Количество теплоты как найти через силу тока
Закон Джоуля-Ленца
Абсолютно каждому человеку знаком самый распространенный в мире электрический прибор – лампочка. Невозможно представить себе современный мир без этого изобретения.
Но не каждый знает, как ее изобрели, за счет чего появляется в ней свет, как свет в лампе связан с электричеством. Интересно? Разберемся.
Как связаны свет и электричество?
Правильно лампочку называть лампой накаливания. Внутри в стеклянном корпусе расположена спираль из вольфрама. Электрический ток, проходя через эту спираль, раскаляет ее добела, и она начинает светиться. Вольфрам используется потому, что он обладает таким свойством – ярко светиться при нагревании. Металлическая нить сворачивается в спираль для того, чтобы увеличить длину нити, и, соответственно, количество получаемого света. Что касается устройства лампочки – разобрались. Все довольно просто. А вот почему вообще раскаляется спираль лампочки, и кто первым додумался это использовать?
Первые эксперименты с электричеством показали, что ток обладает тепловым действием. Он нагревает проводник, по которому идет. Величина нагревания зависит от вещества, из которого изготовлен проводник. Но какой-то нагрев происходит в любом случае. Обусловлено это тем, что отрицательно заряженные электроны, которые и представляют собой ток, при своем движении взаимодействуют с положительно заряженными ядрами кристаллической решетки, из которой состоит вещество проводника.
От этого взаимодействия уменьшается энергия электронов и увеличивается внутренняя энергия проводника. А от величины внутренней энергии и зависит температура вещества. Ток обладает еще магнитным и химическим действием. Если наш проводник неподвижен, и химического действия тока не происходит, то вся энергия, расходуемая током, идет на нагрев проводника. Энергия, израсходованная током, равна совершаемой током работе.
Закон Джоуля-Ленца
Тогда работа тока будет равна количеству теплоты, которое выделит нагревшийся проводник. На основании этого независимо друг от друга в одно время два ученых вывели закон, который и назвали в их честь законом Джоуля-Ленца. Вывод закона Джоуля-Ленца в виде формулы осуществляется следующим образом: работа тока A=U*I*t . Количество теплоты Q=A=U*I*t. Из закона Ома U=I*R , поэтому закон Джоуля-Ленца выглядит следующим образом:
где Q — количество теплоты, I — сила тока, R — сопротивление тока, t — время.
Открытие этого закона позволило существенно умножить области применения электричества в быту и промышленности. Были созданы различные электронагревательные приборы. А когда обнаружили свойство некоторых веществ ярко светиться при нагревании, изобрели лампу накаливания. Фактически, это изобретение русского ученого Александра Лодыгина, хотя подобные изобретения делались и Томасом Эдисоном и некоторыми другими учеными. Причем спирали делали из разных материалов, например, из платины или угольные спирали.
Самым дешевым и простым оказался вариант с применением вольфрама, который получил огромнейшее распространение и живет до нашего времени. И хотя активно применяют и другие виды лампочек, например, наполняя их газом, который светится при прохождении через него тока, вряд ли когда-нибудь удастся полностью вытеснить из применения лампы накаливания.
Как найти силу тока в цепи
Одной из основных характеристик электрической цепи является сила тока. Она измеряется в амперах и определяет нагрузку на токопроводящие провода, шины или дорожки плат. Эта величина отражает количество электричества, которое протекло в проводнике за единицу времени. Определить её можно несколькими способами в зависимости от известных вам данных. Соответственно студенты и начинающие электрики из-за этого часто сталкиваются с проблемами при решении учебных заданий или практических ситуаций. В этой статье мы и расскажем, как найти силу тока через мощность и напряжение или сопротивление.
Если известна мощность и напряжение
Допустим вам нужно найти силу тока в цепи, при этом вам известны только напряжение и потребляемая мощность. Тогда чтобы её определить без сопротивления воспользуйтесь формулой:
После несложных мы получаем формулу для вычислений
Следует отметить, что такое выражение справедливо для цепей постоянного тока. Но при расчётах, например, для электродвигателя учитывают его полную мощность или косинус Фи. Тогда для трёхфазного двигателя его можно рассчитать так:
Находим P с учетом КПД, обычно он лежит в пределах 0,75-0,88:
Здесь P2 – активная полезная мощность на валу, η – КПД, оба этих параметра обычно указывают на шильдике.
Находим полную мощность с учетом cosФ (он также указывается на шильдике):
Определяем потребляемый ток по формуле:
Здесь 1,73 – корень из 3 (используется для расчетов трёхфазной цепи), U – напряжение, зависит от включения двигателя (треугольник или звезда) и количества вольт в сети (220, 380, 660 и т.д.). Хотя в нашей стране чаще всего встречается 380В.
Если известно напряжение или мощность и сопротивление
Но встречаются задачи, когда вам известно напряжение на участке цепи и величина нагрузки, тогда чтобы найти силу тока без мощности воспользуйтесь законом Ома, с его помощью проводим расчёт силы тока через сопротивление и напряжение.
Но иногда случается так, что нужно определить силу тока без напряжения, то есть когда вам известна только мощность цепи и её сопротивление. В этом случае:
При этом согласно тому же закону Ома:
Значит расчёт проводим по формуле:
Или возьмем выражение в правой части выражения под корень:
Если известно ЭДС, внутреннее сопротивление и нагрузка
Ко студенческим задачам с подвохом можно отнести случаи, когда вам дают величину ЭДС и внутреннее сопротивление источника питания. В этом случае вы можете определить силу тока в схеме по закону Ома для полной цепи:
Здесь E – ЭДС, r – внутреннее сопротивление источника питания, R – нагрузки.
Закон Джоуля-Ленца
Еще одним заданием, которое может ввести в ступор даже более-менее опытного студента – это определить силу тока, если известно время, сопротивление и количество выделенного тепла проводником. Для этого вспомним закон Джоуля-Ленца.
Его формула выглядит так:
Тогда расчет проводите так:
Или внесите правую часть уравнения под корень:
Несколько примеров
В качестве заключения предлагаем закрепить полученную информацию на нескольких примерах задач, в которых нужно найти силу тока.
1 задача: Рассчитать I в цепи из двух резисторов при последовательном соединении и при параллельном соединении. R резисторов 1 и 2 Ома, источник питания на 12 Вольт.
Из условия ясно, что нужно привести два варианта ответа для каждого из вариантов соединений. Тогда чтобы найти ток при последовательном соединении, сначала складывают сопротивления схемы, чтобы получить общее.
Тогда рассчитать силу тока можно по закону Ома:
При параллельном соединении двух элементов Rобщее можно рассчитать так:
Тогда дальнейшие вычисления можно проводить так:
2 задача: рассчитать ток при смешанном соединении элементов. На выходе источника питания 24В, а резисторы на: R1=1 Ом, R2=3 Ома, R3=3 Ома.
В первую очередь нужно найти R общее параллельно соединенных R2 и R3, по той же формуле, что мы использовали выше.
Теперь схема примет вид:
Далее находим ток по тому же закону Ома:
Теперь вы знаете, как найти силу тока, зная мощность, сопротивление и напряжение. Надеемся, предоставленные формулы и примеры расчетов помогли вам усвоить материал!
Количество теплоты — формула, уравнения и расчеты
Определение и формула силы
называют векторную величину, которая характеризует взаимодействия тел. Ее модуль определяет «степень» (интенсивность) воздействия. Направление силы совпадает с направлением ускорения, которое приобретает тело при взаимодействии с другими телами.
Силы способны изменять скорости тел и вызывать их деформации. Примером деформированного тела служит сжатая (растянутая) пружина.
Две силы считают равными по модулю и противоположными по направлению, если они приложены к одному телу, но ускорение такого тела равно нулю.
Основные формулы молекулярной физики и термодинамики
Закончим раздел механики формулами по колебаниям и волнам и перейдем к молекулярной физике и термодинамике.
Коэффициент полезного действия, закон Гей-Люссака, уравнение Клапейрона-Менделеева — все эти милые сердцу формулы собраны ниже.
Кстати! Для всех наших читателей сейчас действует скидка 10% на любой вид работы.
Формулы, термодинамика
Второй закон Ньютона
Равнодействующая всех сил приложенных к телу (векторная сумма всех сил) ($bar
где $bar
=m bar
Если масса материальной точки (m)не изменяется во времени, то формула, определяющая результирующую силу, приложенную к ней (второй закон Ньютона) можно представить в виде:
Если сила, приложенная к телу, является постоянной (по модулю и направлению), то формулу для нее можно представить в виде:
Удельная теплоемкость вещества
Это физическая величина, выражающая количество тепла, необходимое веществу на единицу массы для повышения температуры на одну единицу.
Таким образом, удельная теплоёмкость является свойством вещества, поскольку его значение является репрезентативным для каждого вещества, каждое из которых, в свою очередь, имеет различные значения в зависимости от того, в каком состоянии оно находится (жидкое, твердое или газообразное).
Удельная теплоёмкость обозначается маленькой буквой c и измеряется в Дж/кг∗°С, представляет собой коэффициент повышения температуры в одной единице всей системы или всей массы вещества.
Кроме того, удельная теплоёмкость меняется в зависимости от физического состояния вещества, особенно в случае твердых частиц и газов, поскольку его молекулярная структура влияет на теплопередачу в системе частиц. То же самое относится и к условиям атмосферного давления: чем выше давление, тем ниже удельное тепло.
Основной состав удельной теплоты вещества должен быть с = С/m, т. е. удельная теплота равна соотношению калорийности и массы.
Однако когда это применяется к данному изменению температуры, говорят о средней удельной теплоемкости, которая рассчитывается на основе следующей формулы:
Q — передача тепловой энергии между системой и средой (Дж);
m — масса системы (кг);
Δt или (t2 — t1) — повышение температуры, которой она подвергается (°C).
Формула для нахождения количества теплоты Q:
Q = c∗m(t2
— t1)
Чем выше удельная теплоёмкость вещества, тем больше тепловой энергии потребуется, чтобы его температура повысилась. Например, для нагрева воды (своды = 4200 Дж/кг∗°С) потребуется больше тепловой энергии, чем для нагрева свинца (ссвинца = 140 Дж/кг∗°С).
Уравнение теплового баланса:
Q отданное + Q полученное = 0.
Ниже представлена таблица значений удельной теплоёмкости некоторых веществ:
Еще один важный вентиль
Работу вентиля NOT мы уже разобрали. Следующий на очереди — вентиль CNOT (controlled-NOT, «управляемое НЕ»). На его вход подается два кубита. Первый называется управляющим, второй — управляемым. Если управляющий кубит равен |0〉, то состояние управляемого кубита не меняется. Если управляющий кубит равен |1〉, то к управляемому кубиту применяется операция NOT.
Операцию CNOT можно интерпретировать несколькими способами. Подобно вентилям X, Z и H, ее можно записать в матричной форме, которая обозначается буквой U.
Можно заметить, что столбцы матрицы соответствуют следующим преобразованиям: |00〉 → |00〉, |01〉 → |01〉, |10〉 → |11〉, |11〉 → |10〉. Как и матрицы, которые мы разобрали в , она является унитарной, а значит, .
Также для этого вентиля используется следующее обозначение (верхняя часть соответствует управляющему кубиту, нижняя — управляемому):
Выглядит как экспонат выставки современного искусства.
Этап 3. Ввод кода Q#
namespace Quantum.Bell < open Microsoft.Quantum.Primitive; open Microsoft.Quantum.Canon; operation Set (desired: Result, q1: Qubit) : () < body < let current = M(q1); if (desired != current) < X(q1); >> > > Эта операция переводит наш кубит в выбранное (нами) состояние — 0 или 1. Вначале мы измеряем кубит (эта операция обозначается буквой M), и он коллапсирует в состояние 0 или 1. Если измеренное состояние не соответствует желаемому, мы меняем его с помощью вентиля NOT, X. В противном случае ничего делать не надо. operation BellTest (count : Int, initial: Result) : (Int,Int) < body < mutable numOnes = 0; using (qubits = Qubit[1]) < for (test in 1..count) < Set (initial, qubits[0]); let res = M (qubits[0]); // Count the number of ones we saw: if (res == One) < set numOnes = numOnes + 1; >> Set(Zero, qubits[0]); > // Return number of times we saw a |0> and number of times we saw a |1> return (count-numOnes, numOnes); > > Этот небольшой фрагмент кода предназначен для тестирования операции, которую мы только что написали. Это очень простая программа: она проверяет, что кубит был переведен в нужное нам состояние.
Для этого она в цикле проводит измерение и подсчитывает количество результатов 1 с помощью переменной numOnes.
Запись «Qubit[1]» означает «создать массив кубитов из одного элемента». Индексация элементов массива ведется с нуля. Чтобы выделить два кубита (позже нам потребуется это сделать), нужно записать «Qubit[2]». Кубитам в таком массиве соответствуют номера 0 и 1.
В цикле for мы устанавливаем кубит, выделенный для определенного начального состояния, — One или Zero (в файле Driver.cs
, к которому мы скоро перейдем, это делается в явном виде). Мы измеряем это состояние, и если это One, увеличиваем значение счетчика на единицу. Затем функция возвращает количество наблюдаемых состояний One и Zero. В конце кубит переводится в состояние Zero (просто чтобы оставить его в некотором известном состоянии).
Все формулы по физике
Все основные формулы по школьной физике, которые помогут для подготовке к ЕГЭ, а также для решения задач в 7, 8, 9, 10 и 11 классах. Все формулы структурированы, что позволит из запомнить гораздо быстрее.
Количество теплоты как найти через силу тока
Причиной написания данной статьи явилась не сложность этих формул, а то, что в ходе проектирования и разработки каких-либо схем часто приходится перебирать ряд значений чтобы выйти на требуемые параметры или сбалансировать схему. Данная статья и калькулятор в ней позволит упростить этот подбор и ускорить процесс реализации задуманного. Также в конце статьи приведу несколько методик для запоминания основной формулы закона Ома. Эта информация будет полезна начинающим. Формула хоть и простая, но иногда есть замешательство, где и какой параметр должен стоять, особенно это бывает поначалу.
В радиоэлектронике и электротехнике закон Ома и формула расчёта мощности используются чаше чем какие-либо из всех остальных формул. Они определяют жесткую взаимосвязь между четырьмя самыми ходовыми электрическими величинами: током, напряжением, сопротивлением и мощностью.
Закон Ома. Эту взаимосвязь выявил и доказал Георг Симон Ом в 1826 году. Для участка цепи она звучит так: сила тока прямо пропорциональна напряжению, и обратно пропорциональна сопротивлению
Так записывается основная формула:
Путем преобразования основной формулы можно найти и другие две величины:
Мощность. Её определение звучит так: мощностью называется произведение мгновенных значений напряжения и силы тока на каком-либо участке электрической цепи.
Формула мгновенной электрической мощности:
Ниже приведён онлайн калькулятор для расчёта закона Ома и Мощности. Данный калькулятор позволяет определить взаимосвязь между четырьмя электрическими величинами: током, напряжением, сопротивлением и мощностью. Для этого достаточно ввести любые две величины. Стрелками «вверх-вниз» можно с шагом в единицу менять введённое значение. Размерность величин тоже можно выбрать. Также для удобства подбора параметров, калькулятор позволяет фиксировать до десяти ранее выполненных расчётов с теми размерностями с которыми выполнялись сами расчёты.
Когда мы учились в радиотехническом техникуме, то приходилось запоминать очень много всякой всячины. И чтобы проще было запомнить, для закона Ома есть три шпаргалки. Вот какими методиками мы пользовались.
Первая — мнемоническое правило. Если из формулы закона Ома выразить сопротивление, то R = рюмка.
Вторая — метод треугольника. Его ещё называют магический треугольник закона Ома.
Если оторвать величину, которую требуется найти, то в оставшейся части мы получим формулу для её нахождения.
Третья. Она больше является шпаргалкой, в которой объединены все основные формулы для четырёх электрических величин.
Пользоваться ею также просто, как и треугольником. Выбираем тот параметр, который хотим рассчитать, он находиться в малом кругу в центре и получаем по три формулы для его расчёта. Далее выбираем нужную.
Этот круг также, как и треугольник можно назвать магическим.