Sfera-perm.ru

Сфера Пермь
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Источник питания с регулируемым стабилизатором тока

Как подключить проточную газовую колонку через розетку

Отправим материал на почту

  • Преимущество блока питания как аналога батареек
  • Причины быстрого разряда батареек
  • Подключение блока питания
  • Подключение магазинного блока
  • Изготовление и подключение самодельного
  • Выбор подходящего адаптера
  • Как самостоятельно определить параметры
  • Нужен ли стабилизатор
  • Заключение

Блок питания на 3 вольта вместо батареек позволяет пользоваться газовой колонкой и не заботиться об их своевременной замене. В результате доработки нагреватель может работать не только от съёмного источника питания, но и от розетки, что гарантирует круглосуточное наличие горячей воды.

Преимущество блока питания как аналога батареек

Установка газовой колонки – отличная перспектива перехода на метод индивидуального нагрева воды. Кроме того, это позволяет существенно сэкономить на оплате коммунальных услуг. Монтаж газового проточного нагревателя делает вас независимым от котельной и водоканала и позволяет получить горячую воду в любой момент. Так, регулярное отключение горячей воды из-за летних профилактических работ будет уже не страшно.

Существующие газовые колонки работают при наличии подключенного газа и батареек:

  • D-R-20 – солевые.
  • D-LR20 – щелочные.

Наличие независимого источника делает их независимыми от того, есть ли в доме электричество или нет. Горячая вода будет всегда, даже в том случае, если будет отключено центральное электроснабжение.

Недостаток метода заключается в возникновении необходимости регулярной замены комплекта батареек. Причём качественные щелочные элементы стоят около 200 руб, а хватает их не более, чем на 12 месяцев. Дешевые солевые приходят в негодность ещё раньше. Кроме того, в большинстве случаев, батарейки «садятся» в самый неподходящий момент. Например, вечером или в выходные, когда вы планировали отдохнуть, а не бежать в ближайший магазин.

Важно! Предложение установить блок питания на 3 вольта вместо батареек подойдёт тем, кто не хочет ежегодно покупать и менять дорогие элементы питания.

Причины быстрого разряда батареек

Как уже упоминалось, срок службы батареек зависит от их вида, солевые – 2-5 недель, алкалиновые – до 1 года. Тем не менее, существует несколько причин, существенно сказывающихся на их быстром разряде:

  • Повышенная влажность. Чаще всего наблюдается на устройствах, установленных в ванных и санузлах. На контактах образуется влага, способствующая окислению и ухудшению токопропускной способности.
  • Неверная работа ионизационного сенсора. В большинстве случаев он просто смещается в сторону, искра вырабатывается долго, что приводит к тому, что энергия заряда расходуется напрасно.
  • Смещение расположения разжигающего электрода. Причина аналогична, решается корректировкой контакта
  • Сбой в работе блока управления. При проблемах данного характера рекомендуется вызвать мастера.

Подключение блока питания

Возможно 2 варианта: приобретение готового блока питания для газовых колонок в магазине или самостоятельная сборка из зарядного устройства с аналогичными характеристиками.

Подключение магазинного блока

Преимущество такого способа заключается в том, что вам не понадобится отрезать конец со штекером и напаивать вместо него специальные разъёмы. Импульсный блок разработан непосредственно для этих целей и имеет всё необходимое для быстрого подключения. Проводка уже имеет полюсную маркировку. Например, в модели Robiton IR3-1000S полосатый провод соединяется с плюсовым выходом

Полезно! Стоимость блока питания на 3V для газовой колонки варьируется в диапазоне от 250 до 350 руб.

Всё что останется сделать для его подключения – удалить батарейки, отсоединить идущих от них провод им подключить блок питания.

Изготовление и подключение самодельного

Чтобы сделать блок питания для газовой колонки на 3 вольта своими руками, понадобится следующее:

  • Подходящее по техническим характеристикам зарядное устройство (блок питания).
  • Клемма «папа» — 2 штуки.
  • Изолента или термоусадочная трубка.
  • Паяльник.
  • Порядок работ заключается в следующем:
  • Извлечь из корпуса батарейки.
  • Отсоединить провод, идущий от них в колонку. На его концах уже имеются клеммы типа «мама», поэтому подключение нового питания происходит без проблем.
  • Соединить (с учётом полярности) провод от блока питания с тем, от которого отключен батареечный.
  • Соединить проводку.
  • Установить штекер 220V в розетку и проверить работу газовой колонки.

Выбор подходящего адаптера

Процесс изготовления прост, единственное, на что следует обратить пристальное внимание, параметры блока питания. Основные, интересующие нас, характеристики адаптера указываются под надписью «Output» — выход. Естественно в разных устройствах они могут иметь различные значения. В данной ситуации они должны соответствовать следующим показателям:

  • Входное питание – 220V.
  • Выходное питание – 3V.
  • Мощность 500 мА.

Полезно! Выходное напряжение большинства зарядников для мобильных телефонов равно 5V. Чтобы понизить его нужного значения, воспользуйтесь регулируемым стабилизатором LM 2596.

Другая ситуация затрагивает момент, определения полярности. Найти «плюс» и «минус» на уходящих проводах зарядного устройства несложно. Для этого нужно подключить устройство к сети 220V, и поочерёдно проверить контакты (внутренний и наружный) индикатором. Тот, при прикосновении к которому лампочка инструмента загорится и будет «плюсовым».

Читайте так же:
Зарядное устройство для автомобильных аккумуляторов с стабилизатором тока

Полезно! Ситуация, штекер уже демонтирован и концы провода оголены ещё более упрощает ситуацию. Проверка осуществляется аналогичным способом, с помощью индикатора.

Как самостоятельно определить параметры

Довольно распространены случаи, когда надпись о параметрах адаптера затёрта или отсутствует. Определить их самостоятельно можно 2 способами:

  • Внимательно осмотреть электроприбор, для которого он предназначался. В большинстве случаев маркировка наносится на заднюю стенку корпуса или прописывается в инструкцию в графе с основными характеристиками (напряжение, сила тока).
  • Второй способ подразумевает индивидуальное определение каждого из интересующих показателей. Выполняется это следующим образом:
  1. Входное электропитание стандартное для всех 220V. Иногда в этом пункте может быть указано, например, 190-240V. Это обозначает, что девайс способен функционировать при скачках напряжения находящихся в пределах этого диапазона.
  2. Выходной напряжение рассчитывается путём умножения количества питающих элементов на их эквивалентное напряжение (найти этот показатель можно на их корпусе).
  3. В определении силы тока необходимости нет. Для девайсов, работающих на батарейках будет достаточно 0,5-1 Ампера, что и можно использовать в качестве искомой величины.
  4. Полярность прозванивается тестером. О том, как это сделать мы говорили чуть раньше. При этом следует учитывать, что в большинстве случаев используется классическая схема, где «минусовым» проводом запитывается наружная сторона штекера, а «плюсовой» приходит на внутренний контакт.

Полезно! Для того чтобы сохранить возможность использования газовой колонки при отключении электричества, нужно припаять отрезанные провода от батареек на прежнее место. В этом случае вы в любое время сможете получить горячую воду. В обычном режиме будете пользоваться питанием от розетки, а при отключении света – переключитесь на батарейки.

Нужен ли стабилизатор

После того, как параметры блока питания определены, следует рассмотреть наличие его стабилизированного и нестабилизированного напряжения. Решение этого вопроса актуально из-за того, что сеть, питающая газовый проточный водонагреватель обязательно должна иметь стабильное напряжение, без скачков в ту или иную сторону.

Важно! Если подходящего блока питания нет и вам придётся его покупать, предусмотреть этот нюанс можно уже на этапе выбора адаптера. Существуют модели, стабилизирующие напряжение или подающие его в полученном виде.

Работа газовой колонки предусматривает получение электрического питания от батареек. Последние, в свою очередь, (при условии хорошего заряда) являются источником качественного тока и не требуют наличия дополнительных стабилизирующих устройств. Манипуляции по смене элемента, питающего нагреватель и не имеющего блока стабилизации, пьезоэлемент может работать не стабильно.

Заключение

Замена батареек на стабильный источник электропитания – отличный способ сделать подачу горячей воды независимой от замены батареек. Процесс не сложный и справиться с ним вполне по силам даже человеку, никогда не сталкивающемуся с аналогичными работами.

Источники питания регулируемые стабилизированные в Новосибирске

  • Блоки питания для ноутбуков
  • Источники бесперебойного питания
  • Стабилизаторы электрического напряжения
  • Блоки питания для компьютеров
  • Лабораторное оборудование
  • Аккумуляторы для электроинструмента
  • Комплектующие для систем видеонаблюдения

Резервный ИБП БАСТИОН СКАТ-2400М

Стабилизированный источник питания Mestek DP3030 (30В, 30А)

Источник питания Tantos TS-3A (стабилизированный)

Источник питания Tantos TS-5A (стабилизированный)

Профессиональный внутренний блок питания с четырьмя выходами PV-Link PV-DC5As (ver.D55)

Источник питания Ya Xun PS-1502DD 1 шт. белый

Источник питания W.E.P 305DA

AT-12/30 Стабилизированный блок питания на основе импульсного преобразователя

Регулируемый стабилизированный источник питания ZSR-30, 5-24V DC

AT-12/30 Источник стабилизированного питания DC 12 В, номинальный ток нагрузки 3.0 A, регулировка выходного напряжения 11.7

Импульсный источник питания МЕГЕОН 303010

Интерактивный ИБП Энергия Гарант 1000

AT-12/50 Стабилизированный блок питания на основе импульсного преобразователя

Блок бесперебойного питания с восемнадцатью защищенными выходами PV-Link PV-DC10A+ (ver.D10)

Регулируемый блок питания Proxxon NG2/E, 28707

Резервный ИБП Бастион SKAT-1200D var.1

Импульсный источник питания XH-M401 с регулировкой напряжения

Резервный ИБП БАСТИОН СКАТ-1200

ST-12/2 — стабилизированный источник питания

Регулируемый блок питания ZSR-30

TS-5A Источник стабилизированного питания

TS-5A Источник стабилизированного питания

Блок питания Faraday 12W/12-24V/DIN

Zamel Блок питания стабилизированный 230VAC/12VDC 250мА IP20 на DIN рейку 3мод

Источник питания RIGOL DP832

Лабораторный источник питания W.E.P 3005D

Лабораторный источник питания W.E.P 1502DD+

Источник питания Ya Xun PS-305D

Читайте так же:
Схемы стабилизаторов тока в нагрузке

Источник питания Ya Xun PS-1502DD

Лабораторный источник питания W.E.P 3005D

Стабилизированный источник питания с сепаратором, выход. напряж. 12±0.6В, ток нагрузки макс. 70мА

Лабораторный источник питания W.E.P 3005D

Источник питания W.E.P 305D-IV

Блок питания REXANT, стабилизированный, 12 В, 2 А, уличная установка

Блок бесперебойного питания с девятью выходами PV-Link PV-DC5A+ (ver.D60)

Источник питания Celestron PowerTank Lithium LT

Регулируемый блок питания PS-30 -R

Источник питания Ya Xun PS-1502DD

AT-12/10 Источник стабилизированного питания

Стабилизированный источник питания DR-60-12, DC 12V, 60W

Источник питания RIGOL DP831

Стабилизированный блок питания постоянного тока Rek KPS6011 (60В, 11А)

Источник питания RIGOL DP712

Блок питания стабилизированный 12В, 3А, уличная установка DC-495, 1шт, REXANT, 34-0495

Источник питания AccordTec AT-12/30 White case

Стабилизированный блок питания БП-5.1 12В 5А

Профессиональный блок питания PV-Link PV-DC05A (ver.2009)

ST-12/5 — стабилизированный источник питания

Источник питания постоянного тока YAOGONG-1502DD (15 В, 2 А)

Источник питания AccordTec AT-12/20-3 DIN

Источник питания Ya Xun PS-305D (30V, 5A, режим стабилизации тока)

+40°C, Габаритные размеры: 127 х 76 х 60 мм. Масса брутто 356 г. Цвет корпуса: черный

AccordTec АТ-24/30 — стабилизированный источник питания

Блок питания на базе готового регулируемого DC-DC преобразователя

Простой блок питания 1,2 — 32V на базе DC-DC модуля (XL4015)

Один из самых востребованных приборов в мастерской начинающего радиолюбителя – это регулируемый блок питания. О том, как самостоятельно собрать регулируемый блок питания на микросхеме MC34063 я уже рассказывал. Но и у него есть ограничения и недостатки. Во-первых, это мощность. Во-вторых, отсутствие индикации выходного напряжения.

Здесь я расскажу о том, как с минимумом временных затрат и усилий собрать регулируемый блок питания 1,2 – 32 вольт и максимальным выходным током до 4-ёх ампер.

Для этого нам понадобится два очень важных элемента:

Трансформатор, с выходным напряжением до

25. 26 вольт. О том, как его подобрать и где найти, я расскажу далее;

Готовый модуль регулируемого DC-DC преобразователя со встроенным вольтметром на базе микросхемы XL4015.

Наиболее распространены и дёшевы модули на базе микросхем XL4015 и LM2956. Самый дешёвый вариант – это модуль без цифрового вольтметра. Для себя я купил несколько вариантов таких DC-DC преобразователей, но более всех мне понравился модуль на базе микросхемы XL4015 со встроенным вольтметром. О нём и пойдёт речь.

Вот так он выглядит. Покупал его на Алиэкспресс, вот ссылка. Можно подобрать подходящий по цене и модификации через поиск.

Обратная сторона платы и вид сбоку.

Основные характеристики модуля:

Диапазон входных напряжений: 4. 36V. Максимум 38. 40V. Реально работает от 4,5. 4,6 вольт. Если на входе 4 вольта, то индикация вольтметра засвечена не будет;

Диапазон выходных напряжений (регулируется): 1,25. 32V;

Максимальный выходной ток: 5А. На самом деле, это максимальный ток диода SS54, что на плате. Рекомендуют нагружать током не более 4,5А, а на микросхему XL4015 приклеить радиатор, который идёт в комплекте.

Диапазон измеряемого напряжения вольтметра: 0. 40V;

Точность показаний вольтметра: ±0,1V;

Защита от переполюсовки на входе;

Защита от короткого замыкания (КЗ) на выходе (Есть нарекания по работе защиты от короткого замыкания на выходе, поэтому специально устраивать КЗ не рекомендую);

Встроенная защита от температурного перегрева.

Не будем забывать, что производители любят завышать характеристики своих изделий. Судя по отзывам, наиболее оптимальный вариант использования данного DC-DC модуля — это работа при входном напряжении до 30 вольт и потребляемом токе до 2 ампер.

Управление DC-DC модулем.

На печатной плате DC-DC модуля установлены две кнопки управления и регулятор выходного напряжения — обычный многооборотный переменный резистор.

Короткое нажатие кнопки 1 отключает/включает индикацию вольтметра. Своеобразный диммер. Удобно при запитке от АКБ.

Коротким нажатием на кнопку 2 можно переключать режим работы вольтметра, а именно, отображения входного или выходного напряжения на индикаторе. При использовании совместно с АКБ можно контролировать напряжение батареи и не допускать глубокого разряда.

Калибровка показаний вольтметра.

Сначала кнопкой 2 выбираем, какое напряжение отображать на дисплее вольтметра (входное или выходное). Затем мультиметром замеряем постоянное напряжение (входное или выходное) на клеммах. Если оно отличается от величины напряжения, отображаемого вольтметром, то начинаем калибровку.

Жмём 3-4 секунды на 2-ую кнопку. Показания на дисплее должны потухнуть. Отпускаем кнопку. При этом показания на дисплее появятся и начнут моргать.

Далее кратковременными нажатиями на кнопки 1 и 2 уменьшаем или увеличиваем величину отображаемого напряжения с шагом 0,1V. Если надо увеличить показания, например, с 12,0V до 12,5V, то жмём 5 раз на кнопку 2. Если надо уменьшить с 12V до 11,5V, то, соответственно, жмём 5 раз на кнопку 1.

Читайте так же:
Микросхема импульсного стабилизатор напряжения тока

После того, как калибровка завершена, жмём секунд 5 на кнопку 2. При этом показания на дисплее вольтметра перестанут моргать — калибровка завершена. Также можно ничего не делать и секунд через 10 вольтметр сам выйдет из режима калибровки.

Для того чтобы собрать блок питания, кроме самого DC/DC-модуля нам понадобится трансформатор, а также небольшая схема — диодный мост и фильтр.

Вот схема, которую нам предстоит собрать.

(Картинка кликабельна. По клику откроется в новом окне)

О трансформаторе Т1 я расскажу чуть позднее, а сейчас разберёмся с диодным мостом VD1-VD4 и фильтром C1. Эту часть схемы я буду называть выпрямителем. Далее на фото — необходимые детали для его сборки.

Разводку будущих печатных дорожек на плате я рисовал маркером для печатных плат. Перед этим сделал набросок расположения элементов на плате, развёл соединительные проводники. Затем по шаблону отметил на заготовке места сверления. Сверлил до травления в хлорном железе, так как, если сверлить после травления, могут остаться зазубрины вокруг отверстий и легко повредить окантовку около отверстий.

Затем высушил заготовку после травления, смыл защитный слой лака от маркера «Уайт-спиритом». После этого вновь отмыл и высушил заготовку, зачистил медные дорожки мелкой наждачной бумагой и залудил все дорожки припоем. Вот, что получилось.

Немного о просчётах. Так как делал всё быстро и на коленке, то без «косяков», естественно, не обошлось. Во-первых, сделал плату двухсторонней, а не надо было. Дело в том, что отверстия то без металлизации, и запаять потом тот же разъём в такую двухстороннюю печатную плату непростая задача. С одной стороны контакты запаяешь без проблем, а вот с другой стороны платы уже никак. Так что намучился.

Вместо сетевого выключателя SA1 временно впаял перемычку. Установил входные и выходные разъёмы, а также разъём для подключения трансформатора. Разъёмы устанавливал в расчёте на модульность и удобство пользования, чтобы впредь можно было быстро и без пайки соединять блок выпрямителя с разными DC-DC модулями.

В качестве плавкого предохранителя FU1 использовал готовый с держателем. Очень удобно. И контакты под напряжением прикрыты, и предохранитель заменить без пайки не проблема. По идее подойдёт предохранитель в любом исполнении и типе корпуса.

В качестве диодного моста (VD1 — VD4) я использовал сборку RS407 на максимальный прямой ток 4 ампера. Аналоги диодного моста RS407 — это KBL10, KBL410. Диодный мост можно собрать и из отдельных выпрямительных диодов.

Тут стоит понимать, что сам регулируемый DC-DC модуль рассчитан на максимальный ток 5 ампер, но такой ток он сможет выдержать только в том случае, если на микросхему XL4015 установить радиатор, да, и для диода SS54, что на плате, ток в 5А — максимальный!

Также не будем забывать, что производители склонны завышать возможности своих изделий и срок их службы при таких нагрузках. Поэтому для себя я решил, что такой модуль можно нагружать током до 1 — 2 ампер. Речь идёт о постоянной, долгосрочной нагрузке, а не периодической (импульсной).

При таком раскладе, диодный мост можно выбрать на прямой ток 3-4 ампера. Этого должно хватить с запасом. Напомню, что если собирать диодный мост из отдельных диодов, то каждый из диодов, входящих в состав моста должен выдерживать максимальный потребляемый ток. В нашем случае это 3-4 ампера. Вполне подойдут диоды 1N5401 — 1N5408 (3А), КД257А (3А) и др.

Также для сборки потребуется электролитический конденсатор C1 ёмкостью 470 — 2200 мкФ. Конденсатор лучше выбрать на рабочее напряжение 63V, так как максимальное входное напряжение DC-DC преобразователя может быть до 36V, а то и 38. 40V. Поэтому разумней поставить конденсатор на 63V. С запасом и надёжно.

Тут опять же стоит понимать, что всё зависит от того, какое напряжение у вас будет на входе DC-DC модуля. Если, например, планируется использовать модуль для питания 12-ти вольтовой светодиодной ленты, а на входе DC-DC модуля будет напряжение только 16 вольт, то электролитический конденсатор можно поставить с рабочим напряжением 25 вольт или более.

Я же поставил по максимуму, так как данный модуль и собранный выпрямитель, я планировал использовать с разными трансформаторами, у которых разное выходное напряжение. Следовательно, чтобы каждый раз не перепаивать конденсатор, установил его на 63V.

Читайте так же:
Схема стабилизатора тока зарядное устройство для

В качестве трансформатора T1 подойдёт любой сетевой трансформатор с двумя обмотками. Первичная обмотка (Ⅰ) сетевая и должна быть рассчитана на переменное напряжение 220V, вторичная обмотка (Ⅱ) должна выдавать напряжение не более 25

Если взять трансформатор, на выходе которого будет более 26 вольт переменного напряжения, то после выпрямителя напряжение может быть уже более 36 вольт. А, как мы знаем, модуль DC-DC преобразователя рассчитан на входное напряжение до 36 вольт. Также стоит учитывать тот момент, что в бытовой электросети 220V иногда бывает чуть завышенное напряжение. Из-за этого, пусть и кратковременно, на выходе выпрямителя может образоваться довольно существенный «скачок» напряжения, который превысит допустимое напряжение в 38. 40 вольт для нашего модуля.

Далее вы поймёте, зачем я всё это разжёвываю.

Ориентировочный расчёт выходного напряжения Uвых после диодного выпрямителя и фильтра на конденсаторе:

Переменное напряжение на вторичной обмотке трансформатора T1 (Ⅱ) — UT1;

Падение напряжения (Forward Voltage Drop) на диодах выпрямителя — VF. Поскольку в диодном мосте в каждый полупериод ток течёт через два диода, то VF умножаем на 2. Для диодной сборки дело обстоит также.

Так, для RS407 в даташите я нашёл такую строчку: Maximum forward Voltage drop per bridge element at 3.0A peak — 1 Volt. Это означает, что если через любой из диодов моста течёт прямой ток в 3 ампера, то на нём будет теряться 1 вольт напряжения (per bridge element — на каждый элемент моста). То есть берём значение VF = 1V и так же, как и в случае с отдельными диодами, умножаем величину VF на два, так как в каждый полупериод ток течёт через два элемента диодной сборки.

Вообще, чтобы не ломать голову полезно знать, что VF для выпрямительных диодов обычно составляет около 0,5 вольт. Но это при небольшом прямом токе. С его ростом увеличивается и падение напряжения VF на p-n переходе диода. Как видим, величина VF при прямом токе в 3А для диодов сборки RS407 составляет уже 1V.

Так как на электролитическом конденсаторе С1 выделяется пиковое значение выпрямленного (пульсирующего) напряжения, то итоговое напряжение, которое мы получим после диодного моста (UT1 — (VF*2)) необходимо умножить на квадратный корень из 2, а именно √2

Таким образом, с помощью этой простой формулы мы сможем определить выходное напряжение на выходе фильтра. Теперь осталось дело за малым — найти подходящий трансформатор.

В качестве трансформатора я использовал силовой броневой трансформатор ТП114-163М.

К сожалению, точных данных на него я не нашёл. Выходное напряжение на вторичной обмотке без нагрузки

19,4V. Ориентировочная мощность данного трансформатора

Кроме этого решил сравнить полученные данные с параметрами трансформаторов серии ТП114 (ТП114-1, ТП114-2. ТП114-12). Максимальная выходная мощность данных трансформаторов — 13,2 Вт. Наиболее подходящим к трансформатору ТП114-163М по параметрам оказался ТП114-12. Напряжение на вторичной обмотке в режиме холостого хода — 19,4V, а под нагрузкой — 16V. Номинальный ток нагрузки — 0,82А.

Также в моём распоряжении оказался ещё один трансформатор, также серии ТП114. Вот такой.

Судя по выходному напряжению (

22,3V) и лаконичной маркировке 9М, это модификация трансформатора ТП114-9. Параметры ТП114-9 такие: номинальное напряжение — 18V; номинальный ток нагрузки — 0,73А.

На базе первого трансформатора (ТП114-163М) мне удастся сделать регулируемый блок питания 1,2. 24 вольт, но это без нагрузки. Понятно, что при подключенной нагрузке (потребителе тока) напряжение на выходе трансформатора просядет, и результирующее напряжение на выходе DC-DC преобразователя также уменьшится на несколько вольт. Поэтому, этот момент надо учитывать и иметь ввиду.

На базе второго трансформатора (ТП114-9) уже получится регулируемый блок питания на 1,2. 28 вольт. Это также без нагрузки.

Про выходной ток. Производителем заявлено, что максимальный выходной ток DC-DC преобразователя — 5А. Судя по отзывам, максимум 2А. Но, как видим, трансформаторы мне удалось найти достаточно маломощные. Поэтому выжать даже 2 ампера мне вряд ли получится, хотя всё зависит от выходного напряжения DC-DC модуля. Чем меньше оно будет, тем больший ток удастся получить.

Для всякого маломощного «разносола» данный блок питания подойдёт на ура. Вот запитка «веселящего шарика» напряжением 9V и током около 100 mA.

Читайте так же:
Крен12а схема включения стабилизатор тока

А это уже запитка 12-ти вольтовой светодиодной ленты длиной около 1 метра.

Также существует облегчённая, Lite-версия данного DC-DC преобразователя, которая собрана также на микросхеме XL4015E1.

Единственное отличие, это отсутствие встроенного вольтметра.

Параметры аналогичные: входное напряжение 4. 38V, максимальный ток 5А (рекомендуется не более 4,5А). Реально же использовать при входном напряжении до 30V, 30V с небольшим. Ток нагрузки не более 2. 2,5А. Если нагружать сильнее, то ощутимо греется и, естественно, снижается срок службы и надёжность.

РЕГУЛИРУЕМЫЙ БЛОК ПИТАНИЯ С ЗАЩИТОЙ

У каждого радиолюбителя, регулярно занимающегося конструированием электронных устройств, думаю, имеется дома регулируемый блок питания. Штука действительно удобная и полезная, без которого, испробовав его в действии, обходиться становится трудно. Действительно, нужно ли нам проверить, например светодиод, то потребуется точно выставлять его рабочее напряжение, так как при значительном превышении подаваемого напряжения на светодиод, последний может просто сгореть. Также и с цифровыми схемами, выставляем выходное напряжение по мультиметру 5 вольт, или любое другое нужное нам и вперед.

Многие начинающие радиолюбители, сначала собирают простой регулируемый блок питания, без регулировки выходного тока и защиты от короткого замыкания. Так было и со мной, лет 5 назад собрал простой БП с регулировкой только выходного напряжения от 0,6 до 11 вольт. Его схема приведена на рисунке ниже:

Но несколько месяцев назад решил провести апгрейд этого блока питания и дополнить его схему небольшой схемкой защиты от короткого замыкания. Эту схему нашел в одном из номеров журнала Радио. При более детальном изучении выяснилось, что схема во многом напоминает приведенную выше принципиальную схему, собранного мной ранее блока питания. При коротком замыкании в питаемой схеме светодиод индикации КЗ гаснет, сигнализируя об этом, и выходной ток становится равен 30 миллиампер. Было решено, взяв часть этой схемы дополнить свою, что и сделал. Оригинал, схему из журнала Радио, в которую входит дополнение, привожу на рисунке ниже:

На следующем рисунке показывается часть этой схемы, которую нужно будет собрать.

Номинал некоторых деталей, в частности резисторов R1 и R2, нужно пересчитать в сторону увеличения. Если у кого-то остались вопросы, куда подсоединять выходящие провода с этой схемы, приведу следующий рисунок:

Еще дополню, что в собираемой схеме, вне зависимости, будет это первая схема, или схема из журнала Радио необходимо поставить на выходе, между плюсом и минусом резистор 1 кОм. На схеме из журнала Радио это резистор R6. Дальше осталось протравить плату и собрать все вместе в корпусе блока питания. Зеркалить платы в программе Sprint Layout не нужно. Рисунок печатной платы защиты от короткого замыкания:

Примерно месяц назад мне попалась на глаза схема приставки регулятора выходного тока, которую можно было использовать совместно с этим блоком питания. Схему взял с этого сайта. Тогда собрал эту приставку в отдельном корпусе и решил подключать её по мере необходимости для зарядки аккумуляторов и тому подобных действий, где важен контроль выходного тока. Привожу схему приставки, транзистор кт3107 в ней заменил на кт361.

Но впоследствии пришла в голову мысль соединить, для удобства, все это в одном корпусе. Открыл корпус блока питания и посмотрел, места осталось маловато, переменный резистор не поместится. В схеме регулятора тока используется мощный переменный резистор, имеющий довольно большие габариты. Вот как он выглядит:

Тогда решил просто соединить оба корпуса на винты, сделав соединение между платами проводами. Также поставил тумблер на два положения: выход с регулируемым током и нерегулируемым. В первом случае, выход с основной платы блока питания соединялся с входом регулятора тока, а выход регулятора тока шел на зажимы на корпусе блока питания, а во втором случае, зажимы соединялись напрямую с выходом с основной платы блока питания. Коммутировалось все это шести контактным тумблером на 2 положения. Привожу рисунок печатной платы регулятора тока:

На рисунке печатной платы, R3.1 и R3.3 обозначены выводы переменного резистора первый и третий, считая слева. Если кто-то захочет повторить, привожу схему подключения тумблера для коммутации:

Печатные платы блока питания, схемы защиты и схемы регулировки тока прикрепил в архиве. Материал подготовил AKV.

Originally posted 2018-11-23 07:09:50. Republished by Blog Post Promoter

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector