Sfera-perm.ru

Сфера Пермь
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Количество теплоты в катушке с током

Подготовка к контрольной по физике. Примеры решения задач

45.1. В колебательном контуре, представленном на рис. 45.1, емкость конденсатора равна C, а индуктивность катушки – L. Конденсатор предварительно заряжен до напряжения Uo. Написать зависимость заряда на конденсаторе и силы тока в катушке от времени после замыкания ключа.

Рис. 45.1 Рис. 45.2 Рис. 45.3

45.2. Собственные колебания в LC – контуре происходят по закону: I(t) = 0,01 × sin(1000 × t) (А). Найти индуктивность контура, если его емкость равна 10 мкФ.

45.3. Когда в колебательном контуре был конденсатор 1, собственные колебания совершались с частотой n 1 = 30 кГц, а когда его заменили на конденсатор 2, частота колебаний стала равна n 2 = 40 кГц. Какой будет частота колебаний, если поставить в контур оба конденсатора, соединенные параллельно; последовательно?

45.4. В колебательном контуре происходят свободные колебания. Зная, что максимальный заряд конденсатора равен 10–6 Кл, а максимальный ток – 10 А, найти частоту колебаний.

45.5. Колебательный контур состоит из катушки с индуктивностью L = 0,2 Гн и конденсатора емкостью C = 10–5 Ф. В момент когда напряжение на конденсаторе было равно U = 1 В, ток в катушке был равен I = 0,01 А. Каков максимальный ток в контуре?

45.6. В контуре, состоящем из конденсатора емкостью C и катушки с индуктивностью L, происходят свободные незатухающие колебания с амплитудой напряжения на конденсаторе Uo. Написать зависимость напряжения на конденсаторе от силы тока в катушке. Переменный ток, текущий через конденсатор емкостью С

45.7. К конденсатору, заряженному зарядом q = 2,5 × 10–10 Кл, подключили катушку индуктивности. Определить максимальный ток, протекающий через катушку, если частота возникших колебаний равна n = 4 × 107 Гц. Затухания нет.

45.8. Конденсатор зарядили до напряжения Uo и в момент t = 0 замкнули ключ (рис. 45.1). Написать зависимость силы тока в контуре от времени. Чему равна ЭДС самоиндукции катушки в моменты равенства энергии конденсатора и катушки?

45.9. Батарея из двух, соединенных последовательно, конденсаторов емкостью C каждый заряжена до напряжения U и в начальный момент времени подключена к катушке с индуктивностью L (рис. 45.2). Спустя время t один из конденсаторов пробивается и сопротивление между его обкладками становится равно нулю. Найти амплитуду последующих колебаний заряда на не пробитом конденсаторе.

45.10. Электрическая цепь состоит из идеального источника с ЭДС E, конденсатора емкостью C и катушки индуктивности с малым сопротивлением (рис. 45.3). Вначале ключ разомкнут, а конденсатор не заряжен. Какое количество теплоты выделится в катушке после замыкания ключа и прекращения всех колебаний?

45.11. Электрическая цепь состоит из идеальных: источника с ЭДС б, конденсатора емкостью C и катушки с индуктивностью L (рис. 45.3). В момент времени t = 0 замыкают ключ. Написать зависимость напряжения на конденсаторе от времени.

45.12. Конденсатор емкостью C после замыкания ключа K1 начинает разряжаться через резистор сопротивлением R и катушку с индуктивностью L (рис. 45.4). В момент, когда ток в катушке F достиг максимального значения Io, замыкают ключ K2. Чему равен максимальный ток в цепи при последующих колебаниях?

Рис. 45.4 Рис. 45.5 Рис. 45.6

45.13. В контуре (рис. 45.5) левый конденсатор заряжен до напряжения Uo. В момент t = 0 замыкают ключ. Написать зависимость напряжения на конденсаторах от времени.

45.14. В схеме, представленной на рис. 45.6, ключ переключают из положения 1 в положение 2. Определить максимальный ток при последующих колебаниях.

45.15. В идеальном контуре, состоящем из плоского конденсатора и катушки индуктивности, происходят колебания с энергией W. Пластины конденсатора мгновенно раздвинули так, что частота колебаний увеличилась в n раз. Какую работу при этом совершили?

45.16. На рис. 45.7 изображен резонатор. Считая его плоскую часть конденсатором, а цилиндрическую – катушкой индуктивности, найти собственную частоту его колебаний. Размеры указаны на рисунке.

45.17. Колебательный контур состоит из конденсатора емкостью C и катушки с индуктивностью L. Катушка находится в магнитном поле, так что суммарный магнитный поток, пронизывающий все витки катушки равен Ф. В момент t = 0 магнитное поле мгновенно выключают. Написать зависимость тока в контуре от времени I(t) после этого.

45.18. Катушка индуктивности, имеющая сопротивление R = 1 Ом, и конденсатор образуют колебательный контур. В некоторый момент напряжение на конденсаторе равно U = 0,1 В, а ток в катушке – максимален. Чему равен этот ток?

45.19. Колебательный контур состоит из конденсатора емкостью C = 4 мкФ и катушки с индуктивностью L = 2 мГн и активным сопротивлением R = 10 Ом. Найти отношение энергии магнитного поля катушки к энергии электрического поля конденсатора в моменты максимума тока.

Рис. 45.7 Рис. 45.8

45.20. Два одинаковых конденсатора 1 и 2 емкостью C каждый и катушка с индуктивностью L соединены, как показано на рис. 45.8. В начальный момент ключ разомкнут, а конденсатор 1 заряжен до напряжения U. Определить максимальную силу тока в катушке после замыкания ключа.

45.21. В колебательном контуре, состоящем из последовательно соединенных резистора сопротивлением R, катушки с индуктивностью L и конденсатора емкостью C. За некоторое время амплитуда силы тока в контуре уменьшилась от значения I1 до значения I2. Какое количество теплоты выделилось в резисторе за это время?

Читайте так же:
Тепловой источник тока внутренняя энергия преобразуется в электрическую энергию

45.22. В схеме рис. 45.9 сначала ключ разомкнут, а конденсатор заряжен до напряжения Uo. Ключ замыкают. Написать зависимости: напряжения на конденсаторе – UC(t) и тока в катушках IL1(t) и IL2(t) от времени. Величины L1, L2 и C считать заданными, а диоды – идеальными.

Рис. 45.9 Рис. 45.10 Рис. 45.11

45.23. В схеме рис. 45.10 ключ замыкают, а через время t = 0,1 с размыкают. До какого напряжения зарядится конденсатор? Элементы схемы считать идеальными, L = 1 Гн, C = 1 мкФ, Uo = 10 B.

45.24. В контуре, состоящем из конденсатора емкостью C и катушки с индуктивностью L, происходят колебания. В момент времени, когда напряжение на конденсаторе равно U, а ток в катушке равен I, замыкают ключ, присоединяя еще один контур из сопротивления R и катушки с индуктивностью 2L (рис. 45.11). Определить количество теплоты, выделившееся в сопротивлении.

45.25. Колебательный контур состоит из конденсатора емкостью C = 10 мкФ, катушки с индуктивностью L = 0,01 Гн и сопротивления R = 4 Ом. Какую мощность должен потреблять контур, чтобы в нем поддерживались незатухающие колебания с амплитудой напряжения на конденсаторе U = 1 В? Колебания считать слабо затухающими.

45.26. Колебательный контур состоит из плоского конденсатора емкостью C и идеальной катушки с индуктивностью L. Пространство между пластинами конденсатора заполнено слабо проводящим диэлектриком с диэлектрической проницаемостью e и удельным сопротивлением r . Какую мощность должен потреблять контур, чтобы в нем поддерживались незатухающие колебания с амплитудой тока в катушке Io? Колебания считать почти гармоническими.

45.27. В колебательном контуре, состоящем из катушки с индуктивностью L = 1 Гн и конденсатора емкости C = 1 мкФ с утечкой (диэлектрик конденсатора имеет активное сопротивление R = 1 кОм), происходя слабо затухающие колебания. В некоторый момент времени максимальное напряжение на конденсаторе было равно Uo = 2 В. Какое количество теплоты выделилось в конденсаторе с этого момента и до полного затухания колебаний?

45.28. В колебательном контуре, состоящем из катушки с индуктивностью L = 0,1 Гн и активным сопротивлением R = 1 Ом и конденсатора емкостью C = 10 мкФ, происходят слабо затухающие колебания. В некоторый момент времени, когда ток в контуре максимален, напряжение на конденсаторе равно U = 1 В. Какое количество теплоты выделится в катушке за один период колебаний?

Энергия магнитного поля

1. Повторение явления самоиндукции

Изучая явление самоиндукции, пришли к выводу о том, что при изменении силы тока, протекающего через проводник, в этом же проводнике возникает ЭДС индукции, препятствующая изменению основного тока в проводниках. Это приводит к тому, что сила тока в проводнике достигает своего максимального значения не мгновенно, а в течение некоторого времени. Данное явление наблюдается и при размыкании цепи — сила тока падает до нуля не мгновенно, а постепенно. Явление самоиндукции связано с тем, что проводник с током находится в пространстве собственного магнитного потока и при любом изменении тока в проводнике меняется и магнитный поток, что в свою очередь приводит к возникновению ЭДС индукции. ЭДС индукции определяется как отрицательное отношение изменения силы тока к изменению времени и умноженное на индуктивность проводника. А индуктивность определяется геометрическими параметрами проводника.

(1.1.)

Обратим внимание на то, что при размыкании цепи, ток в ней хоть и убывает, но всё равно существует – это доказывает процесс переноса заряда, которому необходима энергия. Но откуда она берётся? Поскольку никаких других изменений, кроме убывания магнитного поля вокруг проводника не происходит, можно сделать предположение, что энергия локализована в магнитном поле.

2. Энергия магнитного поля

Необходимо выяснить, откуда берётся энергия и как её рассчитать?

Рассмотрим опыт. Пусть имеется электрическая цепь, в которой катушка с индуктивностью (L) последовательно соединена с лампочкой и через переключатель может быть замкнута либо на источник постоянного тока (), либо на резистор с сопротивлением (R) (рис.1).

Если в цепь включить амперметр, то можно получить график зависимости тока в цепи от времени. Сначала, замкнём катушку на источник ЭДС – в цепи будет протекать ток І (рис. 2).

Затем, в некоторый момент времени t0 переключим ключ, замыкая катушку на резистор R – в цепи будет протекать убывающий ток. С момента времени t0 до полного исчезновения тока пройдёт определённое время, в течение которого будет происходить перенос заряда в цепи катушки и резистора. Следовательно, будет совершаться работа – убывание тока в катушке вызовет явление самоиндукции и в ней возникнет ЭДС самоиндукции. Разобьём участок 2 движения тока на бесконечно малые интервалы времени ∆t, такие, что на каждом интервале изменения тока можно считать линейными (рис.3).

На каждом таком участке будет совершаться работа численно равная произведению ЭДС индукции на переносимый за этот интервал времени заряд

(1.2.)

(1.3.)

Подставим выражение для ЭДС самоиндукции в работу на интервале времени ∆t.

(1.4.)

Отношение перенесённого заряда ∆q к интервалу времени ∆t является средним значением тока на этом элементарном интервале времени.

(1.5.)

Тогда выражение для работы на элементарном интервале времени примет вид.

Читайте так же:
Примеры тепловое действие электрического тока химическое действие электрического тока

(1.6.)

Если просуммировать работу по всем элементарным участкам ∆t от t0 до 0 получим выражение для полной работы за весь интервал времени.

(1.7.)

Такая работа пойдёт на нагревание проводников внутри катушки замкнутой на резистор.

Выразим энергию магнитного поля, через параметры магнитного поля. Для катушки индуктивность равна произведению магнитной постоянной на объём катушки и квадрат числа витков на единице длины.

(1.8.)

(1.9.)

Модуль магнитной индукции катушки определяется соотношением (1.10.).

(1.10.)

Тогда для энергии магнитного поля получим выражение (1.11.). Разделим выражение для энергии магнитного поля катушки на её объём, считая, что всё магнитное поле сосредоточено в объёме катушки (1.12.).

(1.11.)

(1.12.)

3. Плотность энергии магнитного поля

Развивая теорию электромагнетизма, Джеймс Кларк Максвелл показал, что полученное выражение для длинной катушки справедливо для любых магнитных полей, а полученная величина называется плотность энергии.

4. Итоги

При замыкании цепи ток нарастает не мгновенно, а в течение некоторого времени, поскольку источник тока должен совершить работу против ЭДС самоиндукции. Эта работа аккумулируется в магнитном поле, которое окружает проводник с током. В последствие, энергия магнитного поля преобразуется в работу вихревого электрического поля, которое возникает в проводнике после размыкания цепи и, затем, некоторое время поддерживает индукционный ток в этом проводнике. Энергия магнитного поля вычисляется по формуле половина произведения индуктивности проводника на квадрат силы тока, протекающего через проводник.

(1.13.)

Список рекомендованной литературы

1. Касьянов В.А., Физика 11 кл.: Учебн. для общеобразоват. учреждений. – 4-е изд., стереотип. — М.: Дрофа, 2004. – 416с.: ил., 8 л. цв. вкл.

2. Тихомирова С.А., Яровский Б.М., Физика 11. М.: Мнемозина.

3. Генденштейн Л.Э., Дик Ю.И., Физика 11. М.: Мнемозина.

Рекомендованные ссылки на ресурсы интернет

3. Классная физика (Источник).

Рекомендованное домашнее задание

1. Касьянов В.А., Физика 11 кл.: Учебн. для общеобразоват. учреждений. – 4-е изд., стереотип. — М.: Дрофа, 2004. – 416с.: ил., 8 л. цв. вкл., ст. 101, в. 5, з. 4, 5.

2. Почему при размыкании цепи питания трансформатора или электродвигателя может возникнуть сильная искра?

3. Какова индуктивность контура, если при равномерном изменении силы тока на 5 А за 50 мс в этом контуре создаётся ЭДС 10 В?

4. * Катушку с индуктивностью 50 мГн, по которой шёл ток 2 А, с помощью переключателя замкнули накоротко. Какое количество теплоты выделилось в катушке к тому моменту, когда сила тока уменьшилась до 1 А?

Электромагнитная индукция

Явление электромагнитной индукции

Электромагнитная индукция – явление возникновения тока в замкнутом проводящем контуре при изменении магнитного потока, пронизывающего его.

Явление электромагнитной индукции было открыто М. Фарадеем.

  • На одну непроводящую основу были намотаны две катушки: витки первой катушки были расположены между витками второй. Витки одной катушки были замкнуты на гальванометр, а второй – подключены к источнику тока. При замыкании ключа и протекании тока по второй катушке в первой возникал импульс тока. При размыкании ключа также наблюдался импульс тока, но ток через гальванометр тек в противоположном направлении.
  • Первая катушка была подключена к источнику тока, вторая, подключенная к гальванометру, перемещалась относительно нее. При приближении или удалении катушки фиксировался ток.
  • Катушка замкнута на гальванометр, а магнит движется – вдвигается (выдвигается) – относительно катушки.

Опыты показали, что индукционный ток возникает только при изменении линий магнитной индукции. Направление тока будет различно при увеличении числа линий и при их уменьшении.

Сила индукционного тока зависит от скорости изменения магнитного потока. Может изменяться само поле, или контур может перемещаться в неоднородном магнитном поле.

Объяснения возникновения индукционного тока

Ток в цепи может существовать, когда на свободные заряды действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура равна ЭДС. Значит, при изменении числа магнитных линий через поверхность, ограниченную контуром, в нем появляется ЭДС, которую называют ЭДС индукции.

Электроны в неподвижном проводнике могут приводиться в движение только электрическим полем. Это электрическое поле порождается изменяющимся во времени магнитным полем. Его называют вихревым электрическим полем. Представление о вихревом электрическом поле было введено в физику великим английским физиком Дж. Максвеллом в 1861 году.

Свойства вихревого электрического поля:

  • источник – переменное магнитное поле;
  • обнаруживается по действию на заряд;
  • не является потенциальным;
  • линии поля замкнутые.

Работа этого поля при перемещении единичного положительного заряда по замкнутому контуру равна ЭДС индукции в неподвижном проводнике.

Магнитный поток

Магнитным потоком через площадь ​ ( S ) ​ контура называют скалярную физическую величину, равную произведению модуля вектора магнитной индукции ​ ( B ) ​, площади поверхности ​ ( S ) ​, пронизываемой данным потоком, и косинуса угла ​ ( alpha ) ​ между направлением вектора магнитной индукции и вектора нормали (перпендикуляра к плоскости данной поверхности):

Обозначение – ​ ( Phi ) ​, единица измерения в СИ – вебер (Вб).

Магнитный поток в 1 вебер создается однородным магнитным полем с индукцией 1 Тл через поверхность площадью 1 м 2 , расположенную перпендикулярно вектору магнитной индукции:

Читайте так же:
Как проверить тепловой провод

Магнитный поток можно наглядно представить как величину, пропорциональную числу магнитных линий, проходящих через данную площадь.

В зависимости от угла ​ ( alpha ) ​ магнитный поток может быть положительным ( ( alpha ) ( alpha ) > 90°). Если ( alpha ) = 90°, то магнитный поток равен 0.

Изменить магнитный поток можно меняя площадь контура, модуль индукции поля или расположение контура в магнитном поле (поворачивая его).

В случае неоднородного магнитного поля и неплоского контура магнитный поток находят как сумму магнитных потоков, пронизывающих площадь каждого из участков, на которые можно разбить данную поверхность.

Закон электромагнитной индукции Фарадея

Закон электромагнитной индукции (закон Фарадея):

ЭДС индукции в замкнутом контуре равна и противоположна по знаку скорости изменения магнитного потока через поверхность, ограниченную контуром:

Знак «–» в формуле позволяет учесть направление индукционного тока. Индукционный ток в замкнутом контуре имеет всегда такое направление, чтобы магнитный поток поля, созданного этим током сквозь поверхность, ограниченную контуром, уменьшал бы те изменения поля, которые вызвали появление индукционного тока.

Если контур состоит из ​ ( N ) ​ витков, то ЭДС индукции:

Сила индукционного тока в замкнутом проводящем контуре с сопротивлением ​ ( R ) ​:

При движении проводника длиной ​ ( l ) ​ со скоростью ​ ( v ) ​ в постоянном однородном магнитном поле с индукцией ​ ( vec ) ​ ЭДС электромагнитной индукции равна:

где ​ ( alpha ) ​ – угол между векторами ​ ( vec ) ​ и ( vec ) .

Возникновение ЭДС индукции в движущемся в магнитном поле проводнике объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.

Движущийся в магнитном поле проводник, по которому протекает индукционный ток, испытывает магнитное торможение. Полная работа силы Лоренца равна нулю.

Количество теплоты в контуре выделяется либо за счет работы внешней силы, которая поддерживает скорость проводника неизменной, либо за счет уменьшения кинетической энергии проводника.

Важно!
Изменение магнитного потока, пронизывающего замкнутый контур, может происходить по двум причинам:

  • магнитный поток изменяется вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле;
  • вторая причина изменения магнитного потока, пронизывающего контур, – изменение во времени магнитного поля при неподвижном контуре. В этом случае возникновение ЭДС индукции уже нельзя объяснить действием силы Лоренца. Явление электромагнитной индукции в неподвижных проводниках, возникающее при изменении окружающего магнитного поля, также описывается формулой Фарадея.

Таким образом, явления индукции в движущихся и неподвижных проводниках протекают одинаково, но физическая причина возникновения индукционного тока оказывается в этих двух случаях различной:

  • в случае движущихся проводников ЭДС индукции обусловлена силой Лоренца;
  • в случае неподвижных проводников ЭДС индукции является следствием действия на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.

Правило Ленца

Направление индукционного тока определяется по правилу Ленца: индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток.

Алгоритм решения задач с использованием правила Ленца:

  • определить направление линий магнитной индукции внешнего магнитного поля;
  • выяснить, как изменяется магнитный поток;
  • определить направление линий магнитной индукции магнитного поля индукционного тока: если магнитный поток уменьшается, то они сонаправлены с линиями внешнего магнитного поля; если магнитный поток увеличивается, – противоположно направлению линий магнитной индукции внешнего поля;
  • по правилу буравчика, зная направление линий индукции магнитного поля индукционного тока, определить направление индукционного тока.

Правило Ленца имеет глубокий физический смысл – оно выражает закон сохранения энергии.

Самоиндукция

Самоиндукция – это явление возникновения ЭДС индукции в проводнике в результате изменения тока в нем.

При изменении силы тока в катушке происходит изменение магнитного потока, создаваемого этим током. Изменение магнитного потока, пронизывающего катушку, должно вызывать появление ЭДС индукции в катушке.

В соответствии с правилом Ленца ЭДС самоиндукции препятствует нарастанию силы тока при включении и убыванию силы тока при выключении цепи.

Это приводит к тому, что при замыкании цепи, в которой есть источник тока с постоянной ЭДС, сила тока устанавливается через некоторое время.

При отключении источника ток также не прекращается мгновенно. Возникающая при этом ЭДС самоиндукции может превышать ЭДС источника.

Явление самоиндукции можно наблюдать, собрав электрическую цепь из катушки с большой индуктивностью, резистора, двух одинаковых ламп накаливания и источника тока. Резистор должен иметь такое же электрическое сопротивление, как и провод катушки.

Опыт показывает, что при замыкании цепи электрическая лампа, включенная последовательно с катушкой, загорается несколько позже, чем лампа, включенная последовательно с резистором. Нарастанию тока в цепи катушки при замыкании препятствует ЭДС самоиндукции, возникающая при возрастании магнитного потока в катушке.

При отключении источника тока вспыхивают обе лампы. В этом случае ток в цепи поддерживается ЭДС самоиндукции, возникающей при убывании магнитного потока в катушке.

Читайте так же:
Порвал провод теплого пола

ЭДС самоиндукции ​ ( varepsilon_ ) ​, возникающая в катушке с индуктивностью ​ ( L ) ​, по закону электромагнитной индукции равна:

ЭДС самоиндукции прямо пропорциональна индуктивности катушки и скорости изменения силы тока в катушке.

Индуктивность

Электрический ток, проходящий по проводнику, создает вокруг него магнитное поле. Магнитный поток ​ ( Phi ) ​ через контур из этого проводника пропорционален модулю индукции ​ ( vec ) ​ магнитного поля внутри контура, а индукция магнитного поля, в свою очередь, пропорциональна силе тока в проводнике.

Следовательно, магнитный поток через контур прямо пропорционален силе тока в контуре:

Индуктивность – коэффициент пропорциональности ​ ( L ) ​ между силой тока ​ ( I ) ​ в контуре и магнитным потоком ​ ( Phi ) ​, создаваемым этим током:

Индуктивность зависит от размеров и формы проводника, от магнитных свойств среды, в которой находится проводник.

Единица индуктивности в СИ – генри (Гн). Индуктивность контура равна 1 генри, если при силе постоянного тока 1 ампер магнитный поток через контур равен 1 вебер:

Можно дать второе определение единицы индуктивности: элемент электрической цепи обладает индуктивностью в 1 Гн, если при равномерном изменении силы тока в цепи на 1 ампер за 1 с в нем возникает ЭДС самоиндукции 1 вольт.

Энергия магнитного поля

При отключении катушки индуктивности от источника тока лампа накаливания, включенная параллельно катушке, дает кратковременную вспышку. Ток в цепи возникает под действием ЭДС самоиндукции.

Источником энергии, выделяющейся при этом в электрической цепи, является магнитное поле катушки.

Для создания тока в контуре с индуктивностью необходимо совершить работу на преодоление ЭДС самоиндукции. Энергия магнитного поля тока вычисляется по формуле:

Основные формулы раздела «Электромагнитная индукция»

Алгоритм решения задач по теме «Электромагнитная индукция»:

1. Внимательно прочитать условие задачи. Установить причины изменения магнитного потока, пронизывающего контур.

2. Записать формулу:

  • закона электромагнитной индукции;
  • ЭДС индукции в движущемся проводнике, если в задаче рассматривается поступательно движущийся проводник; если в задаче рассматривается электрическая цепь, содержащая источник тока, и возникающая на одном из участков ЭДС индукции, вызванная движением проводника в магнитном поле, то сначала нужно определить величину и направление ЭДС индукции. После этого задача решается по аналогии с задачами на расчет цепи постоянного тока с несколькими источниками.

3. Записать выражение для изменения магнитного потока и подставить в формулу закона электромагнитной индукции.

4. Записать математически все дополнительные условия (чаще всего это формулы закона Ома для полной цепи, силы Ампера или силы Лоренца, формулы кинематики и динамики).

5. Решить полученную систему уравнений относительно искомой величины.

Явление электромагнитной индукции. Правило Ленца. Явление самоиндукции. Трансформатор

Решебник к сборнику задач по физике для 7- 9 классов, Перышкин А.В.

1794. Магнит входит в центр замкнутой рамки. Что при этом будет происходить в рамке, если она сделана из:
а) пластика,
б) железа?

1795. К неподвижному железному кольцу приближают магнит так, как показано на рисунке 252. Найдите направление индукционного тока в кольце. Что нужно сделать, чтобы индукционный ток стал противоположного направления?

1796. С некоторой высоты свободно падает намагниченный стальной стержень. При своем движении он проходит сквозь отверстие в катушке с проволокой, и, выходя из нее, продолжает падение. Опишите изменения в движении стержня.

1797. На рисунке 253 изображена установка, в которой груз при падении вращает машину, дающую электрический ток. Этим током можно питать несколько небольших лампочек, включенных параллельно. Когда лампочки все выключены, то груз, вращая машину, быстро падает вниз. Включая в цепь машины по одной лампочке, можно заметить, что при каждом включении новой лампочки скорость падения груза уменьшается. Объясните это явление.
Если в школе имеется возможность, соберите такую установку и проделайте с ней опыт.

1798. На рисунке 254 изображено сечение проводника, расположенного перпендикулярно силовым линиям магнитного поля (проводник замкнут). Стрелкой показано направление движения проводника. Пользуясь правилом правой руки, определите направление индукционного тока в нем и докажите на этом случае индукции, что правило правой руки непосредственно вытекает из закона Ленца.

1799. На рисунке 255 изображены два проводника АВ и СD. Проводник АВ включен в цепь источника тока, концы же проводника CD присоединены к гальванометру. При замыкании и размыкании цепи проводника АВ в проводнике CD возникает индукционный ток. Пользуясь законом Ленца, определите в каждом отдельном случае направление индукционного тока в проводнике CD.

1800. Что происходит с незакрепленным металлическим кольцом, когда внутрь его вдвигают магнит северным полюсом (см. рис 252)?

1801. В однородное магнитное поле помещена проволочная рамка (рис. 256). Будет ли возникать индукционный ток в рамке, если ее:
а) перемещать поступательно;
б) вращать вокруг любой оси, параллельной магнитному полю;
в) вращать вокруг любой оси, перпендикулярной магнитному полю?

1802. Рама грузовика представляет собой замкнутый контур. Будет ли в ней возникать индукционный ток при движении машины?


1803. Чтобы обнаружить индукционный ток, используют замкнутый проводник, но не в виде одного витка провода, а в виде катушки. Почему катушка лучше?

Читайте так же:
Количество теплоты выделяемое постоянным током


1804. Можно ли получить индукционный ток на установке, изображенной на рисунке 257, не двигая магнит и навитый на него провод?


1805. Имея лишь катушку проволоки и постоянный магнит, как добиться, чтобы стрелка амперметра двигалась?

1806*. В какой момент может искрить комнатный выключатель света: при включении или при выключении? Почему?


1807*. Предохранители в аудио- и видеоаппаратуре перегорают обычно не во время работы, а при включении или выключении. Объясните явление.

1808*. Чем объясняется, что при включении электромагнита в цепь ток устанавливается не сразу, а некоторое время испытывает колебания?

1809*. В момент замыкания цепи энергия источника тока затрачивается не только на преодоление сопротивления цепи. На что еще затрачивается энергия?

1810*. Если водитель трамвая выключит электродвигатель и ток будет идти только через лампы освещения, искры, возникающие в месте контакта трамвайной дуги и провода, значительно уменьшатся. Почему?

1811*. Для устойчивого горения дуги при электросварке применяют стабилизатор — катушку со стальным сердечником. Ее включают последовательно с дугой. Почему стабилизатор помогает?

1812*. Для подачи переменного тока на предприятия и в жилые дома можно использовать подземный кабель, но категорически не разрешается прокладывать его вблизи газовых, водопроводных и канализационных труб, а также вблизи труб отопления. Почему?

1813*. Почему телефонные провода не рекомендуется размещать рядом с проводами переменного тока?

1814. На старых кораблях компасы обязательно устанавливались на массивных медных основаниях. Для чего это делалось?

1815*. Почему сердечник трансформатора делают не из сплошного железа, а из листового, причем отдельные листы изолированы друг от друга?

1816. При передаче электрической энергии на большие расстояния используется ток высокого напряжения. Почему?

1817. Районная станция, находящаяся на расстоянии 130 км от Москвы, подает в Москву ток мощностью в 48 ООО кВт. Какова должна быть сила тока для передачи энергии этой мощности при напряжении в 110 В и в 115 000 В?

1818. На рисунке 258 изображена схема индукционной электроплавильной печи, представляющей собой трансформатор, в котором первичная обмотка 2 состоит из нескольких витков провода. Вместо вторичной обмотки на сердечник трансформатора 1 надет кольцевой тигель 3 с металлом 4. При пропускании тока в первичной катушке сила тока, получаемая в тигле, достигает такой величины, что теплота, развиваемая этим током, расплавляет металл. а) Рассчитайте, какое количество теплоты получает металл в каждую секунду, если в первичную обмотку подводится ток мощностью в 100 кВт и коэффициент полезного действия всей установки 80%. б) Рассчитайте силу тока, протекающего по вторичной обмотке, если число витков первичной обмотки 500, а подводимое к ней напряжение 2000 В.

1819. В медицине для лечения применяется большой соленоид из 12-20 витков. Внутрь него помещается, например, больная рука пациента. По соленоиду пропускают ток высокой частоты, и рука прогревается. За счет чего выделяется тепло?


1820*. Рамку вращают по часовой стрелке в магнитном поле (рис. 259). Каково направление тока в ней?


1821. Сколько витков должна иметь вторичная обмотка понижающего трансформатора (рис. 260), первичная обмотка которого имеет 1200 витков, если напряжение должно быть понижено от 120 В до 4 В?


1822. Первичная обмотка трансформатора, включенная в сеть 110 В, имеет 550 витков. Какое число витков должна иметь вторичная обмотка, если необходимо получить 440 В?


1823. Катушки трансформатора имеют: первичная — 1200 витков, вторичная — 6000 витков. Какое напряжение получим на клеммах вторичной обмотки, если на клеммы первичной подаем напряжение 80 В?


1824. Каково должно быть напряжение для передачи мощности в 1000 кВт током в 100 А?


1825. Почему при передаче электрической энергии на большие расстояния экономнее пользоваться током высокого напряжения?


1826. Мощность в 500 кВт передают при помощи трансформатора, причем после трансформатора идет ток уже 50 А. Рассчитайте, каково напряжение на клеммах первичной и вторичной обмоток (при отсутствии потерь), если отношение числа витков первичной и вторичной обмоток 1 :100.


1827. Изменится ли соотношение между напряжениями на зажимах первичной и вторичной обмоток трансформатора, если железный сердечник вынуть или если вместо него вставить медный?


1828. Что изменится в трансформаторе, если его железный сердечник заменить алюминиевым?


1829. Трансформатор, коэффициент полезного действия которого 96%, используется для передачи энергии мощностью в 25 кВт с генератора, напряжение на зажимах которого 500 В. Сколько киловатт будет действительно переда¬но по линии, если число витков в первичной и вторичной обмотках 500 и 1000 соответственно, а сопротивление линии 3 Ом?


1830. Первичная обмотка трансформатора имеет 500 витков, а вторичная — 5000. Напряжение на первичной обмотке — 220 В. Каково будет напряжение на вторичной? Какова будет сила тока в первичной и вторичной обмотках трансформатора, если по линии передавать энергию мощностью в 11 кВт?

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector