Sfera-perm.ru

Сфера Пермь
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как по току подобрать счетчик трехфазный

Чем отличается трехфазный генератор от однофазного?

Особенности трехфазных генераторов

Чтобы ответить на вопрос в заголовке статьи заглянем для наглядности в курс физики и посмотрим чем отличается однофазный ток от трехфазного.

Небольшой экскурс в физику

Однофазное напряжение

Все мы знаем розетки в квартире, них имеется напряжение 220 Вольт. Мы знаем, что к розетке можно подключить любой электроприбор. И мы знаем, что классическая вилка в розетке имеет 2 контакта.

Один из проводов называется нулевым, второй – фазным. На нулевом проводе всегда нулевой потенциал напряжения и он заземляется на подстанции. На фазном проводе (относительно нулевого) течет переменное напряжение, которое имеет синусоидальный вид: синусоида амплитуды поднимается до величины +220 Вольт, а потом опускается до величины –220 Вольт. Частота повторений колебаний – 50 Гц (т.е. 50 раз в секунду меняется синусоида).

Трехфазное напряжение

С трехфазным напряжением несколько сложнее. Возможно, вы не представляете себе, что это такое, поскольку обычный человек практически не сталкивается с таковым. Трехфазный ток используется в основном в производственных нуждах, для подключения мощных агрегатов, но, например, некоторые специфические приборы, используемые при строительстве или бытовые (такие как 3-фазная электроплита или 3-фазный компрессор), также могут запитываться от трехфазной сети.

Один из проводов называется нулевым, остальные три – фазными. На нулевом проводе у нас нулевой потенциал (провод заземлен). Каждый из трех фазный провод (вместе с нулевым) образует пару, и в этой паре проводов мы увидим такую же картину, что происходит с однофазным напряжением – та же синусоида, те же частота колебаний. Таким образом у нас получается система из трех однофазных токов связанных в единое целое (нулевым проводником). Но в каждой паре проводов синусоида напряжения сдвинута по времени на 1/3 (на 120 градусов) относительно любой другой пары. Такое смещение еще называют сдвигом по фазе. Это хорошо иллюстрирует картинка, где синусоиды каждой фазы наложены друг на друга.

Надеемся, теперь вы поняли принципиальную разницу между однофазным и трехфазным током.

Теперь перейдем к генераторам…

В чем же отличие между однофазным и трехфазным генератором?

Однофазные генераторы

Однофазные генераторы используются для питания только однофазных приборов и оборудования, которые для своей работы нуждаются в напряжении 220 Вольт. Это как раз все бытовые приборы и инструменты, которые окружают нас в быту. На приборной панели таких генераторов имеется одна или несколько розеток на 220 Вольт.

Все однофазные генераторы оснащены розетками на 220 Вольт / 16А, которые используются для подключения обычных приборов. Некоторые генераторы оснащены силовыми розетками 220 Вольт / 32А для подключения мощных потребителей (см. фото).

В подавляющем большинстве случаев для пользования в быту вам подойдет однофазный генератор (если вы не планируете подсоединять каких-либо трехфазных потребителей).

Трехфазные генераторы

Трехфазные генераторы могут быть использованы для питания как трехфазных, с напряжением питания 380 Вольт, так и однофазных приборов и оборудования. На приборной панели таких генераторов имеются розетки и на 380 Вольт и на 220 Вольт (см. фото). Такие электрогенераторы используются очень широко в промышленных целях, на предприятиях, на стройках и т.д.

Подключение трехфазных генераторов к однофазным потребителям

Казалось бы, как хорошо: можно приобрести трехфазный генератор (с заделом на то, что в будущем возможно понадобиться подключать трехфазных потребителей) и запитывать им, допустим, свой загородный дом. Но не все так просто.

Важным условием подключения однофазных приборов к трехфазному генератору является равномерное распределение нагрузки между тремя фазами, т.е. величины потребляемых мощностей, приходящиеся на каждую из фаз, должны быть приблизительно равны. Разница не должна превышать 25%. Иначе это может привести к такому явлению, как «перекос фаз», что может стать причиной преждевременного выхода электростанции из строя.

Учитывая сложности подключения и контроля за распределением электрической нагрузки, в бытовых условиях и в сетях с энергопотреблением менее 20 кВт использование трехфазных электрогенераторов нецелесообразно. Большинство современных бытовых устройств рассчитано на напряжение 220 Вольт, поэтому, если не планируется расширение сети, однофазные электростанции в полной мере справятся с возложенной на них задачей.

Читайте так же:
Замена неисправного счетчика электроэнергии за чей счет

Мощность однофазных и трехфазных генераторов

Если с однофазным генератором все просто, есть выходное напряжение (220 Вольт) и есть мощность, которая соответствует паспорту изделия, то с трехфазными посложнее.

Номинальная мощность трехфазного генератора – это сумма мощностей, развиваемых в каждой фазе. Т.е. три фазы как бы делят общую мощность между собой. Соответственно, мощность, развиваемая в каждой фазе равна 1/3 номинальной мощности устройства, а это значит, что максимальная мощность однофазных потребителей, подключаемых к трехфазному генератору, может составить лишь 1/3 номинальной мощности устройства.

Поясним примером. Возьмем трехфазную электростанцию с номинальной мощностью 6 кВт. Согласно вышесказанному, к ней нельзя будет подключить однофазное оборудование мощностью 6 кВт, но возможно подключить 3-х однофазных потребителей с мощностью по 2 кВт. Причем, важно соблюдать равномерность нагрузки по фазам, не допуская перекоса фаз.

Трехфазные генераторы с полной мощностью по фазам

В ряде случаев к генератору необходимо подключать как трехфазное, так и однофазное мощное оборудование, или однофазное с большими пусковыми токами. Такие задачи обычно возникают на стройке. Раз полноценно пользоваться традиционным трехфазным генератором для подключения однофазных приборов нельзя, то напрашивается вопрос: «Как быть? Покупать два генератора: однофазный и трехфазный?»

Но решение есть – на рынке имеется ряд моделей генераторов, способных обеспечить одинаковую мощность как для одной, так и для трех фаз. Альтернаторы этих моделей способны работать как в одно-, так и в трехфазных режимах без потери выходной мощности. Выбор режима работы осуществляется переключателем на приборной панели.

Т.е., допустим мы имеем трехфазную электростанцию с полной мощностью по фазам номинальной мощностью 6 кВт. И к ней можно будет подключить как трехфазное, так и однофазное оборудование мощностью 6 кВт. Такие генераторы не имеют ограничений по подключению однофазных потребителей, присущим традиционным трехфазным генераторам.

На нашем сайте вы можете ознакомится и приобрести трехфазные генераторы с полной мощностью по фазам:

Перевод ампер в киловатты и обратный расчет с практическими примерами

Амперы и киловатты являются основными характеристиками электроэнергии. Значение ампер еще называют нагрузкой, а киловатт – мощностью. Необходимость перевода этих единиц из одной в другую возникает, когда нужно понять, какое защитное реле можно установить в электрической цепи, чтобы не повредить подключенный к ней прибор.

В материале, который изложен ниже, даются конкретные примеры и формулы расчетов для разных типов электрических сетей и пояснения по проведению таких расчетов.

Если мы посмотрим на маркировку большинства устройств, которые работают от электросети, то в обозначениях характеристик прибора обычно указывается только сила тока, то есть значение в амперах. Но есть еще и мощность тока, которая измеряется в киловаттах. А этот показатель особенно важен, когда нужно подобрать защитное сетевое устройство, которое устанавливается в электрическую сеть. Правильный выбор автоматического реле позволяет обезопасить подключаемые к сети устройства от выхода из строя из-за пиковых нагрузок напряжения, а провода сети от возгорания. Теорию и примеры таких расчетов мы рассмотрим ниже.

Необходимость перевода ампер в киловатты

Мощность и сила тока две основные характеристики, которые необходимо знать, чтобы правильно установить защитные устройства при работе с электрическими приборами, подключаемыми к сети. Каждый подключенный к сети прибор должен быть защищен индивидуально подбираемыми защитными устройствами. В то же время, проводка электросети может оплавиться и загореться, если защитные устройства подобраны неправильно и не соответствуют техническим характеристикам сети. Ведь все электрические провода, которые используются, имеют собственную токонесущую способность, зависящую от сечения жилы провода, причем нужно учитывать материал, из которого эти жилы произведены.

Защитные устройства обычно срабатывают при скачках напряжения, которые могут вывести из строя приборы, включенные в сеть на этот момент. Чтобы этого не произошло, защита должна отключить ветку, к которой подключены маломощные приборы. Но на реле стоит только обозначение силы тока в амперах. А электроприборы, которые мы включаем в сеть, маркируются потребляемой мощностью в ваттах и киловаттах. Связь между мощностью и силой тока очень тесная.

Читайте так же:
Если не ставить электросчетчики

Чтобы это понять, нужно разобраться в терминологии и принципах действия электрической сети.

  • Обычно рассматривают напряжение в сети, которое представляет собой разность потенциалов, то есть работу, которая происходит при перемещении электрического заряда от одной точки в электрической сети к другой. Напряжение в любой электрической сети обозначается в вольтах.
  • Силой тока, которая измеряется в амперах, называется число ампер, проходящих по проводнику за определенную единицу времени.
  • Мощностью тока называется скорость перемещения заряда по проводнику и измеряется она в ваттах или киловаттах.

Чтобы электрические приборы высокой мощности могли нормально работать в сети, она должна обладать высокой скоростью передачи энергии, проходящей через эту сеть, то есть в сети должен быть ток высокой мощности. Поэтому автоматы, которые срабатывают на увеличение нагрузки на прибор, должны иметь более высокий порог реакции на пиковую нагрузку, чем для менее мощных устройств, подключаемых к данной конкретной электрической сети. Для создания резерва безопасности работы таких автоматов и возникает необходимость расчета точной нагрузки.

Правила перевода единиц

В инструкциях ко многим приборам попадаются обозначения в вольт-амперах. Различие их необходимо только специалистам, которым эти нюансы важны в профессиональном плане, но для обычных потребителей это не так важно, потому что используемые в этом случае обозначения характеризуют почти одно и то же. Что же касается киловатт/час и просто киловатт, то это две различных величины, которые нельзя путать ни при каких условиях.

Чтобы определить электрическую мощность через показатель сетевого тока, можно использовать различные инструменты, с помощью которых производятся замеры и вычисления:

  • с помощью тестера;
  • используя токоизмерительные клещи;
  • производя вычисления на калькуляторе;
  • с помощью специальных справочников.

Применив тестер, мы измеряем напряжение в интересующей нас электросети, а после этого используем токоизмерительные клещи для определения силы тока. Получив нужные показатели, и применив существующую формулу расчета постоянного и переменного тока, можно рассчитать мощность. Имеющийся результат в ваттах при этом делим на 1000 и получаем количество киловатт.

Однофазная электрическая цепь

В основном все бытовые электросети относятся к сетям с одной фазой, в которых применяется напряжение на 220 вольт. Маркировка нагрузки для них записывается в киловаттах, а сила тока в амперах и обозначается как АВ.

Для перевода одних единиц в другие, применяется формула закона Ома, который гласит, что мощность (P) равна силе тока (I), умноженной на напряжение (U). То есть, расчет будет выглядеть так:

Вт = 1А х 1В

На практике такой расчет можно применить, например, к обозначениям на старых счетчиках учета расхода электроэнергии, где установленный автомат рассчитан на 12 А. Подставив в имеющуюся формулу цифровые значения, получаем:

12А х 220В = 2640 Вт = 2,6 КВт

Расчеты для электрической сети с постоянным и переменным током практически ничем не отличаются, но справедливы только при наличии активных приборов, которые потребляют энергию, например, электрические лампы накаливания. А когда в сеть включены приборы с емкостной нагрузкой, тогда появляется сдвиг фаз между током и напряжением, который является коэффициентом мощности, записываемым как cos φ. При наличии только активной нагрузки, этот параметр обычно равен 1, а вот при реактивной нагрузке в сети, его приходится учитывать.

В случаях, когда нагрузка в сети смешанная, значение этого параметра колеблется около 0,85. Уменьшение реактивной составляющей мощности, ведет к уменьшению потерь в сети, что повышает коэффициент мощности. Многие производители при маркировке прибора, указывают этот параметр на этикетке.

Читайте так же:
Электросчетчик меркурий 233 как снять показания

Трехфазная электрическая сеть

Если брать пример с трехфазной сетью, то здесь все обстоит несколько по-другому, так как задействовано три фазы. Производя расчеты, нужно взять значение электрического тока одной из фаз, которое умножается на величину напряжения в этой фазе, после чего полученный результат умножается на cos φ, то есть на сдвиг фаз.

Сосчитав, таким образом, напряжение в каждой фазе, складываем полученные результаты и получаем суммарную мощность прибора, который подключен к трехфазной сети. В формулах это выглядит так:

Ватт = √3 Ампер х Вольт или Р = √3 х U x I

Ампер = √3 Вольт или I = P/√3 x U

При этом нужно иметь в виду, что существует разница фазного и линейного напряжения и тока. Но формула расчета остается одной и то же, кроме случая, когда соединение сделано в виде треугольника, и нужно произвести расчет нагрузки индивидуального подключения.

Для цепей с переменным током существует негласное правило такого расчета: сила тока делится пополам, чтобы подобрать мощность защитных и пусковых реле. Это же правило применяется и когда рассчитывают диаметр проводника в таких электрических цепях.

Перевод ампер в киловатты

Сейчас в Интернете есть множество специальных программ, в которых прямо онлайн можно, подставив свои данные, произвести нужные расчеты. Но если по какой-то причине подключиться к Интернету невозможно, а сделать расчет необходимо в данный момент, достаточно произвести простые арифметические действия, чтобы получить искомый результат.

Пример 1 – перевод для однофазной сети 220 В

Чтобы рассчитать, например, предельную мощность автоматического однополюсного реле с номинальным током 16А, производим расчет по формуле:

P = U x I

Подставляя в формулу цифровые значения получаем:

Р = 220В х 16А = 3520Вт = 3,5КВт

То есть реле-автомат, который можно установить в эту электрическую цепь, должен выдерживать нагрузку подключенных приборов не ниже 3,5 КВт.

Так же можно подсчитать сечение провода, например, для тостера на 1,5 КВт:

I = P : U = 1500 : 220 = 7А

Но при этом достаточно важным фактором является то, что при подборе проводов нужно учитывать материал используемого проводника. Так, используя медный провод, необходимо знать, что он выдержит нагрузки вдвое большие, чем алюминиевый провод такого же сечения.

Пример 2 – обратный перевод в однофазной бытовой сети

Теперь рассмотрим усложненную задачу, когда в сети задействовано несколько подключенных электрических устройств, для которых нужно подобрать автоматическое реле, оптимально выдерживающее мощность подключенных приборов, например, когда одновременно подключены:

  • 2 лампы накаливания по 100 Вт;
  • бытовой обогреватель мощностью 2 кВт;
  • телевизор мощностью 0,5 кВт.

Чтобы подсчитать общую мощность подключенных к сети приборов, работающих одновременно, нужно их мощность в киловаттах перевести в ватты и суммировать данные:

100+100+2000+500= 2700Вт или 2,7кВт

Показатель силы тока в этом конкретном случае будет:

I = P : U = 2900Вт : 220В = 13,2А

То есть, в имеющемся примере расчета, необходимо установить автомат с номинальным током, который равен или превышает полученное значение. По расчетам, выбирая однофазное стандартное реле, вполне достаточно поставить сюда автомат на 16А.

Пример 3 – расчет для трехфазной сети ампер в киловатт

Делая расчет перевода одних единиц в другие, в этом примере меняется только формула расчета. Для примера возьмем автомат с номинальным током 20А и произведем расчет, какую мощность сети он выдержит:

Р = √3 х 380В х 20А = 13148 = 13,1 кВт

То есть, исходя из полученных данных, трехфазный автомат на 20А сможет выдержать нагрузку 13,1 КВт.

Пример 4 – обратный перевод в трехфазной сети

Когда мы знаем мощность прибора, подключенного к трехфазной сети, то вычислить оптимальный ток для автомата не составит особого труда. Возьмем прибор на 13кВт, что в ваттах составит 13000 Вт.

Сила тока составит I = 13000: (√3 х 380) = 20А

Получается, что для подключения такого трехфазного прибора нужен автомат не менее 20А.

Вывод

Если вернуться к однофазной сети на 220В, то существует правило, что 1 кВт равен 4,54А, то есть 1А = 0,22кВт или 220В.

Как видно из приведенных формул и вычислений, везде при расчетах используется закон Ома, где сила электротока является обратной сопротивлению. Зная теперь все необходимые для расчетов формулы, вы самостоятельно можете произвести необходимые действия, чтобы выбрать нужное для подключения автоматическое реле, которое можно включить в электрическую сеть с гарантией того, что все приборы, подключенные к ней, будут в безопасности.

Читайте так же:
Где по пуэ должен быть счетчик электроэнергии

Расчет сечения кабеля: зачем он необходим и как правильно выполнить

Самое уязвимое место в сфере обеспечения квартиры или дома электрической энергией – это электропроводка. Во многих домах продолжают использовать старую проводку, не рассчитанную на современные электроприборы. Нередко подрядчики и вовсе стремятся сэкономить на материалах и укладывают провода, не соответствующие проекту. В любом из этих случаев необходимо сначала сделать расчет сечения кабеля, иначе можно столкнуться с серьезными и даже трагичными последствиями.

Для чего необходим расчет кабеля

В вопросе выбора сечения проводов нельзя следовать принципу «на глаз». Протекая по проводам, ток нагревает их. Чем выше сила тока, тем сильнее происходит нагрев. Эту взаимосвязь легко доказать парой формул. Первая из них определяет активную силу тока:

где I – сила тока, U – напряжение, R – сопротивление.

Из формулы видно: чем больше сопротивление, тем больше будет выделяться тепла, т. е. тем сильнее проводник будет нагреваться. Сопротивление определяют по формуле:

где ρ – удельное сопротивление, L – длина проводника, S – площадь его поперечного сечения.

Чем меньше площадь поперечного сечения проводника, тем выше его сопротивление, а значит выше и активная мощность, которая говорит о более сильном нагреве. Исходя из этого, расчет сечения необходим для обеспечения безопасности и надежности проводки, а также грамотного распределения финансов.

Что будет, если неправильно рассчитать сечение

Без расчета сечения проводника можно столкнуться с одной из двух ситуаций:

  • Слишком сильный перегрев проводки. Возникает при недостаточном диаметре проводника. Создает благоприятные условия для самовозгорания и коротких замыканий.
  • Неоправданные затраты на проводку. Такое происходит в ситуациях, когда были выбраны проводники избыточного диаметра. Конечно, опасности здесь нет, но кабель большего сечения стоит дороже и не столь удобен в работе.

Что еще влияет на нагрев проводов

Из формулы (2) видно, что сопротивление проводника зависит не только от площади поперечного сечения. В связи с этим на его нагрев будут влиять:

  • Материал. Пример – у алюминия удельное сопротивление больше, чем у меди, поэтому при одинаковом сечении проводов медь будет нагреваться меньше.
  • Длина. Слишком длинный проводник приводит к большим потерям напряжения, что вызывает дополнительный нагрев. При превышении потерь уровня 5% приходится увеличивать сечение.

Пример расчета сечения кабеля на примере BBГнг 3×1,5 и ABБбШв 4×16

Трехжильный кабель BBГнг 3×1,5 изготавливается из меди и предназначен для передачи и распределения электричества в жилых домах или обычных квартирах. Токопроводящие жилы в нем изолированы ПВХ (В), из него же состоит оболочка. Еще BBГнг 3×1,5 не распространяет горение нг(А), поэтому полностью безопасен при эксплуатации.

Кабель ABБбШв 4×16 четырехжильный, включает токопроводящие жилы из алюминия. Предназначен для прокладки в земле. Защита с помощью оцинкованных стальных лент обеспечивает кабелю срок службы до 30 лет. В компании «Бонком» вы можете приобрести кабельные изделия оптом и в розницу по приемлемой цене. На большом складе всегда есть в наличии вся продукция, что позволяет комплектовать заказы любого ассортимента.

Порядок расчета сечения по мощности

В общем виде расчет сечения кабеля по мощности происходит в 2 этапа. Для этого потребуются следующие данные:

  • Суммарная мощность всех приборов.
  • Тип напряжения сети: 220 В – однофазная, 380 В – трехфазная.
  • ПУЭ 7. Правила устройства электроустановок. Издание 7.
  • Материал проводника: медь или алюминий.
  • Тип проводки: открытая или закрытая.

Шаг 1. Потребляемую мощность электроприборов можно найти в их инструкции или же взять средние характеристики. Формула для расчета общей мощности:

Читайте так же:
Белгородэнергосбыт передать показания счетчика за электроэнергию

где P1, P2 и т. д. – мощность подключаемых приборов, Кс – коэффициент спроса, который учитывает вероятность включения всех приборов одновременно, Кз – коэффициент запаса на случай добавления новых приборов в доме. Кс определяется так:

  • для двух одновременно включенных приборов – 1;
  • для 3-4 – 0,8;
  • для 5-6 – 0,75;
  • для большего количества – 0,7.

Кз в расчете кабеля по нагрузке имеет смысл принять как 1,15-1,2. Для примера можно взять общую мощность в 5 кВт.

Шаг 2. На втором этапе остается по суммарной мощности определить сечение проводника. Для этого используется таблица расчета сечения кабеля из ПУЭ. В ней дана информация и для медных, и для алюминиевых проводников. При мощности 5 кВт и закрытой однофазной электросети подойдет медный кабель сечением 4 мм 2 .

Правила расчета по длине

Расчет сечения кабеля по длине предполагает, что владелец заранее определил, какое количество метров проводника потребуется для электропроводки. Таким методом пользуются, как правило, в бытовых условиях. Для расчета потребуются такие данные:

  • L – длина проводника, м. Для примера взято значение 40 м.
  • ρ – удельное сопротивление материала (медь или алюминий), Ом/мм 2 ·м: 0,0175 для меди и 0,0281 для алюминия.
  • I – номинальная сила тока, А.

Шаг 1. Определить номинальную силу тока по формуле:

где P – мощность в ваттах (суммарная всех приборов в доме, для примера взято значение 8 кВт), U – 220 В, Кс – коэффициент одновременного включения (0,75), cos φ – 1 для бытовых приборов. В примере получилось значение 36 А.

Шаг 2. Определить сечение проводника. Для этого нужно воспользоваться формулой (2):

Потеря напряжения по длине проводника должна быть не более 5%:

Потери напряжения dU = I · R, отсюда R = dU/I = 11/36 = 0,31 Ом. Тогда сечение проводника должно быть не меньше:

В случае с трехжильным кабелем площадь поперечного сечения одной жилы должна составить 0,75 мм 2 . Отсюда диаметр одной жилы должен быть не менее (S/ π) · 2 = 0,98 мм. Кабель BBГнг 3×1,5 удовлетворяет этому условию.

Как рассчитать сечение по току

Расчет сечения кабеля по току осуществляется также на основании ПУЭ, в частности, с использованием таблиц 1.3.6. и 1.3.7. Зная суммарную мощность электроприборов, можно по формуле определить номинальную силу тока:

Для трехфазной сети используется другая формула:

где U будет равно уже 380 В.

Если к трехфазному кабелю подключают и однофазных, и трехфазных потребителей, то расчет ведется по наиболее нагруженной жиле. Для примера с общей мощностью приборов, равной 5 кВт, и однофазной закрытой сети получается:

BBГнг 3×1,5 – медный трехжильный кабель. По таблице 1.3.6. для силы тока 18 А ближайшее в значение – 19 А (при прокладке в воздухе). При номинальной силе тока 19 А сечение его токопроводящей жилы должно составлять не менее 1,5 мм 2 . У кабеля BBГнг 3×1,5 одна жила имеет сечение S = π · r 2 = 3,14 · (1,5/2) 2 = 1,8 мм 2 , что полностью соответствует указанному требованию.

Если рассматривать кабель ABБбШв 4×16, необходимо брать данные из таблицы 1.3.7. ПУЭ, где указаны значения для алюминиевых проводов. Согласно ей, для четырехжильных кабелей значение тока должно определяться с коэффициентом 0,92. В рассматриваемом примере к 18 А ближайшее значение по таблице 1.3.7. составляет 19 А.

С учетом коэффициента 0,92 оно составит 17,48 А, что меньше 18 А. Поэтому необходимо брать следующее значение – 27 А. В таком случае сечение токопроводящей жилы кабеля должно составлять 4 мм 2 . У кабеля ABБбШв 4×16 сечение одной жилы равно:

Согласно таблице 1.3.7. этот кабель рациональнее использовать при номинальном токе 60 А (при прокладке по воздуху) и до 90 А (при прокладке в земле).

голоса
Рейтинг статьи
Ссылка на основную публикацию