ленца
Когда под воздействием эл.поля в цепи не происходит хим.преобразования вещества и не совершается механическая работа, то работа, производимая эл.полем, ведет только к нагреву проводника. Кол-во теплоты, которое при этом выделяет проводник с эл.током, равно:
где t – время, в течение которого совершается работа.
Разбор типовых вариантов заданий №12 ОГЭ по физике
Демонстрационный вариант 2018
На рисунке изображена схема электрической цепи, состоящей из трёх резисторов и двух ключей К1 и К2. К точкам А и В приложено постоянное напряжение. Максимальное количество теплоты, выделяемое в цепи за 1 с, может быть получено
- если замкнут только ключ К1
- если замкнут только ключ К2
- если замкнуты оба ключа
- если оба ключа разомкнуты
Алгоритм решения:
1. Анализируем схему, приведенную в условии. Определяем расчетную формулу.
2–5. Определяем кол-во теплоты в каждой из ситуаций, рассмотренных в утверждениях 1–4. Определяем прав.вариант ответа.
Решение:
- По з-ну Джоуля-Ленца
. Поскольку имеет место параллельное соединение разных резисторов, то сила тока в каждой ветке будет различаться. А напряжение при этом во всех ветках одинаково. Поэтому в данном случае удобнее воспользоваться 2-й формулой (в которой присутствует напряжение).
- Рассм.утверждение 1. Здесь ток будет протекать по двум параллельным веткам – верхней и нижней. Общее сопротивление при этом равно:
. Тогда за 1 с
.
- В утверждении 2 замкнули ключ 2. Следовательно, ток течет по средней и нижней веткам. В этом случае
. Искомое кол-во теплоты:
.
- Если оба ключа замкнуть, то ток потечет по всем 3 веткам. Отсюда:
. Кол-во теплоты за 1 с в таком случае составит:
.
- В утверждении 4 рассмотрен вариант, когда оба ключа разомкнуты. Это означает, что ток течет только по нижней ветке и
.
- Сравним полученные кол-ва теплоты. Сравнивать будем с Q4, поскольку полученная для этой величины формула не содержит коэффициента. Итак:
. Отсюда видно, что, во-первых, каждое из Q1–Q3 больше, чем Q4, а во-вторых, среди этих трех значений самое большое имеет Q3. Т.е. максимальное кол-во теплоты выделится, если замкнуть оба ключа.
Первый вариант (Камзеева, № 3)
Из однородной металлической проволоки сделано кольцо. Напряжение на полюсах источника тока постоянно. При каком подключении контакта К потребляемая мощность цепи будет минимальной?
Алгоритм решения:
- Записываем формулу для расчета мощности через напряжение и сопротивление. Определяем условие, при котором она будет минимальной.
- Находим зависимость сопротивления от длин проводников.
- Анализируем особенность параллельного соединения проводников и, исходя из этого и выводов п.2, определяем точку подключения ключа.
Решение:
- По условию напряжение на источнике тока является постоянной величиной. Поэтому для расчета мощности удобнее всего воспользоваться такой формулой:
. Из этой формулы следует, что минимальная мощность будет в точке, в которой максимально сопротивление.
- Сопротивление цилиндрического проводника вычисляется по формуле:
. Поскольку проволока однородна, то ρ в данном случае есть величина постоянная. Постоянна и S, т.к. длина кольца не меняется. Поэтому сопротивление здесь пропорционально длине проводника l. Тогда имеем зависимость: чем больше длина проводника, тем больше сопротивление.
- Из схемы цепи видно, что в любом случае соединение проводников будет параллельным. А потому тут следует помнить еще один момент: при параллельном соединении проводников общее сопротивление всегда будет меньше самого меньшего из сопротивлений (что можно проверить опытным путем). Самое маленькое сопротивление у проводника А, т.к. у него наименьшая длина (см.п.2). Поэтому в данном случае ключ нужно подключить в точку, которая является самой удаленной от А. Ею является т.В. Именно так получим максимальное сопротивление и, соответственно (см.п.1), минимальную мощность цепи.
Второй вариант (Камзеева, № 5)
На рисунке показано подключение в сеть постоянного напряжения трех одинаковых ламп.
С минимальным накалом будет(-ут) гореть лампа(-ы)
Алгоритм решения:
- Записываем формулу для расчета эл.мощности ламп через силу тока и сопротивление.
- Анализируем приведенную в условии схему и определяем зависимость мощности от силы тока и сопротивления.
- Определяем мощность каждой из ламп, сравниваем их.
Решение:
- Степень накала ламп зависит от величины тепловой мощности, выделяемой на каждой из них. Для определения электрической мощности используем формулу
.
- Сопротивления у ламп равны между собой, т.к. лампы одинаковы. А сила токов будет различаться на участке Л1 и на участке параллельного соединения ламп Л2 и Л3. При параллельном соединении ток делится, причем, поскольку лампы одинаковы, то ток разделится поровну. Т.е. если принять, что через Л1 идет ток I, то через Л2 и Л3 – токи, равные I/2.
- Мощность лампы Л1 будет равной
, мощности Л2 и Л3 –
. Из этих формул видно, что мощность ламп Л2 и Л3 в 4 раза меньше, чем Л1. Этой ситуации соответствует ответ №4.
Третий вариант (Камзеева, № 10)
Четыре резистора изготовлены из различных материалов и имеют различные размеры (см. рис.).
Наибольшее электрическое сопротивление имеет резистор
Количество теплоты выделенное проводником с током тем больше
§ 13. Передача электроэнергии
Для уменьшения потерь электроэнергии при её передаче на дальние расстояния напряжение в сети увеличивают до нескольких сотен киловольт.
Электроэнергия необходима повсюду. Однако теплоэлектростанции выгоднее строить там, где топливо дешевле, а электростанции – только на мощных реках, иначе стоимость электроэнергии будет неоправданно высокой. Поэтому потребители электроэнергии, производимой в сравнительно немногих местах, часто находятся на очень больших расстояниях от электростанций.
Передавать электроэнергию от мест её производства к потребителям необходимо с минимальными потерями. Главная причина этих потерь – превращение части электроэнергии во внутреннюю энергию проводов, их нагрев. Согласно закону Джоуля-Ленца , количество теплоты Q , выделяемое за время t в проводнике сопротивлением R при прохождении тока I , равно:
Из (13.1) следует, что для уменьшения нагрева проводов необходимо уменьшать силу тока в них и их сопротивление. Чтобы уменьшить сопротивление проводов, увеличивают их диаметр, однако, очень толстые провода, висящие между опорами линий электропередач, могут оборваться под действием силы тяжести, особенно, при снегопаде. Кроме того, при увеличении толщины проводов растёт их стоимость, а они сделаны из относительно дорогого металла, меди. Поэтому более эффективным способом минимизации энергопотерь при передаче электроэнергии служит уменьшение силы тока в проводах.
Таким образом, чтобы уменьшить нагрев проводов при передаче электроэнергии на дальние расстояния, необходимо сделать силу тока в них как можно меньше. Как известно, мощность тока равна произведению силы тока на напряжение. Значит, для сохранения мощности, передаваемой на дальние расстояния, надо во столько же раз увеличить напряжение, во сколько была уменьшена сила тока в проводах.
Пусть P — мощность, передаваемая потребителю электроэнергии при напряжении в сети, равном U . Если в формуле (13.1) силу тока I заменить на P / U , то она преобразуется в :
из которой следует, что при постоянных значениях передаваемой мощности тока и сопротивления проводов потери на нагрев в проводах обратно пропорциональны квадрату напряжению в сети. Например, при увеличении напряжения в 10 раз потери электроэнергии при её передаче уменьшатся в 100 раз. Поэтому для передачи электроэнергии на расстояния в несколько сотен километров используют высоковольтные линии электропередач (ЛЭП), напряжение между проводами которых составляет десятки, а иногда сотни тысяч вольт.
Высокое напряжение опасно для жизни, и поэтому напряжение в электрических сетях потребления последовательно уменьшают на трансформаторных подстанциях: сначала до 4-40 кВ для магистральной сети, разводящей электроэнергию по улицам и дорогам, а потом до 120-240 В для распределительной сети бытовых и коммерческих потребителей (см. рис. 13).
С помощью ЛЭП соседние электростанции объединяются в единую сеть, называемую энергосистемой. Единая энергосистема России включает в себя огромное число электростанций, управляемых из единого центра и обеспечивает бесперебойную подачу электроэнергии потребителям.
Вопросы для повторения:
· Почему электроэнергию передают на дальние расстояния по высоковольтным линиям электропередач?
· Во сколько раз уменьшатся потери электроэнергии при её передаче, связанные с нагревом проводов, при повышении напряжения в сети в 100 раз?
· Почему при потреблении электроэнергии напряжение в сети уменьшают?
· В чём заключается преимущество переменного тока перед постоянным при передаче электроэнергии на дальние расстояния.
Рис. 13. Схема передачи и распределения электроэнергии. 1 – тепловая электростанция; 2 – трансформаторная подстанция, повышающая напряжение; 3 – мачты высоковольтной линии электропередач; 4 — трансформаторная подстанция, понижающая напряжение; 5 – магистральная сеть; 6 – понижающий трансформатор.