Sfera-perm.ru

Сфера Пермь
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как защитить тепловое реле от токов короткого замыкания

Защита от токов короткого замыкания

Контрольная работа

по курсу: «Технические средства автоматизации»

Выполнил студент группы ТЗ-5133

Васильев Евгений Викторович

Сбродов Николай Борисович

Контрольное задание

1. Разработать электрическую принципиальную схему управления асинхронным двигателем, обеспечивающую:

а) включение и отключение двигателя от питающей сети;

б) защиту от токов короткого замыкания;

в) тепловую защиту от токов перегрузки;

г) защиту от понижения напряжения сети до уровня

( — номинальное напряжение сети).

2. Выполнить подбор соответствующих устройств электроавтоматики.

3. Оформить контрольную работу.

Исходные данные

ПараметрЗначение
Вариант
Тип двигателя4А160М2У3
Устройство защиты от токов короткого замыканияРеле тока
Устройство защиты от перегрузкиТепловое реле

Разработка схемы управления двигателем

Электрическая принципиальная схема управления асинхронным двигателем

Электрическая принципиальная схема управления асинхронным двигателем

Включение и отключение двигателя от питающей сети

Включение двигателя выполняется при помощи кнопки SB1. При замыкании данной кнопки через катушку магнитного пускателя KM1 начинает протекать ток. Ток в сети протекает в последовательности:

— токовое реле KA3;

— контакты кнопки SB1;

— нормально-замкнутые контакты кнопки SB2;

— катушка магнитного пускателя KM1;

— нормально-замкнутые контакты теплового реле KK1:

— токовое реле KA2.

При срабатывании магнитного пускателя KM1 замыкаются его контакты. Вспомогательные контакты KM1.1 — KM1.3 замыкают цепь питания катушки, тем самым, позволяя отпустить кнопку SB1, т.к. катушка пускателя подключена к питающей сети через данные контакты. Через силовые контакты магнитного пускателя напряжение подается на электродвигатель. При этом одна фаза подключается через токовое реле KA2, а две другие – через токовые реле KA1, KA3 и нагревательные элементы теплового реле KK1. Двигатель начинает работать.

Выключение двигателя выполняется с помощью кнопки SB2. при размыкании контактов катушка магнитного пускателя отключается от питания, тем самым, вызывая размыкание контактов KM1.1, KM1.2, KM1.3, KM1.4. Двигатель останавливается.

Защита от токов короткого замыкания

Защита от токов короткого замыкания выполнена на токовых реле KA1 – KA2. При возникновении короткого замыкания ток через цепь, защищенную токовым реле, резко увеличивается, что приводит к срабатыванию данного реле, и, следовательно, разрыву электрической цепи и отключению питания электродвигателя.

Виды защит от токов КЗ

Электричество, стоящее на службе Человечества уже более ста лет, остается физической сущностью непредсказуемой и опасной – как для технических устройств, использующих его для своей работы, так и для человека, их обслуживающих. Поэтому обязательным элементом систем электрического снабжения, вне зависимости от номинала напряжения и силы тока, являются защитные устройства различного назначения и принципа действия.

Какими бывают защитные устройства

Классификация устройств, которые делают безопасными электрические сети, довольно сложна. По той причине, что одно и то же устройство применяется в различных областях и с разными целями. А алгоритм их работы нередко состоит из нескольких этапов, каждый из которых может быть использован для защиты как единственный метод. Основными критериями классификации являются:

  • По сфере применения – для защиты людей или технических устройств.
  • По способу реакции – пассивные и активные.

В подавляющем большинстве случаев принцип их работы основан на физическом проявлении действия электрического тока – нагреве или притягивании металлических деталей в поле действия магнитного поля, им порожденного.

Пассивные устройства защиты

В первую очередь, это заземление и зануление. По своей физической сущности они похожи, но по назначению различаются. Защитное действие заземления основано на двух явлениях:

  1. Ток короткого замыкания, возникающий между фазной линией и нулевым проводником (или между фазами) при малом сопротивлении среды, имеет свойство лавинообразного нарастания силы. Это приводит к возникновению электрической дуги и мгновенному разогреву проводников, участвующих в процессе, что используется для работы активных систем защиты – плавких предохранителей и автоматических выключателей.
  2. Ток всегда идет по пути наименьшего сопротивления. Если корпус электроприбора заземлить, то в случае аварии – частичном пробое фазы на него, человек не получит электрической травмы.

Стоит строго различать техническую нейтраль и заземляющий проводник. Первая является общей точкой трех обмоток силового трансформатора, соединенных звездой. Во время работы электроустановки по ней течет ток.

Ее используют для защиты потребителей трехфазного тока (электродвигателей) в случае межфазного или однофазного короткого замыкания на землю. Второй не имеет мест физического подключения к линиям электропередач и применяется для защиты людей от поражения электрическим током. В статье «Земля в электротехнике» подробно расписаны отличия этих двух понятий.

Читайте так же:
Тепловой химический источник тока патент

Свойство тока двигаться по пути наименьшего сопротивления используется и в том случае, когда требуется защита от атмосферного электричества. Для этого на крыше здания или рядом с ним устанавливают вертикальный штырь (громоотвод), который напрямую соединяют с физической землей.

Частным видом пассивной защиты можно считать работу балластного трансформатора, обеспечивающего стабильность питающего напряжения. Сглаживание происходит за счет того, что возникающий в его сердечнике магнитный поток имеет противоположное породившему его току направление.

Физическая защита кабеля, проложенного в земле, также относится к пассивной. Хотя она и не связана с прямым действием электрического тока. Она заключается в устройстве оболочки из металла – она может быть как его конструктивной частью, тогда он называется «бронированным».

Активные устройства защиты

Наиболее разнообразные по принципу работы и назначению виды защиты.

Стабилизаторы

Защита от перепадов напряжения является залогом безаварийной работы многих электроприборов. В цепях переменного тока стабилизаторы делают на основе автотрансформаторов, которые в чистом виде являются пассивными. Для их активизации в схему включается устройство, сравнивающее входное и выходное напряжение. По способу реакции на отклонение от заданных параметров они бывают двух типов:

  1. Релейные, в которых группа силовых реле обеспечивает переключение точки съема напряжения с обмотки автотрансформатора.
  2. Серверные – бегунок на автотрансформаторе вращается электромотором специального назначения (сельсин-датчик). Чем больше разница между напряжениями на входе и выходе, тем на больший угол он поворачивается.

Больше узнать о стабилизаторах можно узнать тут.

Предохранители, термореле и автоматические выключатели

Наиболее простым способом защита от перегрузки осуществляется так называемыми плавкими предохранителями. Основой их конструкции является металлический проводник, сечение и длина которого позволяют выдерживать ему токи определенной величины. При их лавинообразном нарастании в случае короткого замыкания металл нагревается и плавится, разрывая цепь.

Недостатком предохранителей является их одноразовость, а также неизбирательность действия: они могут или не успеть отключить потребителя или сделать это слишком рано. Последний случай характерен для запуска асинхронных электродвигателей, обмотки которых соединены треугольником. Он сопровождается трехкратным увеличением силы тока в цепи.

Электрическая перегрузка может быть вызвана излишним физическим сопротивлением работе электродвигателя. Для ее предотвращения используются термореле. Это устройство состоит из отрезка нихромовой проволоки, играющей роль нагревательного элемента, и биметаллического размыкателя, вокруг которого она обвита.

Чрезмерная нагрузка на валу провоцирует увеличение силы тока в обмотках. Это, в свою очередь, ведет к нагреванию чувствительного элемента реле, деформации контактов размыкателя и отключению потребителя от сети. Такие защитные устройства не рассчитаны на мгновенное отключение в случае аварии. В этом их главный недостаток.

Автоматические выключатели – это комплексные устройства, реагирующие на два проявления действия электрического тока – притягивание проводников и нагрев. В их конструкции есть соленоид – катушка с подвижным сердечником, и биметаллический контакт.

Первый срабатывает при превышении тока сверх номинального, возникающего чаще всего при коротком замыкании. Однако, если потребляемый электроустановкой ток выше указанного на корпусе автоматического выключателя, то он будет отключать сеть и при обычных условиях. Достоинство этого прибора в их универсальности и возможности мгновенного отключения потребителей.

Дифференциальные измерители

Это такие аппараты защиты, действие которых основано на определении дисбаланса между фазной линией и технической нейтралью – общей точке трех фазных обмоток, включенных по схеме «звезда». Они могут использоваться как для защиты электроустановок, так и людей. Их называют УЗО – устройство защитного отключения.

В основе их конструкции лежит дифференциальный трансформатор. Он состоит из ферритового кольца и одной обмотки на нем, которая и играет роль индикатора дисбаланса. В однофазной бытовой сети через ферритовое кольцо пропущены фазный проводник и нейтраль. Направления токов в них противоположны и уравновешивают друг друга, поэтому во вторичной обмотке ток не течет.

Если человек касается токоведущей части и электричество уходит через него в землю, то в нейтральном проводнике движение электронов прекращается, баланс нарушается и во вторичной обмотке возникает ток. Он усиливается и приводит к движению сердечника соленоида, который размыкает контакты. Подробнее об устройстве и принципе работы УЗО читайте здесь.

Читайте так же:
Тепловое действие электрического тока время

Защита генераторов и других промышленных электроустановок осуществляется трехфазными УЗО. Принцип их работы тот же, что и однофазного. Однако они способны реагировать не только на замыкание фазы на землю, но также на обрыв одной из них или замыкание между ними.

Отличие дифференциальных автоматов от выключателей в том, что они срабатывают мгновенно, без временной задержки. Поэтому на их корпусе нет буквенных маркировок: A, B, C или D. Только номинал срабатывания, величина которого в тысячи раз меньше, чем у автоматического выключателя.

Для сравнения: автоматический выключатель С32 срабатывает при пятикратном превышении рабочего тока – 160 ампер. УЗО, для которого ток в 32 ампера может быть номинальным, срабатывает при возникновении дисбаланса между фазами, исчисляемому в миллиамперах (стандартными являются значения от 10 до 300 мА).

В последнее время электротехническая промышленность стала выпускать защитные устройства, в которых объединены УЗО и АВ. Их называют «автоматические выключатели дифференциального тока» и обозначают как АВДТ. Они защищают от комплекса аварийных ситуаций: всех видов коротких замыканий, а также физической перегрузки, сопровождающейся нагревом проводников.

Их применение существенно упрощает проведение электромонтажных работ и позволяет одновременно защитить как электроустановку, так и людей, ее обслуживающих. Чтобы научиться отличать АВДТ от УЗО, ознакомьтесь с этой статьей.

Включение устройств защиты в схемы питания электроустановок является обязательным условием их безаварийной эксплуатации. Оно регламентируется своеобразной библией электрика – Правилами устройства электроустановок (ПУЭ). А также другими документами. Такими, как Правила технической эксплуатации электроустановок (ПУЭ) и Межотраслевые правила охраны труда при эксплуатации электроустановок (МПОТ).

Особенности применения и срабатывания разных защит трансформатора

Источником питания электрооборудования на предприятиях являются силовые трансформаторы, чаще всего их работа связана с высоким напряжением (более 1000 В) и большими токами. Поэтому их габариты, стоимость, а также затраты на ремонт являются ощутимыми даже для крупного производства. В связи с этим соответственно, чтобы и сами эти дорогостоящие устройства и электрооборудование, которое с помощью их питается, были надёжно защищены применяется целый рад защит. Выбор их и настройка дело довольно непростое, поэтому стоит подробно разобрать каждый из них. Конечно же, это касается только крупных трёхфазных трансформаторов на подстанциях. Для питания и защиты маломощных трансформаторов достаточно автоматического выключателя или же предохранителей. Слишком дорого и неоправданно устанавливать полный список защит, например, на все сварочные трансформаторы, применяемые в цехе.

Основные защиты трансформатора

Любая релейная защита трансформатора направлена на срабатывание при повреждении или же ненормальном режиме работы этого устройства. Нужно отметить, что некоторые из них направлены на мгновенное отключение в случае аварии, а другие только подают предупреждающий сигнал персоналу. В свою очередь, персонал уже действует по инструкциям, которые разработаны непосредственно и индивидуально для каждой схемы снабжения и распределительной подстанции. Для того чтобы было видно какой тип аварии произошёл применяются параллельно и сигнальные реле (блинкер), которые должны быть подписаны в соответствии с правилами.

Для защиты трансформатора применяется целый комплекс мероприятий и электромеханических схем, вот основные из них:

  1. Дифференциальная защита. Она предохраняет от повреждений и коротких замыканий как в обмотках, так и на наружных выводах. Действует только на отключение;
  2. Газовая защита. Защищает от превышения давления внутри расширительного бачка вследствие выделения газов или же выброса масла, а также от снижения его уровня ниже определённого критического показания;
  3. Тепловая защита. Она организована в основном на термосигнализаторах (ТС), которые подают сигнал на пульт персонала или же на включения вентиляторов охлаждения. Такой вид дополнительной защиты служит как предупреждающий при начальных стадиях аварийных ситуаций. При этом выбор самого ТС не важен, главное, выставить правильно диапазон, при котором должен подаваться сигнал. Максимально допустимый нагрев масла составляет 95 градусов;
  4. Защита минимального напряжения. Предусматривает отключение при снижении входного уровня напряжения ниже допустимого. Зачастую имеет выдержку времени, которая даст возможность не реагировать на небольшие просадки;
  5. От замыкания на землю. Выполняется путём установки трансформаторов тока в соединение корпуса и заземляющего контура;
  6. Максимальная токовая (МТЗ) выполняет роль защитного механизма как при коротких замыканиях в цепи вторичного тока, так и при больших перегрузках.
Читайте так же:
Выключатель терморегулятор для теплого пола

Защита трансформатора дифференциальная

Это одна из самых быстродействующих и важных защит, которая необходима для надёжной эксплуатации следующих трансформаторов:

  1. На понижающих одиночно работающих трансформаторах мощность которых выше чем 6300 кВА;
  2. При параллельной работе данных устройств с мощностью 4000 кВА и выше. При этом таком подключении данная защита является гарантией не только быстродействия, но и селективного отключения только того устройства, которое повреждено, а не полного обесточивания питаемого электрооборудования повлекшее за собой потери в производстве продукции или в появлении бракованных изделий;
  3. Если МТЗ трансформатора не даёт необходимой чувствительности и скорости отключения, и может срабатывать с выдержкой времени более одной секунды;
  4. Если трансформаторы меньшей мощности, то применяется обычная токовая отсечка, подключенная к реле тока.

Принцип действия дифференциальной защиты основан на сравнении тока, а точнее, его величины. Сравнивание происходит в конце и в начале защищаемого участка. Участком в данном случае служит одна из понижающих обмоток. То есть один трансформатор тока устанавливается с высокой, а другой с низкой стороны.

На схеме видно подключение трансформаторов ТТ1 и ТТ2 соединенных последовательно. Т — это реле тока, которое остаётся в бездействии при нормальной работе, когда токи одинаковы, то есть их разность будет равна нулевому значению. Во время возникновения короткого замыкания в защищаемом участке цепи появится разность токов и реле втянется, тем самым отключив трансформатор от сети. Такой вид защиты будет срабатывать как при межвитковых, так и при межфазных замыканиях. Мгновенная работа такого защитного оборудования не требует выдержки времени, так как её быстрое срабатывание является её основным положительным фактором. Выбор вставки срабатывания реле Т должен выполнятся электротехническими лабораториями или же проектировщиками данного оборудования. Для каждого конкретного случая уровень тока втягивания реле можно изменять, чтобы не было ложных срабатываний.

Принцип действия газовой защиты трансформаторов

Газовая защита силовых трансформаторов основана на работе газового реле, которое и изображено на рисунке.

В специальном окошке при выделении газов можно увидеть пузырьки.

Реле представляет собой металлический сосуд, в котором расположены два специальных поплавка. Они врезаны в наклонный трубопровод. В свою очередь, данный трубопровод является связывающим звеном между охлаждающий корпусом имеющим радиатор и расширительным баком.

Если трансформатор находится в рабочем исправном состоянии газовое реле его наполнено трансформаторным маслом, а поплавки реле находятся в определённом нерабочем состоянии, так как внутри их масло. Поплавки непосредственно соединены с контактной группой, которая имеет аварийный и предупредительный сигнал. В нормальном состоянии контакты находятся в разомкнутом положении. При нагреве масла в случае ненормального процесса в работе из него выделяется газ, который по закону физики легче, естественно, подымается вверх. На пути газов находится газовое реле и его поплавки, которое при накоплении определённого количества поднимающего его газа начинает движение, чем и размыкает первую ступеньку. При более бурном развитии событий и второй поплавок приводится в движение и замыкает уже вторую ступень которая приводит к отключению. Взятие пробы масла и его проверка, а также химический анализ позволяет определить суть повреждения.

Из практики же не каждое срабатывание газового реле приводит к взятию проб и анализу масла, иногда при заливке может попасть в систему воздух которой во время эксплуатации будет подниматься и сможет стать причиной срабатывания данной защиты. Для этого нужно всего лишь открыть специальный краник (вентиль), находящийся на корпусе реле и выпустить воздух. Эта процедура выполняется при первом срабатывании предупредительного поплавка.

Выбор самого реле основывается на конструкции трансформатора и его габаритах. Очень часто применяются несколько типов данного устройства РГЧЗ-66, ПГ-22, BF-50, BF-80, РЗТ-50, РЗТ-80. Все они имеют смотровое окошко и герметичный корпус.

Газовая защита трансформатора и принцип действия, работы в принципе несложны стоит только один раз разобраться в них.

Максимальная токовая защита трансформатора

Основную роль отключающего устройства при повышении критического уровня тока, для трансформаторов не масляных и обладающих малой мощностью, служит предохранитель. Такой элемент защиты даёт возможность персоналу, не понимающему причины отключения, повторно произвести включение, которое может принести вред оборудованию или пожар. Предохранителями оборудованы также измерительные трансформаторы напряжения, которые расположены на подстанциях в ячейках КРУ, в таких же, как и масляные выключатели. Они предназначены для измерения напряжения в сети 6000 кВ и выше, а также для цепей защиты от повышенного или пониженного напряжения.

Читайте так же:
Приведите пример теплового действия электрического тока

Для трансформаторов выбор предохранителей осуществляется из такого соотношения

Iвс — ток плавкой вставки предохранителя;

Iн. тр. — номинальный ток первичной обмотки трансформатора, в цепь которого он и устанавливается.

Предохранитель — самый простой способ защитить трансформатор от превышения тока.

Ток срабатывания максимальной защиты при установке её с низшей стороны, выбирается в соответствии с величиной нагрузки, на которую рассчитан трансформатор. Конечно же, выбирая релейную защиту данного устройства, стоит учесть также пусковые кратковременные токи, которые возникают при запусках электрических вращающихся машин. Работа таких защит основана на трансформаторах тока, вот парочка самых распространённых схем подключения.

Здесь имеется два уровня (степени) отключения, один может быть отключением от перегрузов, а другой уже срабатывает как максимальная токовая отсечка, при значительном повышении тока в контролируемых цепях, в том числе и при К.З. Цифрой 6 обозначены измерительные приборы.

Ниже представлена более усовершенствованная и развёрнутая схема уже непосредственно с подключением реле в цепи катушек маслинных выключателей.

Защита печных трансформаторов

Работа печей связана с резким нарастанием и снижением тока, поэтому дифференциальную защиту здесь применять не рекомендуется, а только газовую и тепловую. Нагревательные элементы таких печей могут работать от пониженного напряжения от 220–660 Вольт. Чаще всего здесь применяются специальные электропечные трансформаторы. Конечно же, речь идёт от печах для плавки металла, а не для приготовления пищи. В них режимы плавки меняются как питающим напряжением, так и величиной тока дуги. Печные трансформаторы должны быть оборудованы защитой от перегрузок, а также при возникновении К. З. Защиту от перегрузок устанавливают на низкой стороне, а трансформаторы тока для мгновенного срабатывания на высокой стороне. При этом уставку реле настраивают таким образом, чтобы она не отключалась при нормальных эксплуатационных К. З, ведь они работают в таком режиме и при некоторых коротких замыкания отключение не должно происходить, а только лишь поднятие электродов.

В любом случае в итоге хочется отметить что от настройки и правильности срабатывания зависят последствия ненормальных режимов работы трансформатора, а значит и стоимость последующего ремонта.

Максимальная токовая защита

Максима́льная то́ковая защи́та (МТЗ) — вид релейной защиты, действие которой связано с увеличением силы тока в защищаемой цепи при возникновении короткого замыкания на участке данной цепи. Данный вид защиты применяется практически повсеместно и является наиболее распространённым в электрических сетях.

Содержание

  • 1 Принцип действия
  • 2 Разновидности максимально-токовых защит
    • 2.1 МТЗ с независимой от тока выдержкой времени
    • 2.2 МТЗ с зависимой от тока выдержкой времени
    • 2.3 МТЗ с ограниченно-зависимой от тока выдержкой времени
    • 2.4 МТЗ с пуском (блокировкой) от реле минимального напряжения
  • 3 Задание уставок
  • 4 Реализация
  • 5 Литература

Принцип действия [ править | править код ]

Принцип действия МТЗ аналогичен принципу действия токовой отсечки. В случае повышения силы тока в защищаемой сети защита начинает свою работу. Однако, если токовая отсечка действует мгновенно, то максимальная токовая защита даёт сигнал на отключение только по истечении определённого промежутка времени, называемого выдержкой времени. Выдержка времени зависит от того, где располагается защищаемый участок. Наименьшая выдержка времени устанавливается на наиболее удалённом от источника участке. МТЗ соседнего (более близкого к источнику энергии) участка действует с большей выдержкой времени, отличающейся на величину, называемую ступенью селективности. Ступень селективности определяется временем действия защиты. В случае короткого замыкания на участке срабатывает его защита. Если по каким-то причинам защита не сработала, то через определённое время (равное ступени селективности) после начала короткого замыкания сработает МТЗ более близкого к источнику участка и отключит как повреждённый,так и свой участок. По этой причине важно, чтобы ступень селективности была больше времени срабатывания защиты, иначе защита смежного участка отключит как повреждённый, так и рабочий участок до того, как собственная защита повреждённого участка успеет сработать. Однако важно так же сделать ступень селективности достаточно небольшой, чтобы защита успела сработать до того, как ток короткого замыкания нанесёт серьёзный ущерб электрической сети.

Читайте так же:
Выключатель тепловой завесы ballu

Уставку (или величину тока, при которой срабатывает защита) выбирают, исходя из наименьшего значения тока короткого замыкания в защищаемой сети (при разных повреждениях токи короткого замыкания отличаются). Однако при выборе уставки следует так же учитывать характер работы защищаемой сети. Например, при самозапуске электродвигателей после перерыва питания, значение силы тока в сети может быть выше номинального, и защита не должна его отключать.

Разновидности максимально-токовых защит [ править | править код ]

Максимально-токовые защиты по виду время-токовой характеристики подразделяются:

  • МТЗ с независимой от тока выдержкой временем
  • МТЗ с зависимой от тока выдержкой времени
  • МТЗ с ограниченно-зависимой от тока выдержкой времени

Применяются также комбинированный вид защиты МТЗ — максимально-токовая защита с пуском (блокировкой) от реле минимального напряжения.

МТЗ с независимой от тока выдержкой времени [ править | править код ]

МТЗ с независимой от тока выдержкой времени имеет во всём рабочем диапазоне величину выдержки времени, независимую от тока (время-токовая характеристика в виде прямой, отстоящей от оси абсцисс на величину времени выдержки tсраб; при токе, равном и меньшем тока срабатывания время-токовая характеристика скачкообразно становится равной нулю).

МТЗ с зависимой от тока выдержкой времени [ править | править код ]

МТЗ с зависимой от тока выдержкой времени имеет нелинейную обратную зависимость выдержки времени от тока (обычно время-токовая характеристика близка к гиперболе, как к кривой постоянной мощности). Применение МТЗ с зависимой от тока выдержкой времени позволяет учитывать перегрузочную способность оборудования и осуществлять т. н. «защиту от перегрузки».

МТЗ с ограниченно-зависимой от тока выдержкой времени [ править | править код ]

Характеристика МТЗ с ограниченно-зависимой от тока выдержкой времени состоит из двух частей, в первой части зависимость времени от тока гиперболическая, вторая часть — независимая (или почти независимая) время-токовая характеристика — состоит из плавно сопряжённых гиперболы и прямой. Переход из независимой в зависимую часть характеристики может происходить при малых кратностях от тока срабатывания (150 %) — т. н. «крутая» характеристика, и при больших кратностях (300–400 %) — т. н. «пологая» характеристика (обычно МТЗ с «пологой» характеристикой применяются для защиты двигателей большой мощности для лучшей отстройки от пусковых токов).

МТЗ с пуском (блокировкой) от реле минимального напряжения [ править | править код ]

Для улучшения чувствительности МТЗ и отстройки её от токов нагрузки применяется ещё одна разновидность МТЗ — максимальная токовая защита с пуском (блокировкой) от реле минимального напряжения (комбинация МТЗ и защиты минимального напряжения). Такая защита будет действовать только при повышении тока, большем или равном току уставки, сопровождающееся уменьшением напряжения в сети ниже напряжения уставки. При пуске двигателей ток в сети резко возрастает, что может привести к ложному срабатыванию защит. Для этого устанавливается реле минимального напряжения, которое не дает защитам отработать, т. к. напряжение в сети остается прежним, то и защиты соответственно не реагируют на резкое увеличение тока.

Задание уставок [ править | править код ]

При задании уставок МТЗ задаются параметры тока срабатывания, выдержки времени и напряжения срабатывания (для МТЗ с блокировкой по напряжению). Для МТЗ с независимой выдержкой времени срабатывания от тока эти параметры очевидны. Для защит с зависимой и ограниченно-зависимой время-токовой характеристикой эти параметры требуют дополнительных пояснений. Для таких типов МТЗ вводится понятие тока срабатывания, как тока при котором реле находится на границе срабатывания, а время задаётся для независимой части характеристики (для ограниченно-зависимой время-токовой характеристики); иногда время задаётся при токе, равном шестикратному току номинального (например в автоматических выключателях с полупроводниковым расцепителем серий А-37, «Электрон»).

Реализация [ править | править код ]

Традиционно МТЗ реализуются на базе электромеханических токовых реле и реле времени; иногда функция пускового органа и органа выдержки времени может быть совмещена (например в индукционных токовых реле серии РТ-80). В 1970-х годах появились реализации МТЗ на базе полупроводниковых элементов (например в некоторых моделях отечественных автоматических выключателей серий А37, ВА, «Электрон»). В настоящее время имеется тенденция реализации МТЗ на базе микропроцессоров, которые обычно помимо МТЗ выполняют также несколько функций релейной защиты и автоматики: АЧР, АПВ, АВР, дифзащиты и др.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector